An Interconnection Architecture for Seamless Inter and Intra-Chip Communication Using Wireless Links

Jagan Muralidharan
jm4880@rit.edu

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
An Interconnection Architecture for Seamless Inter and Intra-Chip Communication Using Wireless Links

by

Jagan Muralidharan

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering

Supervised by

Dr. Amlan Ganguly
Department of Computer Engineering
Kate Gleason College of Engineering
Rochester Institute of Technology
Rochester, NY
June 2015

Approved By:

Dr. Amlan Ganguly
Primary Advisor – R.I.T. Dept. of Computer Engineering

Dr. Andres Kwasinski
Secondary Advisor – R.I.T. Dept. of Computer Engineering

Dr. Reza Azarderakhsh
Secondary Advisor – R.I.T. Dept. of Computer Engineering
Dedication

I would like to dedicate this thesis to my parents Mr. Muralidharan and Mrs. Soundaravalli who have supported me from the beginning of this journey. I would also like to dedicate this to my mentor and all my friends who have been a great source of motivation and inspiration.
I take this opportunity to express my profound gratitude and deep regards to my primary advisor Dr. Amlan Ganguly for his exemplary guidance, monitoring and constant encouragement throughout this thesis. Dr. Ganguly dedicated his valuable time to review my work constantly and provide valuable suggestions which helped in overcoming many obstacles and keeping the work on the right track. I would also like to express my deepest gratitude to Dr. Andres Kwasinski and Dr. Reza Azarderakhsh for sharing their thoughts and suggesting valuable ideas which have had significant impact on this thesis. I am grateful for their valuable time and cooperation during the course of this work. I also take this opportunity to thank my research group members for all the constant support and help provided by them.
Abstract

As semiconductor technologies continue to scale, more and more cores are being integrated on the same multicore chip. This increase in complexity poses the challenge of efficient data transfer between these cores. Several on-chip network architectures are proposed to improve the design flexibility and communication efficiency of such multicore chips. However, in a larger system consisting of several multicore chips across a board or in a System-in-Package (SiP), the performance is limited by the communication among and within these chips. Such systems, most commonly found within computing modules in typical data center nodes or server racks, are in dire need of an efficient interconnection architecture.

Conventional interchip communication using wireline links involve routing the data from the internal cores to the peripheral I/O ports, travelling over the interchip channels to the destination chip, and finally getting routed from the I/O to the internal cores there. This multihop communication increases latency and energy consumption while decreasing data bandwidth in a multichip system. Furthermore, the intrachip and interchip communication architectures are separately designed to maximize design flexibility. Jointly designing them could, however, improve the communication efficiency significantly and yield better solutions.

Previous attempts at this include an all-photonic approach that provides a unified inter/intra-chip optical network, based on recent progress in nano-photonic technologies. Works on wireless inter-chip interconnects successfully yielded better results than their wired counterparts, but their scopes were limited to establishing a single wireless
connection between two chips rather than a communication architecture for a system as a whole.

In this thesis, the design of a seamless hybrid wired and wireless interconnection network for multichip systems in a package is proposed. The design utilizes on-chip wireless transceivers with dimensions spanning up to tens of centimeters. It manages to seamlessly bind both intrachip and interchip communication architectures and enables direct chip-to-chip communication between the internal cores. It is shown through cycle accurate simulations that the proposed design increases the bandwidth and reduces the energy consumption when compared to the state-of-the-art wireline I/O based multichip communications.
Table of Contents

Dedication ... ii

Acknowledgements ... iii

Abstract .. iv

Table of Contents .. vi

List of Figures .. viii

List of Tables ... ix

Chapter 1 Introduction .. 1

1.1. Network-on-Chip (NoC) ... 1

1.2. Interchip Communication ... 4

1.3. Emerging Interconnect Architectures .. 6

1.4. Thesis Contribution ... 7

Chapter 2 Related Work .. 10

Chapter 3 Wireless Multichip Architecture ... 13

3.1. Topology .. 14

3.1.1 Multichip System with Intrachip Mesh .. 14

3.1.2 Multichip System with Intrachip Small-World .. 15

3.2. Physical Layer .. 17

3.3. Wireless Communication Protocol ... 18

3.4. Routing .. 20

Chapter 4 Simulation Results .. 22

4.1. Simulator Setup ... 23
4.2. Wireless Link Budget Analysis .. 24
4.3. Performance Evaluation ... 25
 4.3.1 Achievable Bandwidth ... 27
 4.3.2 Packet Energy ... 29
4.4. Performance Evaluation with Non-Uniform Traffic 31
4.5. Area Overheads .. 35

Chapter 5 Conclusions and Future Work ... 37

Bibliography ... 39
List of Figures

Fig. 1: Network-on-Chip Architecture [4] ... 2
Fig. 2: Range of different interconnection architectures 5
Fig. 3: Architecture of the proposed wireless multichip system 13
Fig. 4: Small-World NoC architecture with short and long range links [29] 16
Fig. 5: Block diagram of mm-wave CDMA based wireless transceiver 19
Fig. 6: Peak achievable bandwidth per core for varying system size, for uniform traffic ... 28
Fig. 7: Average packet energy dissipation with varying system size, with uniform traffic ... 30
Fig. 8(a): Peak achievable bandwidth per core with non-uniform traffic (b): Packet Energy with non-uniform traffic .. 32
Fig. 9(a): Peak Bandwidth per core for 2 chip system with localization (b) Average packet energy for 2 chip system with localization .. 34
Fig. 10: Area overheads .. 35
List of Tables

Table 1: Different interconnection architectures for multichip system……………27
Chapter 1 Introduction

In order to keep up with the growing performance demands of applications, modern computing systems are becoming increasingly complex. The number of cores integrated on a single chip is increasing, and the number of transistors have increased to billions. With this increase comes the problem of communication delay among the cores. The electrical wires that carry signals across the chip do not scale in length with technology, and hence end up increasing the global wire delay. If this data latency becomes too large, the processing cores would waste a lot of power being idle and by waiting [1].

Traditionally, ad-hoc and bus-based architectures were used for intra-chip communication. These architectures, although seemingly adequate, worked well only for a few number of cores. As the number of cores increased, the length of the shared bus would also have to increase, leading to a high intrinsic parasitic capacitance and thus, increased propagation delays. Moreover, the bandwidth available to each core reduced, resulting in lower throughput and increased contention delays. This led to the introduction of ad-hoc based architectures where the bus was split into multiple segments and employed hierarchically [2]. However, this architecture still possessed the inherent limitations of the bus-based architecture. In other words, the traditional architectures were not scalable to higher number of cores on a chip. Thus, modern communication networks gradually moved towards Network-on-Chip (NoC) architectures as a solution to the above problem [3].

1.1. Network-on-Chip (NoC)

Network-on-Chip paradigm is a new approach of designing a scalable communication fabric between the cores of a multicore chip. It is a communication centric
approach where the communication infrastructure is separated from the functionality of the cores. That is, this approach separates the communication network from the processing elements and the data is routed over this network using intelligent switches or routers [4]. Such an approach provides a scalable plug-and-play system, and facilitates reusability. Fig.1 depicts a basic Network-on-Chip architecture for a 16 core system.

![Network-on-Chip Architecture](image)

Fig. 1: Network-on-Chip Architecture [4]

Conventionally, there are three types of switching mechanisms used for data routing in NoCs, namely Circuit Switching, Packet Switching and Wormhole Switching. In circuit switched networks, a dedicated path is reserved for the entire transmission duration and the data follows this particular path. This proves to be disadvantageous when
the number of cores increases because there are numerous other cores waiting for transmission along the same path. Hence this method is inefficient for larger systems. In case of packet switched networks, the data is divided into packets and then each packet is routed over the network. Since there is no reservation path in this case, the packets need to be buffered in the switches along the path to the destination. This demands more area overhead for the multicore System-on-Chip, which is not favorable.

Considering the drawbacks of the above two switching techniques, wormhole switching is adopted in this work [5]. Here, the data packets are broken down into small units called flow control units or flits. The size of each flit is chosen such that a single flit can traverse a single hop in a single clock cycle. These flits are routed over the network using switches, and each switch only forwards the first flit or the header flit onto the next switch in the path to the destination. The rest of the flits (body flits) follow this path setup by the header flit in pipelined fashion. Hence each switch only has to hold or forward these smaller sized flits, eliminating the need for large buffers. However, reserving a path for a particular packet would prevent other messages from being sent to a switch until the packet is completely transmitted. As a solution, the concept of virtual channels is used where a virtual path is reserved for each distinct message. Each packet being transmitted is allocated a distinct buffer at each of the switches along its path to the destination. This way, every packet gets a distinct virtual path, and each switch can send and receive packets from different nodes simultaneously.
1.2. Interchip Communication

Large complex systems such as servers and datacenters encompass computing modules with multiple multicore chips. In these environments, the lower level cache is physically distributed between the cores, and cache or memory access would often require communication between the cores of different chips. As the number of multicore chips keeps scaling up in these systems, the interconnection between them is becoming increasingly complex. Hence, in these infrastructures, the communication efficiency among and within the chips is very important for the overall system performance.

While intrachip communication is gradually advancing to Network-on-Chip architectures, interchip communication is also evolving at a rapid pace. For interchip communications, bus-based and ad-hoc architectures are still popular, and signals are mostly transmitted by electrical interconnects on printed circuit boards [13] [22]. In multichip environments within a System-in-Package (SiP), solder bumps or C4 interconnects are used, spanning 10 mm in range. For board level multichip modules, Peripheral Component Interconnect (PCI) is the most common local I/O bus technology for interchip interconnection. Recently the PCI Express (PCIe) is presented as the next generation I/O technology [6]. On a larger scale, when dealing with distances of several meters to a kilometer such as in a datacenter warehouse, Ethernet cables are used for the same interchip communication. Fig. 2 shows the range of different interconnection architectures, keeping distance as the scaling metric.
However, there is a huge performance gap between the interchip I/O and the on-chip electrical interconnects. For instance, the limited number of I/O and the crosstalk issues severely limit the bandwidth of interchip communication. The substantial difference in physical lengths, resistance and capacitance between the I/O and the intrachip interconnects account for the much larger interchip delay. Furthermore, the off-chip I/O with high capacitance would require much larger drive power when compared to the on-chip interconnects. These factors make interchip and intrachip interconnects mismatched, and the two architectures are always designed with different protocols and properties [7]. Owing to this difference, the data from cores located within the chips need to travel to the peripheral I/O blocks, traverse the interchip link, and then get routed over to its final destination core within this chip. This multihop routing for transfer of data between the
cores of a multichip system is highly inefficient in terms of energy consumption, latency and bandwidth.

1.3. **Emerging Interconnect Architectures**

In order to alleviate the problems of traditional off-chip interconnections, many works have been proposed over the years. Optical interconnects are proposed as a promising solution, to replace both inter- and intrachip electrical wires and interconnect the two channels [7]. However, in spite of boasting advantages of ultrahigh throughput, low delay and low power consumption, the pitch of photonic interconnects do not scale well due to the limitations in size of silicon-photonic devices. Furthermore, manufacturing the electronic components required for such a photonic interconnection is not feasible with standard CMOS processes. Another promising solution is the proposition of vertically integrated 3D ICs [8] which contain multiple layers of active devices. However, this architecture requires extremely precise wafer-to-wafer alignment during manufacturing, and sophisticated thermal management techniques.

Wireless links for data communication is a rising methodology and a good alternative to traditional interconnects. As conventional metallic interconnects become the bottleneck of Network-on-Chips, wireless NoC architectures are proposed [9], which significantly improves the energy efficiency and bandwidth of on-chip data communication. This method utilizes wireless links in the millimeter-wave (mm-wave) bands using on-chip antennas embedded in the chip [10]. Recent research has shown that these on-chip wireless interconnects is scalable to off-chip communication as well. These show that the wireless data links can span distances from 10 mm to 10 m in length with
multi GigaHertz bandwidths [10] [11]. In this case, the factors that posed major challenges with traditional I/O are overcome here. For example, the delay difference between on-chip and off-chip wireless interconnects is negligible owing to the high speeds of electromagnetic waves. Also, the increase in power for increase in transmission length is not as profound as with the wired interconnects. These factors make wireless interconnects suitable for an alliance of inter- and intrachip architectures for multicore chips.

1.4. Thesis Contribution

In this thesis, it will be shown that wireless interconnects can be used to establish a seamless communication infrastructure for multichip systems within a single package. This architecture will enable exchange of data between cores in a single chip as well as between cores from different chips in a multichip system, thus seamlessly merging both the interchip and the intrachip networks. The wireless links will span distances up to a few tens of centimeters, using the same communication protocols for both interchip and intrachip data transfer. Wireless transceivers will be integrated in a select few cores in the chips, and each of these cores will be able to communicate directly with other such cores in a single hop, within the same or different chips. To be equipped with these wireless transceivers, the internal cores of the chips will be efficiently selected such that, on an average, every other core will be within a short distance from its nearest transceiver. This will reduce multihop communication and improve energy efficiency. This proposed work will elaborate the design methodologies of two different interconnection architectures for such a multichip System-in-Package. The work will also demonstrate how the design outperforms its traditional I/O based counterpart through system-level simulations.
The following points will summarize the contributions made during this work.

- **Proposed Interconnection Architecture**

 - Development of a methodology for seamless interconnection between on-chip and off-chip data transfer

 - Design of a seamless hybrid wired and wireless interconnection network for multichip Systems-in-Packages

- **Evaluation of Wireless Multichip Architecture**

 - Evaluation of peak achievable bandwidth of the multichip network for varying system size

 - Evaluation of packet energy dissipation of the multichip network for varying system size

 - Analysis of bandwidth and packet energy for the multichip system with non-uniform traffic patterns

 - Comparison of performance metrics of the proposed wireless multichip architecture with its wireline counterpart

- **Development of simulation framework**

 - Develop a cycle accurate simulator to implement the wireless multichip architecture and monitor the progress of flits over the switches and links per cycle

 - Include the power consumption parameters of both the wired and wireless links in the simulator to model the energy consumption in data exchange in the multichip system
o Obtain experimental results of the wireless multichip architecture in terms of the following metrics for performance evaluation:
 - Peak achievable bandwidth per core
 - Packet energy dissipation

• Publication
Chapter 2 Related Work

The performance of on-chip and off-chip interconnections are significantly mismatched since, according to the International Technology Roadmap for Semiconductors (ITRS), the pitch of the interchip I/O interconnects is not scaling as fast as the pitch of the on-chip interconnects [12]. Owing to this reason, interchip and intrachip communication architectures are separately designed with different protocols and properties.

For intrachip communication, traditionally, the cores communicated using a shared bus based interconnection, which then gave way to a slightly more efficient bus splitting methodology [13]. Current System-on-Chip (SoC) designs, however, are moving on to Network-on-Chip (NoC) architectures to alleviate issues including poor scalability and limited bandwidth. Here the functionality of the cores is separated from the communication fabric by providing a dedicated infrastructure for data transmission. There have been different types of architectures suggested in this regard, notably the SPIN (Scalable, Programmable, Integrated Network) architecture where a fat-tree structure is used [14], the mesh-based architecture called CLICHÉ (Chip-Level Integration of Communicating Heterogeneous Elements) [15], the 2D-Torus architecture with wrap-around channels [3], the OCTAGON interconnect architecture [16], the Butterfly Fat-Tree (BFT) architecture [17], etc.. These NoC architectures are characterized with respect to their performance and design trade-offs in [9], and shown how these trade-offs affect a typical multiprocessor system performance. While NoC architectures improve the performance of SoCs, the multihop packet switched communication still consumes a lot of power and energy, and
the conventional wired interconnects remain a bottleneck of NoC. Long range high-bandwidth on-chip wireless data links are proposed as an energy efficient alternative [18] where the multihop wired paths between distant cores are replaced by a single wireless communication link. On-chip antennas from graphene or Carbon Nanotube based structures are predicted to provide high bandwidth wireless communication channels [19] [20]. However, integration of these antennas with standard CMOS processes needs to overcome significant challenges, while mm-wave CMOS transceivers operating in the sub-THz frequency ranges is a more near term solution. For intrachip and interchip communication, mm-wave wireless on-chip embedded antennas are designed and evaluated in [10]. For this wireless NoC (WiNoC) architectures, the medium access mechanisms range from simple token passing protocols [9], to more sophisticated CDMA based mechanisms [21].

For interchip communication, bus based architectures are still popular, and signals are mostly transmitted by wired interconnects on printed circuit boards (PCB). Conventionally, for a multichip system-in-package, C4 bumps coupled with in-package transmission lines are used to interconnect chips [22]. On the board level, a scalable and low power I/O transceiver is proposed in [23] which provides speeds of 5 to 15 Gbps over single-board channels. For wireless interchip communication, [24] proposes a wirelessly connected multichip module for a High Performance Computing environment. In [25] on-chip wireless transceivers are used to facilitate fast prebonding wafer testing enabled by direct access to components under test within the ICs. Wireless transceivers for 60 GHz interchip and intrachip communications are designed in [26]. On a larger scale, a wireless data center with mm-wave inter-rack links is envisioned in [27]. Further alternatives
proposed to eliminate the performance issues of conventional I/O interconnects between chips include [34] in which optical through-chip buses for thinned stacked dies are used for interchip communication in SiPs. Also, [35] includes optical interconnections where optical leaky-wave nano-antennas are used for data communication, and [7] uses optical networks to jointly integrate both interchip and intrachip networks. In this thesis, a hybrid inter and intrachip communication is proposed, using both on-chip wired links and CDMA based mm-wave wireless interconnects.
Chapter 3 Wireless Multichip Architecture

The primary aim of the proposed architecture is to seamlessly unify inter and intrachip networks such that data can be transmitted between cores on a single chip as well as between cores on multiple chips in a system. This architecture is a hybrid network with both wired and wireless interconnects. Every core in the multichip system is integrated with a NoC switch, and the switches within each independent chip are interconnected using an intrachip NoC architecture.

![Diagram of the proposed wireless multichip system]

Fig. 3: Architecture of the proposed wireless multichip system

Wireless Interfaces (WIs) are integrated in a select few switches in each of these chips in order to realize interchip wireless communication. To be equipped with the WIs, the internal cores are efficiently selected such that, on average, every other core will be within a few hops from its nearest WI. These switches can directly communicate with their...
counterparts in the same chip as well as other chips. Fig. 3 shows the architecture of the proposed multichip system interconnected with inter and intrachip wireless network. This figure is not to scale and is merely to provide an idea of how the architecture will be laid out. The actual architecture however will involve much more cores on each of the chips, and would be beyond the scope of a comprehensible diagram.

3.1. Topology

Every core in the proposed multichip system is integrated with a NoC switch, and the switches within each independent chip are interconnected using an intrachip NoC architecture. The system is proposed with two different intrachip NoC topologies and their interconnection architectures are described below:

3.1.1 Multichip System with Intrachip Mesh

The intrachip NoC topology employed here is a traditional mesh based NoC [4]. This topology consists of an \(m \times n \) mesh of switches interconnecting the cores placed along with those switches as shown in Fig. 1. Every switch, except those at the edges, is connected to four neighboring switches and one core, thus forming a mesh like orderly network structure. Traditionally, for interchip communication, an I/O is connected to the periphery of the chip onto one of the switches at the edge. This would mean that data packets from the internal cores have to travel to the chip edge, get transmitted over the I/O onto the other chip, and then get routed to its destination core. This multihop interchip communication results in high latency and high energy consumption. As a solution, in this proposed architecture, the NoC architecture in each chip is divided into a certain number of logical
subnets and a switch at the center of each of these subnets is equipped with a Wireless Interface (WI) for interchip data transfer. This logical placement of the WIs in the subnets would avoid long multihop paths, and ensure that every core in the system can transmit interchip data within just a few hops. This significantly improves the connectivity of the entire multichip system by establishing direct wireless chip-to-chip links between internal cores, thus eliminating the need to travel to and from the periphery of the chips.

3.1.2 Multichip System with Intrachip Small-World

While the NoC mesh topology is good, its performance is shown to improve by inserting long-range shortcuts between distant cores using wired metal interconnects [28]. This new topology is called the Small-World network, which is a type of complex network, often found in nature, characterized by both short-distance and long-range links. This method reduces the average number of hops between nodes even for very large network sizes, and thus improves the efficiency of the network. In order to further improve the performance, these long-range metal interconnects are replaced by long-range wireless links in [29]. Such a scalable topology is very well suited for designing a hybrid inter and intrachip interconnection network using wireless links.

In order to establish the wireline links within each intrachip NoC while satisfying the properties of small-world graphs, the wireline topology is generated according to the inverse power law, to minimize wiring costs [30].

\[
P(i, j) = \frac{l_{ij}^{-\alpha} f_{ij}}{\sum_{i=1}^{n} \sum_{j=1}^{n} l_{ij}^{-\alpha} f_{ij}}
\]

(1)
Where, $P(i,j)$ is the probability of establishing a link between two switches i and j, separated by a manhattan distance of l_{ij}. The distance is obtained by considering a tile-based floorplan of the cores on the die. The frequency of communication between the switches i and j is represented by f_{ij} and n is the total number of switches in the network. This frequency of traffic interaction between the cores, f_{ij}, is also factored into (1) so that more frequently communicating cores have a higher probability of having a direct link, optimizing the topology for application-specific traffic. This frequency is expressed as the percentage of traffic generated from i that is addressed to j and the frequency distribution is based on the particular application mapped to the overall NoC and is hence known prior to wireless link insertion. Therefore, a priori knowledge of the traffic pattern is used to establish the topology with a correlation between traffic distribution across the NoC and network configuration as in [31]. This optimizes the network architecture for non-uniform traffic scenarios. The parameter α governs the nature of connectivity wherein a higher value of α will result in lesser number of longer links. Hence, the value of α is chosen such that optimal wiring costs are obtained [30].

![Small-World NoC architecture with short and long range links](image)

Fig. 4: Small-World NoC architecture with short and long range links [29]
This power law based link distribution results in both short distance connections and long-range links due to non-zero probability of links between far-away nodes. Fig.4 gives a diagrammatical representation of a typical small-world NoC. The link setup method is repeated until every core or groups of cores are connected. As the links are established probabilistically following (1) the number of ports of each switch may not be the same. The average number of ports per switch is however constrained to be 5 to have the total number of connections to be the same as that of the mesh based NoC. In the proposed architecture with this small-world NoC, the same switches as in the mesh based system are equipped with the WIs to reduce the path length of the interchip data accessing the WIs.

3.2. Physical Layer

The proposed architecture is a hybrid network of both wired and wireless interconnects. This multichip system will enable seamless intra and interchip communications using wireless links. The on-chip communication will happen over the hybrid wireline and wireless NoC, where the wireline links are realized with traditional global-wire based interconnects depending on the topology adopted. As for the wireless interconnections used for both intrachip and interchip communications, on-chip embedded miniature antennas are used that can be fabricated within the chip to establish direct chip-to-chip communication between internal cores. In this work, for the realization of these wireless channels, on-chip metal zig-zag antennas are chosen. In [10], these antennas are shown to be effective in establishing both on-chip and off-chip communication. It is also shown in [10] that the metal mm-wave zig-zag antenna provides the best power gain for the smallest area overhead when compared to a patch antenna. The mm-wave antennas are
fabricated using top layer metals and hence, are CMOS process compatible, making them an excellent near-term solution to the wired interconnect problem. These mm-wave 60 GHz antennas are shown to have a bandwidth of 16 GHz for both on-chip [9] and off-chip [24] communications.

There is, however, one catch to the chosen antenna design. There is significant variation in the antenna gain between on-chip and chip-to-chip communications. Hence, to be able to support both intrachip and interchip communications, the adopted transceiver needs to have a variable signal boosting capability. In [32], a Variable Gain Amplifier (VGA) is proposed. This is shown to be suitable for variable length wireless interconnects in [33], and hence is adopted in this proposed work. The adopted VGA module is proposed to be utilized in two distinct gain settings, that is, the VGA based transceiver will use two separate amplification paths with two different gains. At any instant of time, only one of these paths will be active depending upon the chosen communication being on-chip or chip-to-chip. The respective amplifier paths are activated by a simple control logic that is based on the destination address determined at the network router or switch.

3.3. **Wireless Communication Protocol**

The bandwidth of the wireless medium is limited by the transceiver design and the on-chip antenna technology. To improve performance, multiple wireless transceivers access the wireless medium and end up sharing a single frequency channel. This leads to contention between the multiple transceivers and also interference. To alleviate this issue, [9] showcases a token passing protocol where each of the WIs in a NoC architecture can access the wireless medium without contention. However, using this method, only one
single transceiver can access the wireless medium at a time, which would be inefficient. As a more efficient alternative, [21] shows a Direct Sequence Spread Spectrum (DSSS) based Code Division Multiple Access (CDMA) scheme which enables multiple simultaneous code-channels between multiple WIs in a system. Walsh codes are used to create these code-channels in many CDMA application as they have a low spreading factor. Spreading factor can be defined as the number of chips in a single codeword. As each bit is encoded into one of these codewords, the effective data transfer rate decreases, that is, the data transfer latency increases by the spreading factor. Hence, the Walsh codes with a low spreading factor will have a lower impact on bandwidth of the individual code-channels.

![Block diagram of mm-wave CDMA based wireless transceiver](image)

Fig. 5: Block diagram of mm-wave CDMA based wireless transceiver
In this thesis, the CDMA based channel access mechanism is adopted, using Walsh codes to create the orthogonal code-channels, thus enabling multiple access of the wireless medium. Fig.5 depicts the mm-wave CDMA based wireless transceiver used in this thesis. At the transmitter, the encoding is performed digitally by simply XOR-ing the bit and the codeword, and the result is then amplified to the appropriate level by the VGA module depending on the destination. This amplified signal is then modulated and mixed with the carrier using a Binary Phase Shift Keying (BPSK) modulator. At the receiver, a demodulator comprising of a Low Noise Amplifier (LNA) and a mixer is combined with a low-power, high speed Analog to Digital Converter (ADC) and a CDMA decoder. The orthogonal codes make sure that the correlation between different code-channels is zero and that the bits transmitted in other channels do not affect the received bit. In this thesis, a Transmitter-based CDMA protocol is adopted where each transmitter encodes the data into specific code channels while the receivers are equipped with decoders for all the channels. This means that, using these CDMA based wireless links, each receiver can receive data from multiple transmitters concurrently but each transmitter can send data only to a particular destination.

3.4. Routing

The routing protocol for the proposed wireless multichip system is a seamless intra and interchip data communication mechanism. Wormhole switching is adopted in this work [5] for both inter and intrachip communication. Here, the data packets are broken down into small units called flow control units or flits. The size of each flit is chosen such that a single flit can traverse a single hop in a single clock cycle. All the switches in the
multichip system have bidirectional ports for all links attached to it. The flits are routed over the network using these switches, and each switch only forwards the first flit or the header flit onto the next switch in the path to the destination. The rest of the flits (body flits) follow this path setup by the header flit in a pipelined fashion. Hence each switch only has local forwarding information, eliminating the need for maintaining non-scalable global routing information. Virtual Channels (VCs) are used and each packet gets a distinct virtual path to its destination. Hence, each switch can send and receive packets from different nodes simultaneously.

As the overall system is not a regular network, a shortest path routing algorithm is used to optimize network performance. A forwarding table based routing over pre-computed shortest paths determined by Dijkstra’s algorithm is used. Owing to this, the wireless links can also be used for intrachip communication if they reduce the path length compared to a completely wireline path. This makes a significant contribution to the routing mechanism of the proposed architecture. Deadlock is avoided by transferring flits along the shortest path routing tree extracted by Dijkstra’s algorithm, as it is inherently free of cyclic dependencies.
Chapter 4 Simulation Results

This section gives an overview of the experimental setup of the proposed system model, and evaluates its performance in detail. The wireless multichip architecture is a hybrid network with both wired and wireless interconnects. The system is considered to have 64 cores per chip, and the number of chips in the system is varied from one to a maximum of four for this work’s experiments, yielding different systems of sizes 64, 128, 192 and 256 cores. Every core in the multichip system is integrated with a NoC switch, and the switches within each independent chip are interconnected using an intrachip NoC architecture using two different topologies as explained in Chapter 3. Wireless Interfaces (WIs) are integrated in exactly 4 switches in the each of these chips in order to realize interchip wireless communication. The on-chip zig-zag antennas considered in this work for these WIs are able to provide a bandwidth of 16 GHz around a center frequency of 60 GHz [24]. The CDMA based wireless transceivers achieve a total data rate of 6 Gbps [21] for all channels. The total power dissipation of this transceiver, which is the combined power consumption of all its components including the CDMA encoder/decoder, BPSK modulator, LNA mixer, ADC [21] and the VGA [32], is 20.6272 mW.

This proposed wireless multichip system is then compared with an equivalent wireline I/O system. This wireline system also contains the same number of cores per chip as the wireless multichip system, with the only difference being the interchip interconnection, which is considered to be a high speed serial I/O [23]. The chip I/O is connected to the periphery of the chip in one of the corner switches, irrespective of the on-chip topology being used. Furthermore, this I/O interconnection is considered to be a
switch based architecture instead of a shared bus in order to enable concurrent communication between the chips. The bandwidth of this I/O is 15 Gbps and its energy consumption is 5 pJ/bit, i.e. a power dissipation of 75 mW at 15Gbps [23].

4.1. **Simulator Setup**

In the experiments, a cycle accurate simulator is used in which the proposed architecture is implemented and the progress of flits over the switches and the links per cycle are monitored. For the data packets, a packet size of 64 flits is considered, with each flit containing 32 bits. The architecture of the switches used in the NoC is considered with 3 stages, namely, input, output arbitrations and routing [4]. These switches are considered to have 4 Virtual Channels (VCs) in each input and output ports, irrespective of the NoC topology adopted. Each of these VCs has a buffer depth of 2 flits except for the switches incorporated with the WIs, which have an increased buffer depth of 32 flits. This is done so that the CDMA transceivers can accommodate simultaneous reception from multiple sources.

The performance of the system is evaluated for both uniform random traffic and non-uniform traffic. Every simulation is run for ten thousand clock cycles allowing for transients to settle in the first few thousand cycles accounting for flits that are routed and stalled. All the wired links in the mesh based NoC consume just one clock cycle for transmitting a flit. However, in the small-world NoC, some on-chip wireline links take up more than one clock cycle for flit transmission, and hence, are pipelined by inserting FIFO buffers such that, between by two stages, it is possible to transfer an entire flit in a single clock cycle. All the digital components are driven with a 2.5 GHz clock at 1 V.
The simulator is annotated with the power consumption parameters of both the wireless links and the serial I/O interconnections (as explained above in section 4) in order to model the energy consumption of data exchange in the system. The energy dissipation, area overheads and timing requirements of the NoC switches and the WIs are obtained from post synthesis RTL design using 65 nm standard cell libraries (http://cmp.imag.fr) using Synopsis™ tool suites. The energy dissipation of the on-chip wireline links are obtained from Cadence layout tools considering their actual dimensions obtained from assuming a tile-based floorplan of the NoC on a 20 mm × 20 mm die area for each chip.

4.2. Wireless Link Budget Analysis

In order to determine the transmitted power that is required to achieve an acceptable BER on the intra and interchip wireless CDMA links, a link budget analysis is presented in this section. The transmitted power, \(P_t \) of the wireless channels is given (in dBm) using the following equation.

\[
P_t = SNR + PL + N_f \tag{2}
\]

Where, \(SNR \) is the signal to noise ratio at the receiver (in dB), \(PL \) is the path loss (in dB) and \(N_f \) is the receiver noise floor (in dBm). Assuming perfect orthogonality in the CDMA code channels, an SNR of 15 dB results in a BER of less than \(10^{-15} \) for the BPSK modulated scheme adopted in this thesis. A BER of \(10^{-15} \) is comparable to wireline data transfer in current technologies. Hence, in this link budget analysis, a required SNR of 15 dB is considered. In [9], it is shown that the path loss, \(PL \), in intrachip links using mm-wave zigzag antennas is -26 dB, while [24] shows that the path loss of similar antennas for typical
interchip distances (a few centimeters) to be -35 dB. The third factor, N_f, of the receiver is given by,

$$N_f = 10 \log kTB + NF$$ \hspace{1cm} (3)$$

Where, k is the Boltzmann constant, T is the temperature, B is the bandwidth of the receiver and NF is the noise figure of the receiver (in dB). This noise figure of the receiver depends on the LNA and is given by,

$$NF = 10 \log(1 + F_{LNA} + \frac{F_{mixer}}{G_{LNA}})$$ \hspace{1cm} (4)$$

Where, F_{LNA}, F_{mixer} and G_{LNA} are the noise figure, mixer and the gain of the LNA respectively. In [21], the value of NF is given to be 6.3 dB. This makes the receiver noise floor -69.43 dBm at 50 degrees C. Consequently, the output of the transmitter is -28.93 dBm and -19.43 dBm for intra and interchip links respectively. The two different transmitted powers are generated by using the VGA module discussed in section 3.2. The power consumption of the transceivers including the VGA module is considered in the following sections for performance evaluation.

4.3. Performance Evaluation

There are two metrics being considered for performance evaluation of the multichip system: maximum achievable bandwidth per core and packet energy dissipation.

The maximum achievable bandwidth per core is given as the peak sustainable data rate in number of bits successfully routed per core per second at network saturation. This is given as B,

$$B = t\beta f$$ \hspace{1cm} (5)$$
Where, t is the maximum throughput in number of flits received per core per clock cycle at network saturation, β is the number of bits in a flit, and f is the clock frequency. The throughput is directly obtained from system level simulations performed by the cycle accurate simulator described in section 4.1.

The average packet energy dissipation is defined as the average energy dissipated in transmission of a packet from source to destination. It is given by adding the energy dissipation of all the components in the multichip system (buffers, switches, links, etc.) and dividing this sum by the total number of packets that were successfully routed. This total sum will always include the energy dissipation of the WIs as they are always active in the wireless multichip system. However, for the wireline multichip system, the energy dissipated by the I/O is added to the sum only when a flit traverses the I/O.

In the following subsections, the performance of the proposed wireless multichip system is evaluated based on the above mentioned metrics. Furthermore, this performance is compared with that of the wireline I/O based multichip system. This comparison involves four different interconnect architectures in total due to the consideration of two different topologies for each multichip system.

i. **Mesh + I/O:** In this architecture, the intrachip communication occurs through the mesh based NoC and the interchip communication happens through the serial I/O, where the I/O is connected to a single corner switch of every chip. This architecture is completely wireline.

ii. **Small-World + I/O:** Here, the intrachip communication occurs through the small-world based NoC topology and the interchip communication happens through the single corner I/O module in each chip. This architecture is also completely wireline.
iii. **Mesh + CDMA:** In this architecture, the intrachip communication happens over both the conventional wireline mesh links as well as the wireless links, while the interchip communication only uses the wireless links connecting WIs in different chips.

iv. **Small-World + CDMA:** Here, the intrachip communication uses the wireline small-world based NoC as well as the wireless interconnections, whereas only the wireless chip-to-chip links are utilized for interchip communication.

The four different architectures are summarized in Table 1 for convenience.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Intrachip Communication</th>
<th>Interchip Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mesh based NoC</td>
<td>Small-World NoC</td>
</tr>
<tr>
<td>Mesh + I/O</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Small-World + I/O</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Mesh + CDMA</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Small-World + CDMA</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

4.3.1 **Achievable Bandwidth**

In this section, the peak achievable bandwidth per core of the multichip system is evaluated at network saturation using uniform random traffic. As mentioned earlier, the each chip in the multichip system is considered to contain 64 cores, and the number of chips is varied from one to a maximum of four chips, yielding four different system sizes of 64, 128, 192 and 256 cores. The four different interconnect architectures listed in section 4.3 are used for every comparison. For the wireless system, exactly 4 CDMA based WIs
are considered per chip. In Fig. 6 the peak achievable bandwidth per core is shown for the multichip system.

![Graph showing peak achievable bandwidth per core for varying system size](image)

Fig. 6: Peak achievable bandwidth per core for varying system size, for uniform traffic

From the figure, it can be observed that both the architectures with wireless CDMA interconnects have higher bandwidth compared to the wireline I/O interconnections. As the system size is increased, the bandwidth of the wireless system decreases, but not as significantly as the wireline system. In other words, the wireless CDMA architectures have higher bandwidths for all system sizes. This is due to the fact that the data in the wireline multichip system needs to travel from the internal cores to the periphery of the chip (to the corner switch with I/O), get routed over the I/O to the destination chip, and then travel to the destination core in that chip. This multihop transmission of data is avoided in the
wireless architectures where the WIs provide direct chip-to-chip connectivity between internal cores using the single-hop interchip wireless links. The performance of the wireline system is further degraded due to congestion at the I/O module since it is connected to only one switch of a chip. Furthermore, the wireless bandwidth is distributed among multiple CDMA links. While the bandwidth of each link reduces due to the spread spectrum CDMA technique, the simultaneous multiple access by multiple transmitters contribute to an improvement in performance. Therefore, even though the aggregate wireless channel bandwidth of 6 Gbps is less than the I/O bandwidth of 15 Gbps, the overall performance is much better than the wireline multichip system. This also means that the wireless system is much more scalable than its wired counterpart.

When comparing across topologies, it can be seen that the small-world NoC performs better than the mesh based NoC for both the wireline and the wireless systems. This is due to the direct one-hop connections between distant cores on the chip available on the small-world NoC, thus reducing multihop communications significantly. Also, the performance gain is more significant in the single chip system because as the number of chips increases, the impact that the local NoC have on the overall system decreases, which in turn results in the decrease of overall system performance.

4.3.2 Packet Energy

The packet energy dissipation of the multichip system is evaluated in this section and compared between the different interconnect architectures. Fig.7 shows the packet energy dissipation of the interconnect architectures as the system size is scaled.
Fig. 7: Average packet energy dissipation with varying system size, with uniform traffic

It can be observed from the figure that the packet energy increases significantly for the I/O based architectures when the system size is scaled up, while that of the wireless architectures do not increase drastically. This is due to the same fact, as described in the previous section, that the wireline system involves multihop interchip communication. Also, the I/O module is connected to only a single corner switch in each chip, and so, is prone to congestion at this switch. As the number of chips increases, the percentage of interchip traffic also increases which implies that a much larger number of packets need to use the interchip I/O interconnections. This creates a bottleneck at the I/O modules and causes a drastic decrease in bandwidth per core and hence an increase in the buffering energy at those modules. Furthermore, this I/O interconnection is considered to be a switch based architecture instead of a shared bus in order to enable concurrent communication.
between the chips. This leads to the interchip communication dissipating high energy due to the intermediate I/O switches in the path of the interchip data. This results in the sharp increase in packet energy dissipation with increase in the number of chips.

One more important observation is that the gain in the energy efficiency of the wireless systems increases over the wireline system increases with increase in the number of chips. This is because the interchip traffic increases with increase in the number of chips, causing congestion problems in the wireline system. However, the wireless links being distributed among the cores in the chips alleviates this problem and hence, is much more energy efficient with increase in system size. Comparing across topologies, it is seen that the small-world based NoC have lower packet energy than its mesh based counterparts. This is again due to the single-hop long range links on the chips in the small-world architecture. However, as discussed in the previous section, this gain diminishes as the system size increases due to the diminishing impact of the individual NoCs on the overall system performance.

4.4. Performance Evaluation with Non-Uniform Traffic

Having established the performance of the wireless multichip system under uniform random traffic, this section analyzes the performance of the system with non-uniform traffic patterns. In this case, only the small-world based architectures are considered for evaluation and comparison with each other, namely, the Small-World + I/O and the Small-World + CDMA architectures. The traffic patterns considered are hotspot traffic and an application specific traffic from a FFT based workload. In hotspot traffic, 5% of all the generated traffic from all cores have the same destination – a single core chosen randomly,
which is called the hotspot. The rest of the packets are distributed equally among all other cores. As for the FFT traffic, a 256-point Fast Fourier Transform (FFT) application was considered, wherein each core performs a 2-point radix-2 FFT computation.

![Graph](image1)

Fig. 8(a): Peak achievable bandwidth per core with non-uniform traffic

![Graph](image2)

Fig. 8(b): Packet Energy with non-uniform traffic
Fig.8(a) and Fig.8(b) represent the bandwidth and the packet energy for the small-world NoC based multichip system with the above two traffic patterns, at network saturation. It can be observed from these figures that the wireless small-world architecture outperforms the I/O based multichip system for the two non-uniform traffic patterns. In case of hotspot traffic, the interchip data transfer is substantially high since all the cores from all the chips send a certain percentage of the packets to one particular destination. This results in serious congestion at the I/O modules and hence degrades the performance significantly. This issue is mitigated in the wireless architecture due to the distributed wireless links in each chip. As for the FFT traffic, the pattern is more distributed and so, though there exists some degradation in bandwidth and energy efficiency, it is not as significant as that of hotspot traffic. These results showcase that the wireless interchip interconnection architecture can be beneficial for a variety of applications mapped into such multichip multicore systems.

From these observations, it can be concluded that there exists a strong correlation between the performance of the multichip system and the proportion of the interchip traffic. This is further analyzed by evaluating the performance of the system while varying the degree of localization in the traffic. The localization parameter is defined as the percentage of data packets from each core that has a destination within the same chip. This parameter is varied from 25% to 100% for a 2 chip system for two different architectures, namely, the Small-World + I/O and the Small-World + CDMA. Fig.9(a) shows the variation of bandwidth per core and Fig.9(b) shows the variation of packet energy, with changing localization percentage.
Fig. 9(a): Peak Bandwidth per core for 2 chip system with localization

Fig. 9(b): Average packet energy for 2 chip system with localization

These figures represent how the peak bandwidth per core and the average packet energy vary with different possible traffic patterns. It can be observed that as the localization parameter increases the bandwidth of the multichip systems increases and the
packet energy consumption decreases. For low localization percentage, a higher amount of traffic accesses the interchip interconnections and the gains of the wireless links over the wired I/O is high.

4.5. Area Overheads

The comparative area overheads of various architectures used in this thesis is analyzed in this section. The number of wired intrachip links in all configurations are same as that of a conventional mesh NoC. This is because the number of intrachip links in the small-world + I/O and small-world + CDMA is constrained to be the same as that of the conventional mesh. The only difference is the I/O module, the wireless transceivers and the area of ports associated with them. Fig.10 depicts the total area overhead of the various interconnection architectures for different multichip configurations and sizes considered in this work.

![Fig. 10: Area overheads](image-url)
For the CDMA based wireless architectures, the transceiver which includes the ADC, the modulator/demodulator and the CDMA codec, occupies an area of 0.4mm2 [21] whereas the I/O based architectures has a transceiver area of 0.088mm2 [23]. For the wireless multichip system of the largest configuration, the total area of the interconnection network is 2.1% of the entire system while the wireless overhead is only 0.6%.
Chapter 5 Conclusions and Future Work

Computing modules in typical data center nodes or server racks consist of several multicore chips on a board or a System-in-Package (SiP). The energy efficiency and data bandwidth of such a multichip system is severely restricted by I/O based interchip interconnections. This thesis explores the advantage of using state-of-the-art mm-wave wireless links, operating in the 60 GHz band, for interconnecting such multichip systems. The wireless links are proposed in order to alleviate the drawbacks of the multihop communication while using serial I/O based interconnections. The wireless links also successfully provide a seamless interconnection between on-chip and off-chip data transfer, as opposed to the traditional method of decoupling them to facilitate design flexibility. This thesis proposes the design of a seamless hybrid wired and wireless interconnection network for multichip systems in a package, with dimensions spanning up to tens of centimeters using on-chip wireless transceivers. Even though the bandwidth of such wireless links is not necessarily higher than the high speed serial I/O links, the wireless links are used for seamless data transfer between cores on the same chip to augment intrachip communication, as well as provide direct communication between cores on different chips. Due to this multiple access of the wireless medium by multiple transceivers, there are significant performance and energy efficiency gains on the overall system. It is demonstrated with cycle accurate simulations that the proposed wireless multichip architecture increases the bandwidth and reduces the energy consumption when compared to the state-of-the-art wireline I/O based multichip system.
The architecture is also proven to scale significantly well with increase in system size when compared to its wireline counterpart. Hence, in the future, this work can be extended to be applicable to larger computing infrastructures consisting of several multichip modules. While the scope of this thesis only encompasses smaller multichip modules with distances up to tens of centimeters, the ideology can be extended to several meters or more in the future, to be used in much larger infrastructures like servers or entire datacenters.
Bibliography

