Rochester Institute of Technology
RIT Digital Institutional Repository

Theses

2000

Machine tool spindle design

Jamie Hoyt

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation

Hoyt, Jamie, "Machine tool spindle design" (2000). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact repository@rit.edu.

MACHINE TOOL SPINDLE DESIGN

by
Jamie Á. Hoyt
A Thesis Submitted in Partial Fuifiliment of the Requirements for the MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Approved by:

Dr. Wayne W. Walter
Department of Mechanical Engineering
Dr. Hany A. Ghoneim
Department of Méechanical Engineering
Dr. Kevin B. Kochersberger
Department of Mechanical Engineering
Dr. Satish Kandilikar
Department of Mechanical Engineering

Thesis Addisor)
\qquad
\qquad
\qquad

DEPARTMENT OF MECHANICAL ENGINEERING ROCHESTER INSTITUTE OF TECHNOLOGY

Permission granted

Titie of Thesis: Machine Tool Spindie Design
i, Jamie A. Hoyt, nereby grant permission to the Wailace Library of the Rochester Institute of Technoiogy to reproduce my thesis in whole or in parti. Any reproduction wiil not be for commerciai use or profit.
\qquad Signature of Author: \qquad

Abstract

In modern machine tool appiications the performance of a machine tooi is judged by its ability to produce work-pieces accurateiy and efficientiy. The stiffness of the machine tooi spindie has a profound impact on the overaii machine performance. The work presented here provides a tool for machine tooi spindle designers to deveiop spindies that are sufficientiy stiff to meet their need. The analysis presented here is divided into three main sections.

The first portion is a static analysis. The static anaiysis caicuiates the iaterai defiection of the spindie-bearing system. A Ả́ailả̉ program was deveioped that ailows the user to enter the spindie parameters into a batch file and obtain the piots of the deformed shape of the spindie.

The next portion is a dynamic analysis of the spindie. This portion includes both the modes of vibration and the forced response. The modal analysis treats the spindie as a continuous Euier-Bernoulii beam. A numerical method for handiing the steps in the shaft and appiied boundary conditions was developed that could be exiended to many other applications in rotor dynamics. A Mailáb program was deveioped for the dynamic anaiysis. Tihis program provides a designer with plots of the mode shapes and forced response given the spindie design parameters.

The final section is an optimization of the spindie design. Given constraints on the location and stiffness of the support bearings, a Matlab program wili return vaiues for these parameters resulting in the spindle configuration that presents the minimum defiection at the spindle's gauge line.

Tabie of Contents

Page
Áōstract 1
Table of Contents $\underline{2}$
List of Tabies 3
List of Figures 4
Nōtinènçâtừre 6
1.0 Introduction 10
2.0 Static Ânaiysis 15
2.1 Deflection of Elastic Shaft 17
2.2 Defiection of̂ Bearings 26
2.3 Matīab Solution 27
3.0 Dynamic Ánaiysis 34
3.i Míodal Ánaiysis 35
3.2 Mailá Solution for Mode Shapes 61
3.3 Forced Response 66
3.4 Matiab́ Solution for Forced Response 70
4.0 Optimization Anaiysis 74
4. 1 Optimization Model 74
4.2 The Constrained Steepest Descent Aigorithm 81
4.3 The Matiab Solution for Optimization 83
5.0 Conclusions 87
References 90
Appendix A : Batch File Tempiate 91
Appendix E: Máliab̉ Programs for Static Anaiysis 93
Appendix C: Matíab Programs for Dynamic Ánaiysis 107
Áppendix D: Míatíab Programs for Optimization Ánalysis i3i

List of Tables

Page
3.1 Comparison of Resonant Frequencies (FEA vs. Anaiytical) ó
4.i Tabie of Design Variabies 76
4.2 Optimum Vaiues for Static Ánalysis 84
4.3 Optimum Values for Dynamic Anaiysis 84

List of Figures

Page
2.i Static Spindie Móodel 1 í
2.2a Elastic Defiection of Spindie Shant 18
2.2b Defiection of Spindie Bearings 18
2.3 Model̉ of Ū̃niform Beam 19
2.4 TTransformation of Beam Segment 22
2.5 Shear and Bending Moment Diagram for a Beam Segment 23
2.6 Batch File, Static Analysis 28
2.7 Maita Representation of Spindie Geometry 29
2.8a Deflection Contribution of Eiastic Shaft 30
2.8 D Defiection Contribution of Support Bearings 30
2.9 Total Defiection of Spindie 31
2.10 Comparison of Total Spindle Deflection (FEA vs. Máata) 33
3.1 Dynamic Spindie Model 36
3.2 Lateral Vibration of an Euler-Bernoulli Beam 37
3.3 Sample Euler-Bernoulli Beam 40
3.4 Mode Shapes for Sampie Beam 43
3.5 Stepped Euler-Bernoulii Beam 45
3.6 Sampie Stepped Euier-Bernoulii Beam 49
3.7a Boundary Conditions for Section i 52
3.7b Boundary Conditions for Section 2 52
3.7c Boundary Conditions for Section 3 53
3.7d Boundary Conditions for Section 4 53
3.8 Free Body Diagram, Joint 1 55
3.9 Free Body Diagram, Joint 2 57
3.10 Free Body Diagram, Joint 3 59
3.11 Batch File, Modai Analysis 62
3.12 Mode 1 Comparison 63
3.13 Móode 2 Comparison 64
3.14 M̉́node 3 Comparison 65
3.15 Batch File, Forced Response 71
3.16 Comparison of Forced Response, FEA vs. Analytical 73
4.1 Optimization Model of Spindie 75
4.1 Batch File, Optimization 85

Nomenclature

Symboi

A Cross sectional area of beam $\left[\right.$ in $\left.^{2}\right]$
A Gradient vector of inequality constraint [dependent on constraint]
$\mathrm{a}_{1} \quad$ Location of drive pulley [in]
$\mathrm{a}_{2} \quad$ Location of̂ rear bearing [in]
a_{3} Location of front bearing [in]
$\mathrm{a}_{4} \quad$ Location of gauge line [in]
$\mathrm{b}_{\mathrm{k}} \quad$ Location of kth joint in spindle shaft [in]
c Gradient vector [in/in]
d Vector of design changes [unitless]
$\mathrm{g}_{\mathrm{i}}(\mathbf{x})$ Ith inequality constraint $\{d e p e n d e n t ~ o n ~ c o n t r a i n t 〕] ~$
D Distance between support bearings [in]
E Young's modulus [psi]
f Quadratic subproblem [unitless]
$\mathrm{F}_{\mathrm{c}} \quad$ Cutting force [lbf]
$\mathrm{F}_{\text {cub }}$ Unbalance force due to cutting tool [1bf]
$\mathrm{F}_{\mathrm{d}} \quad$ Drive force [lbf]
$\mathrm{F}_{\mathrm{de}} \quad$ Equivalent drive force [1bf]
$\mathrm{F}_{\mathrm{d} \mathbf{p} \mathrm{b}} \quad$ Unbalance force due to unbalance of drive puiley [lbff]
$\mathrm{f}(\mathrm{x}) \quad$ Cost function [in]
$I_{n} \quad$ Moment of inertia of nth beam segment $\left[\mathrm{in}^{4}\right]$
$\mathrm{K}_{\mathrm{f}} \quad$ Laterai stiffness of front bearing $[\mathrm{lbf} / \mathrm{in}]$
$\mathrm{K}_{\text {fmax }}$ Maximum laterai stiffness of front bearing [ibf/in]
$\mathrm{K}_{\mathrm{ft}} \quad$ Torsional stiffness of front bearing [in-ibf]
$K_{i} \quad$ Generaiized stiffness [1bfin]
$\mathrm{K}_{\mathrm{r}} \quad$ Lateral stiffness of rear bearing [ibf/in]
$\mathrm{K}_{\text {fmax }}$ Míaximum lateral stiffness of rear bearing [lbfín]
$\mathrm{M}(\mathrm{x})$ Bending moment in spindie shaft [in-lbf]
$\mathrm{M}_{\text {applied }}$ Externally applied moments [in-libf]
$\mathrm{M}_{\mathrm{b}} \quad$ Reaction moment at front bearing [in-lbf]
$\mathrm{M}_{\mathrm{be}} \quad$ Equivalent reaction moment at front bearing [lbf$]$
$M_{i} \quad$ Generalized mass [lbf-s $\left.{ }^{2} / \mathrm{mn}\right]$
$\mathrm{M}_{\mathrm{k}} \quad$ Moment induced at kth joint in spindle shaft [in-ibf]
$\mathrm{M}_{\mathrm{T}} \quad$ Moment at guage line due to cutting force and tool length [in-ibf]
OH Cantilever, distance between front bearing and gauge line [in]
$\mathrm{q}_{\mathrm{i}} \quad$ Generalized coordinate [in]
$\mathrm{Q}_{\mathrm{i}} \quad$ Generalized force [ibf]
R Penalty parameter [unitless]
$\mathrm{R}_{\mathrm{f}} \quad$ Reaction force at front bearing [lbff]
$\mathrm{R}_{\mathrm{fe}_{e}} \quad$ Equivalent reaction force at front bearing [lbf]
$\mathrm{R}_{\mathrm{r}} \quad$ Reaction force at rear bearing [ibf]
$\mathrm{R}_{\mathrm{re}} \quad$ Equivalent reaction force at rear bearing [ibf]
$\mathrm{s}_{\mathrm{i}} \quad$ Siack variable for ith constraint [unitless]

T Kinetic energy [in-lbofi]
$\mathrm{t}_{\mathrm{j}} \quad$ Step size [dependent on design variabie]
[$\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ Transformation matrix between ith and jth beam segments [unitless]
ti Length of cutting tooi [in]
u Strain energy [in-lbff]
U Potential energy [in-ibf]
$\mathrm{u}_{\mathrm{i}} \quad$ Lagrange multiplier [unitless]
V Maximum constraint violation [dependent on constraint]
V (x) Shear force in spindie shaft [ibf]
$\mathbf{V}_{\mathbf{k}} \quad$ Shear force induced at $\mathrm{k} t \mathrm{n}$ joint in spindie shañ [lbí]
$x \quad$ Axial position along shaft [in]
x Vector of̂ design variabies
$\mathrm{x}_{0} \quad$ Fraction of moment exerted by front bearing [unitless]
$\mathrm{y}_{\mathrm{b}} \quad$ Elastic deflection of spindle shaft [in.]
$y_{s} \quad$ Elastic deflection of spindle shaft [in.]
$\delta_{\mathrm{f}} \quad$ Deflection at front bearing [in]
$\delta q_{i} \quad$ Virtual displacement [in]
$\delta_{\mathrm{r}} \quad$ Deflection at rear bearing [in]
$\delta w_{i} \quad$ Virtual work [in-lbf]
$\varepsilon_{1} \quad$ Convergence criteria [unitless]
ε_{2} Maximum allowable constraint violation [unitless]
$\phi_{i} \quad$ Ith normal mode [unitless]
$\bar{\Phi} \quad$ Descent function $[\mathrm{in}]$
$\rho \quad$ Mass density $\left[\mathrm{lbf}-\mathrm{s}^{2} / \mathrm{in}^{4}\right]$
$\omega \quad$ Circular frequency [radisec]

1.0 Introduction:

Great demands are placed on the capabilities of today's modern machine toois to produce parts that are dimensionaily correct with increasing accuracy and throughput. Some of the machine tooi components that impact the accuracy and throughput of the machine are the drive systems, way systems, control and feedback systems, and finaily the machine tool spindie. The machine tool spindie is the eiement of the machine that either supports the work-piece or the cutting tool. In addition to being a support structure, the spindie aiso rotates at high rates of speed to provide relative motion between the work-piece and the cutting tool. Therefore the spindle nas a direct impact on both the throughput (materiai removal rate), and the accuracy of the finished part.

According to Lewinschai (1985), the most common requirements of a machine tool spindie are:

- High running accuracy
- High speed capability
- Great stiffness
- Low and even running temperature
- Minimum need of maintenance

Often in machine tool spindies these parameters will conflict with each other. in order to achieve a higher speed capability the designer must trade off spindle stiffness for speed or visa-versa. The spindie designer must carefuily weigh the requirements of the user to determine the best possible balance of these parameters.

The goal of this research is to provide a tool for a spindie designer to aid in the evaluation of the spindie stiffness. High running accuracy, high operating speed capabiiity, low and even running temperature, and minimum need of maintenance are typicaliy functions of the bearing's geometry, manufacturing, iubrication, and method of mounting. If the spindle designer is able to quantify the stiffness requirements for the bearing he can then work with the bearing manufacturer to seiect the proper bearings for the application.

Ai-Shareef et al. (1990) deveioped a quasi-static method of analyzing machine tool spindies. Their analysis takes the amplitude of the dynamic forces and applies them to a static model of the spindie-bearing system. For the static analysis the deflection contribution of the spindle shaft and the deffection contribution of the spindie support bearings are superimposed to obtain the totai defiection of the system.

The static anaiysis of the spindie shaft assumes that a stepped flexible shaft is pinned in the location of the support bearings. The analysis of this fiexibie shaft consists of a transformation from a stepped shaft to a uniform shaft. This transformation yieided additional shear and bending moments at each of the joints in the snaft. The resulting uniform shaft was analyzed using classical mechanics.

The defiection contribution of the spindie support bearings assumes a rigid shaft supported by linear springs. The reaction forces yielded the deflection at each of the springs. Essentialiy, the deflection contribution of the bearings is a straight line fit between the resulting deformed positions of the springs.

In addition to the static analysis an optimization of the deffection at the end of the spindie was presented. The optimization analysis consisted primarily of varying the spindle design parameters and looking at the effect on the resuiting deffection at the spindie gauge line. Plots were presented iliustrating the effect of the variation of these parameters. The following conclusions were drawn from these plots.

- In the design of a spindie there exist an optimum ratio of the bearing spacing to the overnang of the spindie. Âs the fiexurai stiffness increases and the ratio of front to rear bearing stiffness decreases the optimum bearing-overhang decreases.
- A dimensionless flexural stiffness $\left(\mathrm{K}_{\mathrm{f}}(\mathrm{OH})^{3} / \mathrm{EI}\right)$ of greater than 5 results in minimum defiection at the cutting tooi. The deflection at the end, or gauge line, of the spindie is very sensitive to the fiexural stiffness for magnitudes less than 5.
- Having more than 3 steps in the shaft is desirable for obtaining minimai deflection values.
- The magnitude, position, and direction of the driving force greatly effects the deflection at the gauge line. For each scenario there exists an optimum location of the drive puiley.

In Lewinchal (1983) a similar study on the variation of spindie design parameters was presented. Plots were generated that illustrated the effect of the bearing spacingovernang ratio on the spindie stiffness for support bearings of varying stiffness. From these plots it could be concluded that for very stiff support bearings the optimum spacing
between the bearings becomes shorter. it couid also be conciuded that if the spindie has a long overhang the stiffness of the bearings has a lesser impact on the stiifness of the spindie.

Other work in the optimum design of machine tool spindies was also done in Múontusiewicz et al. (1997). inn this work a model of a machine tool spindie supported by hydrostatic bearings was presented. The study consisted of appiying a four-stage multicriterion optimization strategy to a static modei of a spindle. The objective of the anaiysis was to reduce the radiai and axiai defiection of a spindie, the totai mass of the spindie, the totai power loss of the bearings, and finaliy the size of the bearings. The analysis divides the spindie system into four subsystems. Each of these systems are optimized iocaliy, and finaliy integrated to provide a giobal optimization. The outcome of this analysis was a computer aided optimum design package. This package ailows spindie designers to interactively design an optimum spindie, inputting required design variabies throughout the optimization process.

A quaitative dynamic analysis of a machine tool spindie was presented in AiShareef et ai. (i99i). Traditionaliy in the dynamic anaiysis of machine tool spindies the first mode is thought to be responsible for poor cutting quality. The purpose of this work was to assess this assumption. There was concern that this would not be the case since the range of operating frequencies for a given spindie often excite the higher modes. The first four modes for an exampie spindie were soived for analyticaily and compared to experimentai resuits. The modai analysis presented ignores damping and rotational affects. The authors site an experimentai study that proved there to be iittle difference
between the non-rotationai natural frequencies and the rotational critical speeds. By looking at the individuai mode shapes they found that the first mode contributed the mosi to the deffection at the tool to work-piece interface. Aili other modes in the operating frequency range exhibited nodal characteristics at this interface. Since the excitation force would be exeried here they conciuded that the first mode would indeed be most accountable for poor cutting quaiity. However they also noted that at the higher modes there was significant deflection at the location of the support bearings. This couid result in the degradation of these bearing and an eventual loss of spindle stiffness.

Some other works, pertaining more generaliy to the field of rotor dynamics, were also researched. Two of these works deal primarily with the extension of the conventional transformation matrix (CTM) technique. In the work done by Curti et ai. (1993) an expression for an 8×8 dynamic stiffness matrix of a rotating Timoshenko beam is derived and related to the conventional 4×4 dynamic stiffness matrix. This provides for the inclusion of anisotropic supports.

In work done by Murphy (1993) a polynomial transfer matrix was developed to replace the conventional transfer matrix for modai and forced response analyses. The advantage of the polynomial transfer matrix is an increase in computational speed of 3.5 to 100 times over the conventional transfer matrix. Example problems were analyzed using both the CTM and PTM methods as weli as a finite element analysis. The results for ail three cases were identical and the speed of the PTM method was considerably faster.

2.0 Static Ânalysis:

The static analysis calculates the lateral defiection of the spindie. Figure 2.1 illustrates the model under scrutiny. The following assumptions were necessary to perform the analysis:

1. The spindie shaft is assumed to be an Euler-Bernoulii Beam.
2. The spindie is subjected to a cutting force, a drive force, and the reaction forces at the bearings. The drive force must be applied behind the rear bearing.
3. The torsional and axial deflections of the spindie shatt are neglected.
4. The centeriine of the spindie shaft is exactly iniine with the centerine of the bearing bores. There is no contribution to the lateral deflection due to manufacturing misaiignment.
5. The spindle housing and the cutting tool are both assumed to have an infinite stiffness.
б. it is assumed that the spindie is supported by only two bearings. This is common for most machine tool spindies. Manufacturability preciudes the use of more than two bearings in most spindies.
6. The contribution of transverse shear deformation to the overail lateral deflection is assumed to be negligibie. It was observed in a study conducted by Ai-Shareef and Brandon, that the contribution of shear deformation is dependent on the ratio between the length of the spindie and the spindie nose overhang. The shear deflection for short spindies with smail overhangs contributes more to the overail

Figure 2.i Spindie Model
deffection than ionger, more slender spindies. A variety of spindies were anaiyzed in this study and a maximum contribution of 12 per cent was found ('Âl-Shareef et ail., 1990)

Superposition was empioyed to caiculate the laterai defiection of the spindie. The elastic deformation of the spindile shaft, y_{s} and the defiection of the spindie bearings, y_{b} were superimposed to calculate the overail deffection of the spindie (see figs. 2.2a and 2.2b). Equation 2.1 gives the overali defiection of the spindle.

$$
\begin{equation*}
y_{t}=y_{s}+y_{b} \tag{2.i}
\end{equation*}
$$

2.1 Deformation of Elastic Shaft:

For the eiastic contribution of the spindle shaft Ai-Shareef and Brandon propose a method to transform the stepped spindie shaft to a uniform shaft (A -Shareef et. ai, 1990). This approach will be employed in this analysis. When the shaft is transformed there is a moment, \mathbf{M}_{k} and shear force, V_{k} induced at each step in the shaft (fig. 2.3). In addition the applied forces and reactions must be iransformed into equivalent forces applied to beam segments with larger bending moments of inertia. These equivalent forces are noted using the subcript "e" (i.e. $F_{d} \rightarrow F_{d e}$).

The defiection of the uniform beam can be easily analyzed using conventional beam theory and singularity functions. The singularity functions will be represented by expressions in \rangle. If the value of the expression within these brackets is less than zero the function becomes zero (i.e. $<2-4>^{2}=0$). If the value of the expression is greater than zero, the function simply becomes the expression within the brackets (i.e. $\langle 4-2\rangle^{2}=$ $\left.(4-2)^{2}\right)$.

The shear force, V(x) of the uniform beam can be found to be:

Figure 2.2a Eiastic Deflection of Spindie Shaft

Figure 2.2 b Deffiection of Spindie Bearings

Figure 2.3 Model of̃ Uniform Beam

$$
\begin{align*}
& V(x)=F_{d e}\left\langle x-a_{1}\right\rangle^{0}+F c\left\langle x-a_{4}-t\right\rangle^{0}-R_{r e}\left\langle x-a_{2}\right\rangle^{0} \tag{2.2}\\
& -R_{f e}\left\langle x-a_{3}\right\rangle^{0}+\sum_{k=1}^{n} V_{k}\left\langle x-b_{k}\right\rangle^{n}
\end{align*}
$$

The moment of the beam, Míf \mathbf{x}) becomes:

$$
\begin{align*}
& M(x)=\int V(x) d x+M_{a p p l i e d} \tag{2.3}\\
& M(x)=F_{d k}\left\langle x-a_{1}\right\rangle^{1}+F_{c}\left\langle x-a_{4}-t j^{\prime}\right\rangle^{1}-R_{r e}\left\langle x-a_{2}\right\rangle^{1}-R_{f e}\left\langle x-a_{3}\right\rangle^{1} \\
& +\sum_{i=1}^{n} V_{\hbar}\left\langle x-b_{n}\right\rangle^{1}+\sum_{i=1}^{n} M_{\hbar}\left\langle x-b_{\hbar}\right\rangle^{0}+M_{b e}\left\langle x-a_{3}\right\rangle^{0} \tag{2.4}
\end{align*}
$$

The siope of the beam, $\theta(x)$ becomes:

$$
\left.\begin{array}{c}
\theta(x)=\frac{1}{E I_{n}} \int M(x) d x \\
\theta(x)=\frac{1}{E I_{n}}\left\{\begin{array}{c}
\frac{F_{d e}}{2}\left\langle x-a_{1}\right\rangle^{2}+\frac{F_{c}}{2}\left\langle x-a_{4}-t l\right\rangle^{2}-\frac{R_{r e}}{2}\left\langle x-a_{2}\right\rangle^{2}-\frac{R_{f e}}{2}\left\langle x-a_{3}\right\rangle^{2} \\
+\sum_{k=1}^{n} \frac{V_{k}}{2}\left\langle x-b_{k}\right\rangle+\sum_{k=1}^{n} M_{k}\left\langle x-b_{k}\right\rangle^{1}+M_{b e}\left\langle x-a_{2}\right\rangle^{1}+q_{1}
\end{array}\right), ~ \tag{2.6}
\end{array}\right\}
$$

Integrating the siope of the beam yields the elastic deflection, $y_{s}(x)$:

$$
y_{s}(x)=\frac{1}{E I_{n}}\left(\begin{array}{l}
\frac{F_{d e}}{6}\left\langle x-a_{1}\right\rangle^{3}+\frac{\bar{F}_{c}}{6}\left\langle x-a_{4}-t l\right\rangle^{3}-\frac{R_{r e}}{6}\left\langle x-a_{2}\right\rangle^{3} \tag{2.7}\\
-\frac{R_{f e}}{6}\left\langle x-a_{3}\right\rangle^{3}+\sum_{k=1}^{n} \frac{V_{k}}{6}\left\langle x-b_{k}\right\rangle^{3}+\sum_{k=1}^{n} \frac{M_{k}}{2}\left\langle x-b_{k}\right\rangle^{2} \\
+\frac{M_{b e}}{2}\left\langle x-a_{3}\right\rangle^{2}+q_{1} x+q_{2}
\end{array}\right)
$$

The integration constants, $q_{1} \& q_{2}$ can be found by applying the following boundary conditions:

$$
\begin{aligned}
& y_{s}\left(x=a_{2}\right)=0 \\
& y_{s}\left(x=a_{3}\right)=0
\end{aligned}
$$

Soiving for the integration constants yieids:

$$
\begin{gather*}
q_{2}=-\frac{F_{\text {de }}}{6}\left\langle a_{2}-a_{1}\right\rangle^{3}-\sum_{k=1}^{n} \frac{V_{k}}{6}\left\langle a_{2}-b_{k}\right\rangle^{3}-\sum_{k=1}^{n} \frac{M_{k}}{2}\left\langle a_{2}-b_{k}\right\rangle^{2}-q_{1} a_{2} \tag{2.8}\\
q_{3}=\frac{1}{\left(a_{2}-a_{3}\right)}\left\{\begin{array}{l}
\frac{F_{d e}}{6}\left(\left\langle a_{3}-a_{1}\right\rangle^{3}-\left\langle a_{2}-a_{1}\right\rangle^{3}\right)-\frac{R_{r e}}{6}\left\langle a_{3}-a_{2}\right\rangle^{3} \\
+\sum_{k=1}^{n} \frac{V_{k}}{6}\left(\left\langle a_{3}-b_{k}\right\rangle^{3}-\left\langle a_{2}-b_{k}\right\rangle^{3}\right) \\
+\sum_{k=1}^{n} \frac{M_{k}}{2}\left(\left\langle a_{3}-b_{k}\right\rangle^{2}-\left\langle a_{2}-b_{k}\right\rangle^{2}\right)
\end{array}\right\} \tag{2.9}
\end{gather*}
$$

The derivation for the moments and shear forces induced, and the equivalent applied forces when the stepped shaft is transformed into a uniform shaft will now be presented. The derivation begins by looking at the internal shear and bending moments for an arbitrary segment in the stepped beam (Fig 2.4). An illustration of the shear and bending moment diagrams is also offered (Fig. 2.5).

From the shear and bending moment diagrams it was found that:

$$
\begin{equation*}
V(x)=V_{1}=V_{r} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
M(x)=M_{1}-V_{!} x \tag{2.11}
\end{equation*}
$$

From Castigliano's Second Theorem:

$$
\begin{equation*}
\frac{\partial U}{\partial V}=y \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial U}{\partial M}=\theta \tag{2.13}
\end{equation*}
$$

The strain energy, U for one-dimensional bending is known to be:

Figure 2.4 Transformation of a Beam Segment

Figure 2.5 Shear and Bending Moment Diagrams for a Beam Segment

$$
\begin{equation*}
U=\int_{0}^{1} \frac{M}{2 E I}^{2} d x \tag{2.14}
\end{equation*}
$$

It should be noted that this expression for the strain energy does not inciude any contribution due to transverse shear deformation. Substituting equation (2.14) into equations (2.12) and (2.13), with eqns. (2.10) and (2.11) for the original beam segment (prior to the transformation to the uniform shaft), yieids the foliowing y and θ :

$$
\begin{gather*}
y=\frac{-1}{E I}\left\{\frac{M_{r} l^{\hat{2}}}{2}-\frac{V_{r} l^{3}}{3}\right\} \tag{2.15}\\
\theta=\frac{1}{E I}\left\{M_{r} l-\frac{V_{r} l^{\hat{z}}}{2}\right\} \tag{2.16}
\end{gather*}
$$

Similarly, when the analysis is repeated for the segment after its transformation the defiection and slope, y^{*} and $\hat{\theta}^{*}$ are found to be:

$$
\begin{align*}
& y^{*}=\frac{-1}{E I^{*}}\left\{\frac{M_{r} l^{\bar{i}}}{2}-\frac{V_{r} l^{3}}{3}\right\} \tag{2.17}\\
& \theta^{*}=\frac{1}{E I^{*}}\left\{M_{r} l-\frac{V_{r} l^{\bar{z}}}{2}\right\} \tag{2.18}
\end{align*}
$$

The differences in y and θ must be compensated for with the induced shear force and bending moment.

$$
\begin{align*}
& \Delta y=-\left\{\frac{1}{E I}-\frac{1}{E I^{*}}\right\}\left\{\frac{M_{r} l^{2}}{2}-\frac{V_{r} l^{3}}{3}\right\} \tag{2.19}\\
& \Delta \theta=\left\{\frac{1}{E I}-\frac{1}{E I^{*}}\right\}\left\{M_{r} l-\frac{V_{r} l^{2}}{2}\right\} \tag{2.20}
\end{align*}
$$

Therefore:

$$
\begin{align*}
& \left\{\frac{1}{E I}-\frac{1}{E I^{*}}\right\}\left\{\frac{M_{r} l^{\overline{2}}}{2}-\frac{V l^{\overline{3}}}{6}\right\}=\left\{\frac{1}{E I^{*}}\right\}\left\{\frac{M_{\text {ind }} d^{\bar{L}}}{2}-\frac{V_{\text {ind }} l^{\overline{3}}}{6}\right\} \tag{2.21}\\
& \left\{\frac{1}{E I}-\frac{1}{E I^{*}}\right\}\left\{M_{r} l-\frac{V l^{\bar{z}}}{2}\right\}=\left\{\frac{1}{E I^{*}}\right\}\left\{M_{\text {ind }} l-\frac{V_{\text {ind }} l^{\bar{z}}}{2}\right\} \tag{2.22}
\end{align*}
$$

Multiplying eqn. (2.22) by $-1 / 2$ and adding eqn. (2.21) yields:

$$
\begin{equation*}
V_{i n d}=I^{*}\left[\frac{1}{I}-\frac{\overline{1}}{I^{*}}\right] V_{=} \tag{2.23}
\end{equation*}
$$

Substituting eqn. (2.23) into eqn. (2.21) yields:

$$
\begin{equation*}
M_{i n d}=I^{*}\left[\frac{1}{I}-\frac{1}{I^{*}}\right] M_{r} \tag{2.24}
\end{equation*}
$$

This analysis can be repeated to find an induced shear and bending moment at each step in the shaft. The induced force and moment now become applied forces to a beam segment with a moment of inertia of I^{*} This analysis can be extended to show that ail applied forces must be scaled by a factor of $\mathrm{i}_{\mathrm{N}} / \mathbf{1}$. Where i_{N} is the moment of inertia of the uniform beam (largest moment of inertia in the stepped shaft), and I is the moment of inertia of the segment that the force is applied to. Therefore the induced forces and moments become:

$$
\begin{align*}
& V_{k}=I_{n}\left[\frac{1}{I}-\frac{1}{I^{*}}\right] V_{r} \tag{2.25}\\
& M_{k}=I_{n}\left[\frac{1}{I}-\frac{1}{I^{*}}\right] M_{r} \tag{2.26}
\end{align*}
$$

where:

$$
\begin{equation*}
V_{r}=R_{r}\left\langle x-a_{2}\right\rangle^{0}+R_{f}\left\langle x-a_{3}\right\rangle^{0}-f_{d}\left\langle x-a_{1}\right\rangle^{0}-f_{c}\left\langle x-a_{4}-t l^{\dot{v}}\right. \tag{2.27}
\end{equation*}
$$

$$
\begin{align*}
& M_{r}=R_{r}\left(b_{k}-a_{2}\right)\left\langle b_{k}-a_{2}\right\rangle^{0}+R_{f}\left(b_{k}-a_{3}\right\rangle\left\langle b_{k}-a_{3}\right)^{0} \\
& -f_{d}\left(b_{k}-a_{1}\right)\left\langle b_{k}-a_{1}\right\rangle^{0}-f_{c}\left(b_{k}-a_{4}-t l\right)\left\langle b_{k}-a_{4}-t l\right\rangle^{0}-m b\left\langle b_{k}-a_{3}\right\rangle^{0} \tag{2.28}
\end{align*}
$$

The cutting, driving, and reaction forces from the stepped spindie shaft must aiso be scaled to provide equivalent applied forces on the uniform shant. The scaling of these forces yields:

$$
\begin{align*}
& F_{d e}=\frac{I}{I_{f c}} F_{d} \tag{2.29}\\
& R_{r e}=\frac{I}{I_{R r}} R_{r} \tag{2.30}\\
& R_{f e}=\frac{I}{I_{R f}} R_{f} \tag{2.31}\\
& M_{b e}=\frac{I}{I_{M b}} M_{b} \tag{2.32}
\end{align*}
$$

2.2 Defiection of Bearings:

The deflection contribution of the spindle bearings was calcuiated by assuming that the spindie is a rigid shaft supported by two flexible bearings (Figure 2.2b). The cutting force F_{c}, and the driving force F_{d} were used to solve for the reactions at the bearing. The two reaction forces were used to calculate δ_{r} and δ_{f}, the deflections at the two bearings. The defiection contribution of the bearings is a straight line through δ_{r} and δ_{f}.

$$
\begin{equation*}
y_{b}=\frac{\left(\delta_{r}-\delta_{f}\right)\left(x-a_{2}\right)+\delta_{r}\left(a_{3}-a_{2}\right)}{\left(a_{3}-a_{2}\right)} \tag{2.33}
\end{equation*}
$$

Where

$$
\begin{gather*}
\delta_{r}=\frac{\left(f_{c}\left(a_{4}+t l-a_{3}\right)-m b-f_{d}\left(a_{3}-a_{2}\right)\right)}{\left(a_{3}-a_{2}\right) K_{r}} \tag{2.34}\\
\delta_{f}=\frac{f_{d}\left(a_{3}-a_{2}\right)+m b-f_{c}\left(a_{4}+t l-a_{3}\right)-\left(f_{c}+f_{d}\right)\left(a_{3-} a_{2}\right)}{\left(a_{3}-a_{2}\right) K_{f}} \tag{2.35}\\
m_{b}=f_{c}\left(a_{4}+t l-a_{3}\right) x_{o} \tag{2.36}
\end{gather*}
$$

2.3 Matīab Solution:

A program was deveioped using Matlab to automate the static anaiysis of the spindie shatt. The user must simply enter the geometry, loads, and support parameters into a spreadsheet calied a sbatch file" A copy of the batch file tempiate is presented in Appendix A. The Matiab programming code used to automate the static analysis can be found in Appendix B.

An exampie of the analysis for a simpie spindie is presented here. Figure 2.6 iilustrates the batch file for the static analysis. Upon the completion of the batch file the program will read the file and report a geometric representation of the spindie. The piot illustrates the geometry of the shaft as well as the locations of the bearings, cutting force, and drive force (see nigure 2.7). This feedback aliows the user to easily check for mistakes in the batch file. With ail the information correct the program calculates and reports piots of the deflection contribution of the eiastic shaft (figure 2.8a) and the defiection contribution of the bearings (figure 2.8 b). Finaily the program reports a piot of the totai deformation of the spindie (see figure 2.9).

Batch File:

Geometry:

Number of Sections(\#):
6

Section (\#)	Length (in)	Outer Diameter (in)	Inner Diameter (in)	Area (in~2)	Moment of Inertia (in^4)
1	3	2.25	2	0.83449	0.47265783
2	3	2.375	2125	0.88357	0.560861726
3	3	2.5	2.25	0.93266	0.659419991
4	3	2.625	2.375	0.98175	0.76890787
5	3	2.75	2.5	103084	0.889900605
6	3	2.875	2625	1.07992	1.022973438
7					0

Bearings:

Lat Stiffness of Rear Bearing (lb / n):	100000
Lat Stiffness of Front Bearing (lb/in.):	500000
Fraction of mom. on Front Bearing.	0.1
Location of Rear Bearing (in.)	7.5
Location of Front Bearing (in.)	13.5

Pulley:

Tool:

Speed:

Material Properties:

Figure 2.6 Batch File for Matlab Solution

Figure 2.7 Matlab Representation of Geometry

Figure 2.8a Deflection Contribution of Elastic Shaft

Figure 2.8b Deflection Contribution of Support Bearings

Figure 2.9 Total Deflection of Spindle

In order to confirm the results offered by the program, a finite element analysis of the sample spindle was performed using Ansys. The spindle was modeled using onedimensional linearly elastic beam elements. The bearings were modeled using linear spring elements. The cutting force was transformed into a force moment couple and applied at the end of the spindle shaft in order to account for the tool length. Figure 2.10 compares the deflections of the shaft using both methods. It is clear from the plot that there is an excellent correlation between the two analyses.

Static Deflection Comparison

Figure 2.10 Comparison of Total Spindle Deflection (FEA vs. Matlab)

3.0 Dynamic Analysis:

The dynamic anaiysis for the spindie shaft consists of two portions. The first part of the analysis is the modal analysis. The beam is treated as a continuous system for this portion of the anaiysis. The second part of the anaiysis soives for the deflection of the spindle by means of modal superposition. The following assumptions were made in order to perform the analysis:

1. The spindle shaft is assumed to be an Euler-Bernoulii Beam.
2. The spindie is subjected to a cutting force $\left(\mathrm{F}_{\mathrm{c}} \operatorname{Sin}\left(\omega_{\mathrm{c}} \mathrm{t}\right)\right)$, a drive force $\left(\mathrm{F}_{\mathrm{d}} \operatorname{Sin}\left(\omega_{\mathrm{d}} \mathrm{t}\right)\right)$, unbalance forces $\left(\mathrm{F}_{\text {cub }} \operatorname{Sin}(\omega \mathrm{t}) \&\left(\mathrm{~F}_{\mathrm{dub}} \operatorname{Sin}(\omega \mathrm{t})\right.\right.$), and the reaction forces at the bearings. The drive force must be applied behind the rear bearing. The cutting force and drive force are assumed to be harmonic.
3. The masses of the puiley and cutting tool are assumed to be concentrated. The mass of the puiley is assumed to be concentrated at the centeriine of the puliey. The mass of the tool is assumed to be concentrated at the end of the spindie shatt. This point is often referred to as the gauge ine.
4. There is no unbalance excitation introduced by the spindle shant.
5. The rotational affects of the spindie shaft are neglected.
6. The torsionai and axial deflections of the spindie shatt are negiected.
7. The centeriine of the spindie shaft is exactly inline with the centerline of the bearing bores. There is no contribution to the iateral deflection due to manufacturing misalignment.
8. The spindie housing and the cutiting tooi are both assumed to have an infinite stiffness.
9. It is assumed that the spindie is supported by ony two bearings. This is common for most machine tool spindies. Manufacturability typically precludes the use of more than two bearings in most spindles.
10. The contribution of transverse shear deformation to the overall lateral deflection is assumed to be negligibie.
11. Damping is neglected in the dynamic analysis.

Tine model scrutinized in the dynamic analysis is very similar to the model used in the static analysis. One major difference is the use of a torsional spring to represent the torsional stiffiness of the front support bearings. In addition the masses of the pulley and cutting tool are included. See figure 3.1 for the dynamic model under scrutiny.

3.1 Modai Analysis:

The foundation for the modal analysis is the derivation of the wave equation for the laterai vibration of a continuous Euler-Bernoulii beam. Figure 3.2 represents the free body diagram of an differential element of an E-B beam. Applying Newton's second law to the beam element it can be shown that:

$$
\begin{equation*}
\frac{\partial V}{\partial x}=-\rho A \frac{\partial^{2} y}{\partial t^{2}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V=\frac{\partial M}{\partial x} \tag{3.2}
\end{equation*}
$$

Figure 3.1 Dynamic Spindie Móodel

Figure 3.2 Differential Element of an E-B Beam

It can also be shown from Strengths of Materiais that:

$$
\begin{equation*}
M=E I \frac{\partial^{2} y}{\partial x^{2}} \tag{3.3}
\end{equation*}
$$

Substituting eq. 3.3 into 3.2 yields:

$$
\begin{equation*}
V=E I \frac{\partial^{3} y}{\partial x^{3}} \tag{3.4}
\end{equation*}
$$

Finally, substituting eq. 3.4 into 3.1 and rearranging yields:

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}+\frac{E I}{\rho A} \frac{\partial^{4} y}{\partial x^{4}}=0 \tag{3.5}
\end{equation*}
$$

The following harmonic solution to eq. 3.5 was assumed:

$$
\begin{equation*}
y(x, t)=\bar{y}(x) \sin \omega t \tag{3.6}
\end{equation*}
$$

Substituting the assumed solution (eq. 3.6), into the differential equation (3.5) yields the foilowing forth-order differential equation:

$$
\begin{equation*}
\frac{\partial^{4} \bar{y}}{\partial x^{4}}-\beta^{4} \bar{y}=0 \tag{3.7}
\end{equation*}
$$

where:

$$
\begin{equation*}
\beta^{4}=\frac{\rho A w^{2}}{E I} \tag{3.8}
\end{equation*}
$$

It can be shown that the general solution to the preceding forth-order differential equation is:

$$
\begin{equation*}
\bar{y}(x)=A \cosh \beta x+B \sinh \beta x+C \cos \beta x+D \sin \beta x \tag{3.9}
\end{equation*}
$$

Equation 3.9 represents the wave equation for an E-B beam. The mode shapes for a beam can be found by substituting vaiues for β that correspond to the resonant frequencies. The constants $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D can be soived for by applying the boundary condition for the beam.

A systematic method invoiving numerical methods was deveioped to soive for the resonant frequencies and their corresponding mode shapes. This method is not exclusive to the spindie probiem at nand. It can be extended to the iateral vibration of many EuierBernoulii probiems. Listed beiow are the steps to this method:

1. Estabiish the boundary conditions for the system.
2. Coilect the system of equations into matrix form.
3. Using Gaussian Elimination numerically reduce the matrix.
4. Using the Bisection Method or a comparabie root finding method soive for the resonant frequency, $\hat{\beta}$.
5. Back substitute to find the constants $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D for the beam segment.

Figure 3.3 represents a simpie beam used to iliustrate this approach. The beam under scrutiny here is a uniform E-B beam fixed at both ends. The first step is to find the boundary conditions. Since the beam is fixed-fixed, the displacement and rotation at $\mathrm{x}=$ $0, i$ are both equal to zero. Expressed mathematicaliy:

$$
\begin{align*}
& \bar{y}(0)=0 \tag{0}\\
& \bar{y}^{\prime}(0)=0 \tag{3.11}\\
& \bar{y}(i)=0 \tag{3.12}\\
& \bar{y}^{\prime}(i)=0 \tag{3.13}
\end{align*}
$$

Figure 3.3 Sample Euler-Bernouili Beam

Substituting Eq. 3.9 into Eqs. $3.10-3.13$ yieids:

$$
\begin{gather*}
\bar{y}(\hat{0})=A+C=0 \tag{3.14}\\
\bar{y}^{\prime}(0)=B+D=0 \tag{3.15}\\
\bar{y}(l)=A \cosh (\beta l)+B \operatorname{sinn}(\beta l)+C \cos (\beta l)+D \sin (\beta l)=0 \tag{3.í}\\
\bar{y}^{\prime}(l)=\hat{A} \sinh (\beta l)+B \cosh (\beta l)-C \sin (\beta l)+D \cos (\beta l)=0 \tag{3.17}
\end{gather*}
$$

The next step is to collect this system of four equations into matrix form. This yields Eq. 3.18:

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \tag{3.18}\\
0 & 1 & 0 & 1 \\
\cosh (\beta l) & \sinh (\beta l) & \cos (\beta l) & \sin (\beta l) \\
\sinh (\beta l) & \cosh (\beta l) & -\sin (\beta l) & \cos (\beta l)
\end{array}\right]\left\{\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

Step (3) reduces the matrix in eqn. 3.18 using Guass-Jordan elimination. The reduced system is iliustrated in eqn. $3.1 \hat{9}$:

$$
\left\{\begin{array}{cccc}
1 & 0 & 1 & 0 \tag{3.19}\\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & \frac{\sin (\beta l)-\sinh (\beta l)}{\cos (\beta l)-\cosh (\beta l)} \\
0 & 0 & 0 & \cos (\beta l) \cosh (\beta l)-1
\end{array}\right\}\left\{\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

The reduced system can be used to soive for the resonant frequencies, $\boldsymbol{\beta}_{j}$.

$$
\begin{equation*}
(\cos (\beta l) \cosh (\beta l)-1) D=0 \tag{3.20}
\end{equation*}
$$

If D was equal to zero, then \hat{A}, B, and C wouid aiso equal zero. This wouid not be a meaningfui resuit. Therefore it can be conciuded that:

$$
\begin{equation*}
(\cos (\beta l) \cosh (\beta l)-1)=0 \tag{3.21}
\end{equation*}
$$

This is where the root finding method suggested in step (4) comes into piace. The roots of eq. 3.21 lead to the resonant frequencies of the system. Solving for the roots yields:

$$
\beta_{1} l, \beta_{2} l, \beta_{3} l=4.7,7.8 .11 .0
$$

After solving for the roots the final step is to back substitute to obtain the constants \hat{A}, B, C and \bar{D}. Begin the substitution by assuming that $\overline{\mathrm{D}}=\mathbf{i}$. Working backward from $\overline{\mathrm{D}}$ it can be shown that the remaining constants are:

$$
\begin{aligned}
& C=\frac{\sinh (\beta l)-\sin (\beta l)}{\cos (\beta i)-\cosh (\beta l)} \\
& \bar{B}=-1 \\
& A=\frac{\sin (\beta l)-\sinh (\beta l)}{\cos (\beta l i)-\cosh (\beta l)}
\end{aligned}
$$

Substituting these constants into eq. 3.9 yields the mode shape for the sampie beam. The equation for the mode shapes becomes:

$$
\begin{align*}
& \bar{y}(x)=\frac{\sin \left(\beta_{j} l\right)-\sinh \left(\beta_{j} l\right)}{\cos \left(\beta_{j} l\right)-\cosh \left(\beta_{j} l\right)} \cosh \left(\beta_{j} x\right)+\sinh \left(\beta_{j} x\right) \\
& +\frac{\sinh \left(\beta_{j} l\right)-\sin \left(\beta_{j} l\right)}{\cos \left(\beta_{j} l\right)-\cosh \left(\beta_{j} l\right)} \cos \left(\beta_{j} x\right)+\sin \left(\beta_{j} x\right)
\end{align*} \quad \mathrm{j}=1,2, \ldots .
$$

Figure 3.4 iliustrates the first three mode shapes for the sampie beam.
The method described here can be applied to find the mode shapes for ail uniform $\mathrm{E}-\mathrm{B}$ beam probiems. However if the beam is stepped, as is the case with the spindie shaft, there needs to be a set of boundary conditions for each beam segment. This leads

Figure 3.4 Míode Shapes for Sampie Beam
to a very large system of equations. Aside from the probiem of having a very large system, the number of steps would change for dififerent spindies. This would make automation very difficult. A transformation matrix was developed to handie the steps in the shaft. The transformation matrix relates the constants on one side of a step to the constants on the other side of the step. This makes the number of equations in the system independent of the number of steps in the shaft.

The deveiopment of this transformation matrix begins by looking at an arbitrary step in an Euier-Bernouili beam (see figure 3.5). in order for continuity to exist the defiection, slope, moment, and shear force at the joint must be the same for both beam segments.

$$
\begin{gather*}
\bar{y}_{1}(l)=\bar{y}_{2}(l) \tag{3.23}\\
\bar{y}_{1}^{\prime}(\bar{l})=\bar{y}_{2}^{\prime}(l) \tag{3.24}\\
(E I)_{1} \frac{d^{2} \bar{y}_{1}(\bar{l})}{d x^{2}}=(E I)_{2} \frac{d^{2} \bar{y}_{2}(\bar{l})}{d x^{2}} \tag{3.25}\\
(E I)_{2} \frac{\bar{d}^{-3} \bar{y}_{1}(\bar{l})}{d x^{3}}=(E I)_{2} \frac{d^{-3} \bar{y}_{2}(\bar{l})}{d x^{3}} \tag{3.26}
\end{gather*}
$$

Substituting eq. 3.8 yields:

$$
\begin{align*}
& A_{1} \cosh \left(\beta_{1} l\right)+B_{1} \sinh \left(\beta_{1} l\right)+C_{1} \cos \left(\beta_{1} l\right)+D_{1} \sin \left(\beta_{1} l\right)= \tag{3.27}\\
& A_{2} \cosh \left(\beta_{2} l\right)+B_{2} \sinh \left(\beta_{2} l\right)+C_{2} \cos \left(\beta_{2} l\right)+D_{2} \sin \left(\beta_{2} l\right) \\
& \beta_{1}\left(A_{1} \sinh \left(\beta_{1} l\right)+B_{1} \cosh \left(\beta_{1} l\right)-C_{1} \sin \left(\beta_{1} l\right)+D_{1} \cos \left(\beta_{1} l\right)\right)= \\
& \beta_{2}\left(A_{2} \sinh \left(\beta_{2} l\right)+B_{2} \cosh \left(\beta_{2} l\right)-C_{2} \sin \left(\beta_{2} l\right)+D_{2} \cos \left(\beta_{2} l\right)\right) \tag{3.28}\\
& \beta_{1}{ }^{2}\left(A_{1} \cosh \left(\beta_{1} l\right)+B_{1} \sinh \left(\beta_{1} l\right)-C_{1} \cos \left(\beta_{1} l\right)-D_{1} \sin \left(\beta_{1} l\right)\right)= \tag{3.29}\\
& \beta_{2}{ }^{2}\left(A_{2} \cosh \left(\beta_{2} l\right)+B_{2} \sinh \left(\beta_{2} l\right)-C_{2} \cos \left(\beta_{2} l\right)-D_{2} \sin \left(\beta_{2} l\right)\right)
\end{align*}
$$

Figure 3.5 Step in E-B Beam

$$
\begin{align*}
& \beta_{1}{ }^{3}\left(A_{1} \sinh \left(\beta_{1} l\right)+B_{1} \cosh \left(\beta_{1} l\right)+C_{1} \sin \left(\beta_{1} l\right)-D_{1} \cos \left(\beta_{1} l\right)\right)= \tag{3,30}\\
& \beta_{2}{ }^{3}\left(A_{2} \sinh \left(\beta_{2} l\right)+B_{2} \cosh \left(\beta_{2} l\right)+C_{2} \sin \left(\beta_{2} l\right)-D_{2} \cos \left(\beta_{2} l\right)\right)
\end{align*}
$$

The system of four equations and eight unknowns can be coiiected into matrix form.

] $\operatorname{cosin}\left(\hat{\beta}_{1} i\right)$	$\sin \left(\hat{\beta}_{1} i \underline{i}\right)$	$\cos \left(\hat{p}_{\underline{p}} \underline{i}\right)$	$\sin \left(\hat{p}_{\underline{1}} i\right)$	-	(- \cos	- $\sin \left(\beta_{2}\right)$
$\sinh (\beta, l)$	$\cosh \left(\beta_{1} l\right)$	$-\sin \left(\beta_{1} l\right)$	$\cos (\beta, l)$	$-\sinh \left(\beta_{2}\right.$	$-\cosh \left(\beta_{2}\right.$	$\sin \left(\beta_{2} l\right)$	$-\cos \left(\beta_{2} l\right)$
cosit β_{1}	hí	$-\cos \left(\beta_{1}\right.$	$\sin (\beta$	$\frac{(E I)_{2} \beta_{2}^{2}}{\alpha^{2}} \operatorname{cosin}\left(\beta_{2} i\right)$	$\frac{(E I)_{2} \beta_{2}^{2}}{(E T)^{2} \beta^{2}} \sin \left(\beta_{2} i\right)$	$\frac{(E I)_{2} \beta_{2}^{2}}{\alpha^{2}} \cos \left(\beta_{2} i\right)$	$\frac{(E I)_{2} \beta_{2}^{2}}{a^{2}} \sin \left(\beta_{2} i\right)$
				ET) ${ }_{1} \beta_{1}^{2}$ EI) β_{2}^{3}		$\text { D) } \boldsymbol{\beta}_{1}^{2}$	$(E T)_{4} \beta_{1}^{2}$
$\operatorname{simin}\left(\beta_{1} i\right)$	sin β_{1}	$\sin \left(\beta_{1} i\right)$	$\cos \left(\beta_{1} i\right)$	$-\frac{(E I)_{2} \rho_{2}}{(E I)_{i} B_{1}^{3}} \sinh \left(\beta_{2} i\right)$	$-\frac{(E T)_{1} \beta_{1}^{3}}{} \cosh \left(\beta_{2} i\right)$	$-\frac{(E I)_{2} P_{2}}{(E T)_{1} \beta_{1}^{3}} \sinh \left(\beta_{2} i\right)$	$\frac{(E I)_{2} \beta_{2}}{(E T)_{1} \beta_{i}^{3}} \cosh \left(\beta_{2} i\right)$

$$
\left\{\begin{array}{l}
A_{1} \tag{3.31}\\
B_{1} \\
C_{2} \\
D_{\mathrm{i}} \\
A_{2} \\
B_{2} \\
C_{2} \\
D_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

Using Gauss-jordan eiimination foiiowed by back substitution a reiationsinip can be found between $\hat{A}_{1}-D_{1}$ and $\hat{A}_{2}-\mathrm{D}_{2}$. Two ratios, R_{1} and r_{1}, were defined to simplify the reiationsinip.

$$
\begin{gather*}
R_{1}=\frac{(E I)_{2}}{(E I)_{1}} \tag{3.32}\\
r_{1}=\frac{\beta_{2}}{\beta_{1}} \tag{3.33}
\end{gather*}
$$

$$
\begin{align*}
& A_{1}=\frac{\left.\mathfrak{r}_{1} R_{1}^{2}+1\right]}{2}\left\{\cosh \left(\beta_{1} l\right) \cos \left(\beta_{2} l\right)-R_{1} \sinh \left(\beta_{1} l\right) \sinh \left(\beta_{2} l\right)\right\} A_{2} \\
& +\frac{\left[r_{1} R_{1}^{2}+1\right]}{2}\left\{\cosh \left(\beta_{1} l\right) \sinh \left(\beta_{2} l\right)-R_{1} \sinh \left(\beta_{1} l\right) \cosh \left(\beta_{2} l\right)\right\} B_{2} \\
& -\frac{\left[r_{1} R_{1}^{2}-1\right]}{2}\left\{\cosh \left(\beta_{1} l\right) \cos \left(\beta_{2} l\right)+R_{1} \sinh \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right) C_{2}\right. \tag{3.34}\\
& -\frac{\left[r_{1} R_{1}^{2}-1\right]}{2}\left\{\cosh \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right)-R_{1} \sinh \left(\beta_{1} l\right) \cos \left(\beta_{2} l\right)\right\} D_{2}
\end{align*}
$$

$$
\begin{align*}
& B_{1}=\frac{\left.\mid r_{1} R_{1}^{2}+1\right]}{2}\left\{R_{1} \cosh \left(\beta_{1} l\right) \sinh \left(\beta_{2} l\right)-\sinh \left(\beta_{1} l\right) \cosh \left(\beta_{2} l\right)\right\} A_{2} \\
& +\frac{\left[r_{1} R_{1}^{2}+1\right]}{2}\left\{R_{1} \cosh \left(\beta_{1} l\right) \cosh \left(\beta_{2} l\right)-\sinh \left(\beta_{1} l\right) \sinh \left(\beta_{2} l\right)\right\} B_{2} \tag{3.35}\\
& +\frac{\left[r_{1} R_{1}^{2}-1\right]}{2}\left\{R_{1} \cosh \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right)+\sinh \left(\beta_{1} l\right) \cos \left(\beta_{2} l\right) C_{2}\right. \\
& +\frac{\left[r_{1} R_{1}^{2}-1\right]}{2}\left\{\sinh \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right)-R_{1} \cosh \left(\beta_{1} l\right) \cos \left(\beta_{2} l\right)\right\} D_{2}
\end{align*}
$$

$$
\begin{align*}
& C_{1}=\frac{\left.r_{1} R_{1}^{2}-1\right]}{2}\left\{R_{1} \sin \left(\beta_{1} l\right) \sinh \left(\beta_{2} l\right)-\cos \left(\beta_{1} l\right) \cosh \left(\beta_{2} l\right)\right\} A_{2} \\
& +\frac{\left[r_{1} R_{1}^{2}-1\right]}{2}\left\{R_{1} \sin \left(\beta_{1} l\right) \cosh \left(\beta_{2} l\right)-\sinh \left(\beta_{1} l\right) \cos \left(\beta_{2} l\right)\right\} B_{2} \\
& +\frac{\left[r_{1} R_{1}^{2}+1\right]}{2}\left\{\cos \left(\beta_{1} l\right) \cos \left(\beta_{2} l\right)+R_{1} \sin \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right)\right\} C_{2} \tag{3.36}\\
& +\frac{\left[r_{1} R_{1}^{2}+1\right]}{2}\left\{\cos \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right)-R_{1} \cos \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right)\right\} D_{2}
\end{align*}
$$

$$
\begin{align*}
& D_{1}=-\frac{\left.\mathfrak{r}_{1} R_{1}^{2}-1\right\}}{2}\left\{R_{1} \cos \left(\beta_{1} l\right) \sinh \left(\beta_{2} l\right)+\sin \left(\beta_{1} l\right) \cosh \left(\beta_{2} l\right)\right\} A_{2} \\
& -\frac{\left\{r_{1} R_{1}^{2}-1\right]}{2}\left\{R_{1} \cos \left(\beta_{1} l\right) \cosh \left(\beta_{2} l\right)+\sin \left(\beta_{1} l\right) \sinh \left(\beta_{2} l\right)\right\} B_{2} \\
& -\frac{\left[r_{1} R_{1}^{2}+1\right]}{2}\left\{R_{1} \cos \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right)-\sin \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right)\right\} C_{2} \tag{3.37}\\
& +\frac{\left[r_{1} R_{1}^{2}+1\right]}{2}\left\{R_{1} \cos \left(\beta_{1} l\right) \cos \left(\beta_{2} l\right)+\sin \left(\beta_{1} l\right) \sin \left(\beta_{2} l\right)\right\} D_{2}
\end{align*}
$$

The coefficients from eqns. 3.34-3.37 can be coilected into a transformation matrix [1 T], such that:

$$
\left\{\begin{array}{l}
A_{1} \tag{3.38}\\
B_{1} \\
C_{1} \\
D_{1}
\end{array}\right\}=\left\{T_{21}\right]\left\{\begin{array}{l}
A_{2} \\
B_{2} \\
C_{2} \\
D_{2}
\end{array}\right\}
$$

The use of the transformation matrix can be illustrated by expanding the sample beam problem to include steps in the beam (see figure 3.6). Applying the boundary conditions would result in the following system of equations:

$$
\left\{\begin{array}{ccccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \left\{\begin{array}{l}
A_{1} \\
0
\end{array} 1\right. \tag{3.39}\\
B_{1} \\
0 & 0 & 0 & 1 & 0 & 0 & \cosh \left(\beta_{3} l_{3}\right) & \sinh \left(\beta_{3} l_{3}\right) & \cos \left(\beta_{3} l_{3}\right) \\
C_{1} \\
0 & 0 & 0 & 0 & \sin \left(\beta_{3} l_{3}\right)
\end{array}\right\}\left\{\begin{array}{l}
0 \\
D_{1} \\
A_{3} \\
B_{3} \\
C_{3} \\
D_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

If transformation matrices were not used, the only way to solve the system of equations would be to relate $A_{1}-D_{1}$ to $A_{3}-D_{3}$ by including the continuity equations. This wouid increase the size of the system to 12 equations and 12 unknowns. It would also make the

Figure 3.6 Sample Stepped Euler-Bernoulli Beam
size of the system dependent on the number of steps in the shaft. This in-turn would make automation more difficult. If the transformation matrices were used the system of equations would be reduced to 4 equations and 4 unknowns, regardiess of the number of steps in the shaft. The first two equations in the system become:

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \tag{3.40}\\
0 & 1 & 0 & 1
\end{array}\right]\left[T_{32} \mathbf{I} T_{21}\right]\left\{\begin{array}{l}
A_{3} \\
B_{3} \\
C_{3} \\
D_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

The last two equations wili be the same as represented in eqn. 3.39. Once the system of equations is deveioped steps 3-5 of the pre-described method can be used to solve for the resonant frequencies and their corresponding mode shapes.

Tine five-step process and transformation matrix can now be combined and applied to find the frequencies and modes shapes of the spindle depicted in Figure 3.1. In order to encompass all of the externaily applied boundary conditions the beam must be divided into four sections. Figures $3.7 \mathrm{a}-3.7 \mathrm{~d}$ depict the four subdivisions. The first section is between the rear free end and the drive puiley. The second section is between the puiley and the rear support bearing. The third section is between the rear and front support bearings. The forth and final section is between the front suppori bearing and the cutting tooi. There will be four constants for each of the four sections for a total of sixteen constants.

Beginning with the free end of section one, the shear force and bending moment at $x=0$ are both equal to zero.

Expressed mathematicaliy:

$$
\begin{equation*}
V_{1}(0)=E I \frac{d^{-3} \bar{y}_{1}}{d x^{3}}=0 \tag{3.41}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{1}(0)=E I \frac{d^{-2} \bar{y}_{1}}{d x^{2}}=0 \tag{3.42}
\end{equation*}
$$

Substituting eqn. 3.9 into equations 3.10 and 3.11 and setting x equal to zero yieids:

$$
\begin{equation*}
B_{1}-D_{1}=0 \tag{3.43}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1}-D_{1}=0 \tag{3.44}
\end{equation*}
$$

At the junction between sections 1 and 2 there are four boundary conditions. The first three conditions involve the defiection, slope and bending moment at the joint between sections $\mathbf{1}$ and 2 . Since there are no externaliy appiied moments, and the structure is continuous, the defiection, siope, and bending moment at the joint must be equai for both sections. Therefore:

$$
\begin{gather*}
\bar{y}_{1}\left(a_{1}\right)=\bar{y}_{2}\left(a_{1}\right) \tag{3.45}\\
\bar{y}_{1}^{\prime}\left(a_{1}\right)=\bar{y}_{2}^{\prime}\left(a_{1}\right) \tag{3.46}\\
E I y_{1}^{\prime} '\left(a_{1}\right)=E I y_{2}^{\prime \prime}\left(a_{1}\right) \tag{3.47}
\end{gather*}
$$

Substituting equation 3.9 into equations 3.45-3.47 yields:

$$
\begin{align*}
& A_{1} \cosh \left(\beta a_{1}\right)+B_{1} \sinh \left(\beta a_{1}\right)+C_{1} \cos \left(\beta a_{1}\right)+D_{1} \sin \left(\beta a_{1}\right) \\
& -A_{2} \cosh \left(\beta a_{1}\right)-B_{2} \sinh \left(\beta a_{1}\right)-C_{2} \cos \left(\beta a_{1}\right)-D_{2} \sin \left(\beta a_{1}\right)=0 \tag{3.48}\\
& A_{1} \sinh \left(\beta a_{1}\right)+B_{1} \cosh \left(\beta a_{1}\right)-C_{1} \sin \left(\beta a_{1}\right)+D_{1} \cos \left(\beta a_{1}\right) \\
& -A_{2} \sinh \left(\beta a_{1}\right)-B_{2} \cosh \left(\beta a_{1}\right)+C_{2} \sin \left(\beta a_{1}\right)-D_{2} \cos \left(\beta a_{1}\right)=0 \tag{3.49}
\end{align*}
$$

Figure 3.7a Boundary Conditions for Section 1

Figure 3.7b Boundary Conditions for Section 2

Figure 3.7c Boundary Conditions for Section 3

Figure 3.7d Boundary Conditions for Section 4

$$
\begin{align*}
& A_{1} \cosh \left(\beta a_{1}\right)+B_{1} \sinh \left(\beta a_{1}\right)-C_{1} \cos \left(\beta a_{1}\right)-D_{1} \sin \left(\beta a_{1}\right) \tag{3.50}\\
& -A_{2} \cosh \left(\beta a_{1}\right)-B_{2} \sinh \left(\beta a_{1}\right)+C_{2} \cos \left(\beta a_{1}\right)+D_{2} \sin \left(\beta a_{1}\right)=0
\end{align*}
$$

The forth boundary condition at this joint is affected by the mass of the puliey. The mass of the pulley introduces an external shear force. Figure 3.8 illustrates the free body diagram at the joint. The shear force introduced by the mass is equal to the D'Alembert force associated with the puiiey mass.

Therefore:

$$
\begin{equation*}
\bar{V}_{m}=m_{p} \ddot{y}=-m_{d} w^{2} \bar{y}_{2}\left(a_{1}\right) \tag{3.51}
\end{equation*}
$$

For equilibrium at the joint:

$$
\begin{gather*}
V_{1}\left(a_{1}\right)-V_{2}\left(a_{1}\right)=V_{m} \tag{3.52}\\
E I \bar{y}_{1}^{i+1}\left(a_{1}\right)-E I \bar{y}_{2}^{i n i}\left(a_{1}\right)=-m_{d} \omega^{2} \bar{y}_{2}\left(a_{1}\right) \tag{3.53}
\end{gather*}
$$

Substituting equation 3.9 into equation 3.53:

$$
\begin{align*}
& A_{1} \sinh \left(\beta a_{1}\right)+B_{1} \cosh \left(\beta a_{1}\right)+C_{1} \sin \left(\beta a_{1}\right)-D_{1} \cos \left(\beta a_{1}\right) \\
& -A_{2}\left[\sinh \left(\beta a_{1}\right)-\frac{m_{d} \omega^{2}}{\beta^{3} E I} \cosh \left(\beta a_{1}\right)\right]-B_{2}\left[\cosh \left(\beta a_{1}\right)-\frac{m_{d} \omega^{2}}{\beta^{3} E I} \sinh \left(\beta a_{1}\right)\right] \tag{3.54}\\
& +C_{2}\left[\sin \left(\beta a_{1}\right)-\frac{m_{d} \omega^{2}}{\beta^{3} E I} \cos \left(\beta a_{1}\right)\right]+D_{2}\left[\cos \left(\beta a_{1}\right)-\frac{m_{d} \omega^{2}}{\beta^{3} E I} \sin \left(\beta a_{1}\right)\right]=0
\end{align*}
$$

The first three boundary conditions for the joint between the second and third section are the same as the boundary conditions between the first and second joint. Therefore:

$$
\begin{align*}
& A_{2} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right)+B_{2} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)+C_{2} \cos \left(\beta\left(a_{2}-a_{1}\right)\right) \\
& +D_{2} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)-A_{3} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right)-B_{3} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right) \tag{3.55}\\
& -C_{3} \cos \left(\beta\left(a_{2}-a_{1}\right)\right)-D_{3} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)=0
\end{align*}
$$

Figure 3.8 Free Body Diagram of Joint 1

$$
\begin{align*}
& A_{2} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right)+B_{2} \cosh \left(\beta\left(a_{2}-a_{\mathrm{i}}\right)\right)-C_{2} \sin \left(\beta\left(a_{2}-a_{\mathrm{i}}\right)\right) \\
& +D_{2} \cos \left(\beta\left(a_{2}-a_{1}\right)\right)-A_{3} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right)-B_{3} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right) \tag{3.56}\\
& +C_{3} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)-D_{3} \cos \left(\beta\left(a_{2}-a_{\mathrm{i}}\right)\right)=0 \\
& A_{2} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right)+B_{2} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right)-C_{2} \cos \left(\beta\left(a_{2}-a_{1}\right)\right) \\
& -D_{2} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)-A_{3} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right)-B_{3} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right) \tag{3.57}\\
& +C_{3} \cos \left(\beta\left(a_{2}-a_{1}\right)\right)+D_{3} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)=0
\end{align*}
$$

For the forth boundary condition at this joint the shear force introduced by the rear support bearing must be accounted. Figure 3.9 iliustrates the free body diagram at the joint. The shear force introduced by the bearing is proportionai to the shaft's dispiacement at the joint.

$$
\begin{equation*}
V_{i r}=K_{r} \bar{y}_{3}\left(a_{2}\right) \tag{3.58}
\end{equation*}
$$

For equilibrium at the joint:

$$
\begin{gather*}
V_{2}\left(a_{2}\right)-V_{3}\left(a_{2}\right)=V_{k r} \tag{3.59}\\
E I \bar{y}_{2}^{\prime \prime \prime}\left(a_{2}\right)-E I \bar{y}_{3}^{\prime \prime \prime}\left(a_{2}\right)=K_{r} \bar{y}_{2}\left(a_{2}\right) \tag{3.60}
\end{gather*}
$$

Substituting equation 3.9 into equation 3.60 :

$$
\begin{align*}
& A_{2} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right)+B_{2} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right)+C_{2} \sin \left(\beta\left(a_{2}-a_{1}\right)\right) \\
& -D_{2} \cos \left(\beta\left(a_{2}-a_{1}\right)\right)-A_{3}\left[\sinh \left(\beta\left(a_{2}-a_{1}\right)\right)+\frac{K_{r}}{\beta^{3} E I} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right)\right] \\
& -B_{3}\left[\cosh \left(\beta\left(a_{2}-a_{1}\right)\right)+\frac{K_{r}}{\beta^{3} E I} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right)\right]+C_{3}\left[\sin \left(\beta\left(a_{2}-a_{1}\right)\right)\right. \tag{3.61}\\
& \left.+\frac{K_{r}}{\beta^{3} E I} \cos \left(\beta\left(a_{2}-a_{1}\right)\right)\right]+D_{3}\left[\cos \left(\beta\left(a_{2}-a_{1}\right)\right)-\frac{K_{r}}{\beta^{3} E I} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)\right]=0
\end{align*}
$$

The first two boundary conditions for the joint between the third and fourth section are comprised of the continuity conditions ($y_{3}=y_{4}$ and $y_{3}{ }^{\prime}=y_{4}{ }^{\prime}$).

Figure 3.9 Free Body Diagram of Joint 2

Therefore:

$$
\begin{align*}
& A_{2} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right)+B_{2} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right)+C_{2} \cos \left(\beta\left(a_{2}-a_{1}\right)\right) \\
& +D_{2} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)-A_{3} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right)-B_{3} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right) \tag{3.62}\\
& -C_{3} \cos \left(\beta\left(a_{2}-a_{1}\right)\right)-D_{3} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)=0 \\
& A_{2} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right)+B_{2} \operatorname{cosin}\left(\beta\left(a_{2}-a_{1}\right)\right)-C_{2} \sin \left(\beta\left(a_{2}-a_{1}\right)\right) \\
& +D_{2} \cos \left(\beta\left(a_{2}-a_{1}\right)\right)-A_{3} \sinh \left(\beta\left(a_{2}-a_{1}\right)\right)-B_{3} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right) \tag{3.63}\\
& +C_{3} \sin \left(\beta\left(a_{2}-a_{1}\right)\right)-D_{3} \cos \left(\beta\left(a_{2}-a_{1}\right)\right)=0
\end{align*}
$$

The third and forth boundary conditions are infiuenced by the bending moment and shear force associated with the torsionai and laterai stiffness of the front support bearing. Figure 3.10 iiiustrates the free body diagram at joint 3 .

For equiliorium at the joint:

$$
\begin{gather*}
V_{3}\left(a_{3}\right)-V_{4}\left(a_{3}\right)=V_{\text {tf }} \tag{3.64}\\
E\left[\bar{y}_{3} \cdots\left(a_{3}\right)-E\left[\bar{y}_{4} \cdots\left(a_{3}\right)=K_{f} \bar{y}_{4}\left(a_{3}\right)\right.\right. \tag{3.65}
\end{gather*}
$$

and

$$
\begin{align*}
& M_{3}\left(a_{3}\right)-M_{4}\left(a_{3}\right)=M_{\text {kf }} \tag{3.66}\\
& E E y_{3}^{\prime \prime}\left(a_{3}\right)-E I \bar{y}_{4}^{\prime \prime}\left(a_{3}\right)=K_{t} \bar{y}_{4}^{\prime}\left(a_{3}\right) \tag{3.67}
\end{align*}
$$

Substituting eq. 3.9 into eqs. $\mathbf{3 . 6 5}$ and 3.67 yieids:

$$
\begin{align*}
& A_{3} \sinh \left(\beta\left(a_{3}-a_{2}\right)\right)+B_{3} \cosh \left(\beta\left(a_{3}-a_{2}\right)\right)+C_{3} \sin \left(\beta\left(a_{3}-a_{2}\right)\right) \\
& -D_{3} \cos \left(\beta\left(a_{3}-a_{2}\right)\right)-A_{4}\left[\sinh \left(\beta\left(a_{3}-a_{2}\right)\right)+\frac{K_{f}}{\beta^{3} E I} \cosh \left(\beta\left(a_{3}-a_{2}\right)\right)\right] \\
& -B_{4}\left[\cosh \left(\beta\left(a_{3}-a_{2}\right)\right)+\frac{K_{f}}{\beta^{3} E I} \sinh \left(\beta\left(a_{3}-a_{2}\right)\right)\right]+C_{4}\left[\sin \left(\beta\left(a_{3}-a_{2}\right)\right)\right. \tag{3.68}\\
& \left.+\frac{K_{f}}{\beta^{3} E I} \cos \left(\beta\left(a_{3}-a_{2}\right)\right)\right]+D_{4}\left[\cos \left(\beta\left(a_{3}-a_{2}\right)\right)-\frac{K_{f}}{\beta^{3} E I} \sin \left(\beta\left(a_{3}-a_{2}\right)\right)\right]=0
\end{align*}
$$

Figure 3.10 Free Body Diagram of Joint 3
and

$$
\begin{align*}
& A_{3} \cosh \left(\beta\left(a_{3}-a_{2}\right)\right)+B_{3} \sinh \left(\beta\left(a_{3}-a_{2}\right)\right)-C_{3} \cos \left(\beta\left(a_{3}-a_{2}\right)\right) \\
& -D_{3} \sin \left(\beta\left(a_{3}-a_{2}\right)\right)-A_{4}\left[\cosh \left(\beta\left(a_{3}-a_{2}\right)\right)+\frac{K_{4}}{\beta^{2} E I} \sinh \left(\beta\left(a_{3}-a_{2}\right)\right)\right] \\
& -B_{4}\left[\sinh \left(\beta\left(a_{2}-a_{1}\right)\right)+\frac{K_{y}}{\beta^{2} E I} \cosh \left(\beta\left(a_{2}-a_{1}\right)\right)\right]+C_{4}\left[\cos \left(\beta\left(a_{2}-a_{1}\right)\right)\right. \tag{3.69}\\
& \left.+\frac{K_{4}}{\beta^{2} E I} \sin \left(\beta\left(a_{3}-a_{2}\right)\right)\right]+D_{4}\left[\sin \left(\beta\left(a_{3}-a_{2}\right)\right)-\frac{\tilde{K}_{r}}{\beta^{2} E I} \cos \left(\beta\left(a_{3}-a_{2}\right)\right)\right]=0
\end{align*}
$$

The final two boundary conditions are related to the cutting end of the spindle. The first of these conditions reiates to the bending moment. Since the rotary inertia of the cutting tool is neglected the moment at the end of the spindle is equal to zero.

Therefore:

$$
\begin{gather*}
M_{1}(0)=E I \frac{d^{2} \bar{y}_{1}}{d x^{2}}=0 \tag{3.70}\\
A_{4} \cosh \left(\beta\left(a_{4}-a_{3}\right)\right)+B_{4} \sinh \left(\beta\left(a_{4}-a_{3}\right)\right) \tag{3.71}\\
-C_{4} \cos \left(\beta\left(a_{4}-a_{3}\right)\right)-D_{4} \sin \left(\beta\left(a_{4}-a_{3}\right)\right)=0
\end{gather*}
$$

The last boundary condition involves the shear force at the end of the shaft. The shear force is equai to the D^{\prime} Alembert force associated with the mass of the tooi.

Therfore:

$$
\begin{equation*}
\widetilde{V}\left(a_{4}\right)=m_{t} \check{y}\left(a_{4}\right)=-m_{t} \omega^{2} \bar{y}\left(a_{4}\right) \tag{3.72}
\end{equation*}
$$

Substituting equation 3.9:

$$
\begin{align*}
& A_{4}\left[\sinh \left(\beta\left(a_{4}-a_{3}\right)\right)+\frac{m_{t} \omega^{2}}{\beta^{3} E I} \cosh \left(\beta\left(a_{4}-a_{3}\right)\right)\right]+B_{4}\left[\cosh \left(\beta\left(a_{4}-a_{3}\right)\right)\right. \\
& \left.+\frac{m_{t} \omega^{2}}{\beta^{3} E I} \sinh \left(\beta\left(a_{4}-a_{3}\right)\right)\right]+C_{4}\left[\sin \left(\beta\left(a_{4}-a_{3}\right)\right)+\frac{m_{t} \omega^{2}}{\beta^{3} E I} \cos \left(\beta\left(a_{4}-a_{3}\right)\right)\right] \tag{3.73}\\
& -D_{4}\left[\cos \left(\beta\left(a_{4}-a_{3}\right)\right)-\frac{m_{t} \omega^{2}}{\beta^{3} E I} \sin \left(\beta\left(a_{4}-a_{3}\right)\right)\right]=0
\end{align*}
$$

In order to solve the set of simultaneous equations, the set of sixteen equations and sixteen unknowns were collected into a matrix.

3.2 Matiab Solution for Mode Shapes:

A program was deveioped using Máailab to automate the modal analysis of the spindie shaft. Data is coilected and entered into a spreadsneet. This sheet acts as the batch file for the modal analysis. Much like the static analysis, the user must enter the geometry, mass information, and support parameters into the batch file. A copy of the batch file tempiate is presented in Appendix A. The Máailab programming code used to automate the modai analysis can be found in Appendix C.

Ân example of the analysis for a simple spindle is presented nere. Figure $3 . i \mathrm{i}$ iliustrates the batch file for the modal analysis. The ss grayed out" information does not pertain to the modal analysis. Upon the completion of the batch file the program will read the file and report a geometric representation of the information. With ail the information correct the program caiculates and reports the resonant frequencies for the sampie spindie. The sampie spindie was also modeled using Ansys. A comparison between the FEA and analytical results for the first three modes is presented in Figures 3.12 through 3.14 .

Batch File:

Geometry:

Section (\#)	Length (in)	\qquad	Inner Diameter (in)	Area $(\sin 2)$	Moment of Inertia $\left(\sin ^{\wedge} 4\right)$
1	3	2.25	2	0.83449	0.47265783
2	3	2375	2.125	0.88357	0.560851726
3	3	2.5	2.25	0.93266	0.659419991
4	3	2.625	2.375	0.98175	0.76890787
5	3	2.75	2.5	103084	0.889900605
6	3	2.875	2.625	107992	1.022973438
7				0	0
8				0	0
9				0	0
10				0	0
11				0	0
12				0	0
13				0	0
14				0	0
15				0	0

Bearings:

Lat. Stiffness of Rear Bearing (Ib/in):
Lat Stiffness of Front Bearing (Ib/in.):
Tor. Stiffness of Front Bearing (in-lb):

Location of Rear Bearing (in.)
Location of F ront Bearing (in.)

100000
500000
10000
13.5
7

Pulley:

Location of Pulley (in.)	4.5
Mass of Pulley ($\mathrm{lb}-\mathrm{s}^{\prime} 2$ /in):	0007763975
	8, ${ }^{\text {a }}$ 等

Tool:

Figure 3.11 Batch File for Sample Spindle

Figure 3.12 Mode 1 Comparison

Figure 3.13 Mode 2 Comparison

Mode 3 Comparison
(FEAvs.Closed Form)

Figure 3.14 Mode 3 Comparison

The resonant frequencies for the first three modes are compared in table 3.1. It is clear from the table that the two methods correlate very closely for the two methods.

Table 3.1 Comparison of Resonant Frequencies (FEA vs. Analytical)

Mode	FEA	Analytical	Difference
	(Hz)	(Hz)	$(\%)$
1	19.26	19.17	0.4672897
2	61.28	61.72	0.7180157
3	95.57	100.33	4.9806425

3.3 Forced Response:

The forced response of the spindle is calculated using a numeric modal summation procedure. The development of the forced response begins with the equation of motion for a beam, Dahleh et. al, (1989).

$$
\begin{equation*}
\left[E I y^{\prime \prime}(x, t)\right]^{\prime \prime}+m(x) \ddot{y}(x, t)=f(x, t) \tag{3.73}
\end{equation*}
$$

The normal modes for the beam, $\phi_{i}(x)$, must satisfy the following equation:

$$
\begin{equation*}
\left(E I \phi_{i}^{\prime \prime}\right)^{\prime \prime}-\omega_{i}^{2} m(x) \phi_{i}=0 \tag{3.74}
\end{equation*}
$$

In addition to eqn. 3.74 , since the normal modes are orthogonal they must also satisfy the following equation:

$$
\begin{equation*}
\int_{0}^{l} \phi_{i} \phi_{j} d x=0 \quad \text { for } i \neq j \tag{3.75}
\end{equation*}
$$

The solution to the forced response can be represented in terms $\phi_{i}(x)$ as:

$$
\begin{equation*}
y(x, t)=\sum_{i} \phi_{i}(x) q_{i}(t) \tag{3.76}
\end{equation*}
$$

Where $\mathrm{q}_{\mathrm{i}}(\mathrm{t})$ is the generalized coordinate. The generalized coordinate can be realized using the Lagrange Equation. Looking first at the kinetic energy yields:

$$
T=\frac{1}{2} \int_{0}^{1} \dot{y}^{2}(x, t) m(x) d x
$$

Substituting eqn. 3.76 for $y(x, t)$ yields:

$$
\begin{gather*}
T=\frac{1}{2} \sum_{i} \sum_{j} q_{i} q_{j} \int_{0}^{l} \phi_{i} \phi_{j} m(x) d x \\
T=\frac{1}{2} \sum_{i} M_{i} \dot{q}_{i}^{2} \tag{3.77}
\end{gather*}
$$

Where the generalized mass, M_{i} is defined as:

$$
\begin{equation*}
M_{i}=\int_{0}^{l} \phi_{i}^{2}(x) m(x) d x \tag{3.78}
\end{equation*}
$$

The potential energy, U can be defined as:

$$
\begin{gather*}
U=\frac{1}{2} \int_{0}^{l} E I y^{\prime \prime 2}(x, t) d x \\
U=\frac{1}{2} \sum_{i} \sum_{j} \phi_{i} \phi_{j} \int_{0}^{l} E I \phi_{i}^{\prime \prime} \phi_{j}^{\prime \prime} d x \\
U=\frac{1}{2} \sum_{i} K_{i} q_{i}^{2} \tag{3.79}
\end{gather*}
$$

Where the generalized stiffness, K_{i} equals:

$$
\begin{equation*}
K_{i}=\int_{0}^{l} E I\left[\phi_{i}^{\prime \prime}(x)\right]^{2} d x \tag{3.80}
\end{equation*}
$$

If eqn. 3.74 is substituted into eqn. 3.79 it can be shown that:

$$
\begin{equation*}
U=-\frac{1}{2} \sum_{i} \omega_{i}{ }^{2} M_{i} q_{i}{ }^{2} \tag{3.81}
\end{equation*}
$$

A generalized force, Q_{i} can be defined by looking at the work done by a virtual displacement, δq_{i}.

$$
\delta w_{i}=\int_{0}^{l} f(x, t) \sum_{i} \phi_{i} \delta q_{i} d x
$$

rearranging:

$$
\begin{equation*}
\delta w_{i}=\sum_{i} \delta q_{i} Q_{i} \tag{3.82}
\end{equation*}
$$

where:

$$
\begin{equation*}
Q_{i}=\int_{0}^{t} f(x, t) \phi_{i}(x) d x \tag{3.83}
\end{equation*}
$$

From the Lagrange Equation:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial U}{\partial q_{i}}=Q_{i} \tag{3.84}
\end{equation*}
$$

Substituting for the kinetic energy, potential energy, and the generalized force yields the following differential equation:

$$
\begin{equation*}
\ddot{q}_{i}+\omega_{i}^{2} q_{i}=\frac{\int_{0}^{l} f(x, t) \phi_{i}(x) d x}{\int_{0}^{l} \phi_{i}^{2}(x) m(x) d x} \tag{3.85}
\end{equation*}
$$

where:

$$
\begin{equation*}
\omega_{i}^{2}=\frac{K_{i}}{M_{i}} \tag{3.86}
\end{equation*}
$$

The model of the spindle assumes four simple harmonic loads. The harmonic loads include the drive force, cutting force, unbalance of the pulley and unbalance of the cutting tool (see fig. 3.1). All four of the forces are assumed to be in phase with each other and of the form:

$$
\begin{equation*}
f(x, t)=F(x) \sin (\omega t) \tag{3.87}
\end{equation*}
$$

Each of the forces are applied to a single point. Assuming the force is applied at $\mathrm{x}=\mathrm{x}_{\mathrm{o}}$, it can be described using the delta dirac function as:

$$
\begin{equation*}
f(x, t)=F \sin (\omega t) \delta\left(x-x_{o}\right) \tag{3.88}
\end{equation*}
$$

By definition the delta dirac function is equal to zero for all x not equal to x_{0}. Further it can be shown that:

$$
\begin{equation*}
\int_{0}^{\infty} F(x) \delta\left(x-x_{o}\right) d x=F\left(x_{o}\right) \tag{3.89}
\end{equation*}
$$

Substituting this relationship into eqn. 3.85 yields:

$$
\begin{equation*}
\ddot{q}_{i}+\omega_{i}^{2} q_{i}=\frac{\phi_{i}\left(x_{o}\right) F \sin (\omega t)}{\int_{0}^{l} \phi_{i}^{2}(x) m(x) d x} \tag{3.90}
\end{equation*}
$$

Assuming the following solution to eqn. $\mathbf{3 . 9 0}$:

$$
\begin{equation*}
q_{i}(t)=q_{i} \sin (\omega t) \tag{3.91}
\end{equation*}
$$

yields:

$$
\begin{equation*}
q_{i}=\frac{\phi_{i}\left(x_{o}\right) F}{\left(\omega_{i}{ }^{2}-\omega^{2}\right) \int_{0}^{1} \phi_{i}{ }^{2} m d x} \tag{3.92}
\end{equation*}
$$

The denominator of eqn. 3.92 must be broken down for the four sections of the spindle and each of the segments (steps) in the shaft described in the modal analysis.

$$
\begin{equation*}
q_{i}=\frac{\phi_{i}\left(x_{o}\right) F}{\left(\omega_{i}{ }^{2}-\omega^{2}\right) \sum_{n=1}^{N} m_{n} \sum_{k=1}^{4} \int_{0}^{a_{k}}\left(A_{k} \cosh \left(\beta_{i} x\right)+B_{k} \sinh \left(\beta_{i} x\right)+C_{k} \cos \left(\beta_{i} x\right)+D_{k} \sin \left(\beta_{i} x\right)\right)^{2} d x} \tag{3.93}
\end{equation*}
$$

For this analysis only the summation of the first four modes were utilized. After the first four modes the difference between the resonant frequencies and the drive frequencies become large and q_{i} approaches zero. Therefore the steady state response becomes:

$$
\begin{equation*}
Y=\phi_{1} q_{1}+\phi_{2} q_{2}+\phi_{3} q_{3}+\phi_{4} q_{4} \tag{3.94}
\end{equation*}
$$

The deflections, Y were calculated for each of the four excitation forces and superposed to yield the total forced response:

$$
\begin{equation*}
Y_{t}=Y_{f c}+Y_{f a u b}+Y_{f c}+Y_{f c u b} \tag{3.95}
\end{equation*}
$$

3.4 Matlab Solution for Forced Response:

A program was developed using Matlab to automate the calculation of the forced response for the spindle shaft. The magnitude and frequency of the excitation forces is entered into a batch file. In addition to the load information the program reads the first four modes calculated in the modal analysis program. The Matlab programming code used to automate the forced response can be found in Appendix C.

An example of the analysis for a simple spindle is presented here. Figure 3.15 illustrates the batch file used for this example problem. The "grayed out" information does not pertain to this analysis. It should be noted that the program will not function

Batch File:

Geometry:
Number of Sections(\#)

Section (\#)	Length (in)	$\begin{aligned} & \hline \text { Outer Diameter } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { Inner Diameter } \\ & \text { (in) } \end{aligned}$	$\begin{gathered} \text { Area } \\ (\text { in } 2) \\ \hline \end{gathered}$	Moment of Inertia (in 4$)$
1	3	225	2	0.834486	0.47265783
2	3	2.375	2.125	0.883573	0.560861726
3	3	2.5	225	0.93266	0.659419991
4	3	2625	2.375	0.981748	0.76890787
5	3	275	2.5	1030835	0.889900605
6	3	2.875	2625	1079922	1.022973438
7				0	0
8				0	0
9				0	0
10				0	0
11				0	0
12				0	0
13				0	0
14				0	0
15				0	0

Bearings:

Stiffness of Rear Beanng (ibin):	100000
Lat Stffness of Front Bearing (lbin.):	500000
Tor Stiffness of Front Bearing (in-lb):	10000
Location of Rear Beanng (in.)	75
Location of Front Bearing (in.)	13.5

Pulley:

Location of Pulley (in.)	4.5
Mass of Pulley (lb- ${ }^{\text {2 }}$ /n)	0.007763975
Harmonic Drive Force (b):	50
Drive Frequency (Hz):	133.33
Pulley Untalance ($\mathrm{Hb}^{\text {- }}$ - 2):	0.002279727

Tool:

Mass of Tool (lb-s 2 An):	0.025879917
	Fixak
Hammonic Cuting Force (l) :	300
Cutting F requency (Hz):	133.33
Tool Untalance (lb-s²):	0.004559453
Length of Tool (in)	2
Speed:	
Spindle Shaft Speed (Hz):	16.66666667

Material Properties:

Modulus of Elasticity (psi):
Density (IDAn^3):
30000000
0.289

Figure 3.15 Batch File for Sample Spindle Forced Response
properly if the modal analysis from section 3.2 is not completed first. The sample spindle was also modeled using Ansys. A comparison between the FEA and analytical results for the forced response is presented in Figure 3.16. The comparison between the FEA and analytical responses shows a close correlation between the two methods. There is a 6.5% difference in the deflection at the tool for the two methods.

Dynamic Response Comparison

Figure 3.16 Comparison of Forced Response FEA vs. Analytical

4.0 Oprimization Analysis:

The optimization analysis consists of minimizing the deffection of the spindie shaft at the gauge line (see figure 4.i). This analysis builds upon the static as weil as the dynamic analysis. Optimal parameters are offered for both cases. The foilowing assumptions appiy to the optimization analysis:
i. The design variabies for this analysis are the lateral stiffness and the position of the two bearings. Aill other parameters are assumed to be constant.
2. Each design iteration is approximated using the Tayior series expansion. This approximation is required to define a quadratic programming subproblem.
3. The optimization point may or may not be the giobal minimum. However the vaiues assure a local minimum.

4. 1 Optimization Modei:

The development of the optimization problem rests in minimizing a cost function, $\tilde{\mathrm{I}}(\mathbf{x})$, where \mathbf{x} is the design variable vector. For the optimization of the machine tool spindie the cost function, f is defined as the defiection at the spindie's gauge line.

$$
\begin{equation*}
f(\mathbf{x})=y_{t}\left(a_{4}\right) \tag{4.1}
\end{equation*}
$$

Given values for the design parameters, a vaiue for $y_{t}\left(a_{4}\right)$ can be obtained numericaliy using the Matlab routines deveioped in Chapters $2 \& 3$. The design variables, \mathbf{x} are listed in table 4.i. The remainder of the spindle design parameters are assumed to be fixed. This is a fairly accurate assessment since for an existing spindile design the other parameters wouid significantiy influence the supporting components (i.e. gearbox and spindie housing).

Figure 4.1 Optimization Módel of Spindie

Tabie 4. i Tabie of Design Variabies

Design Variable Vector	
$\mathbf{x (1)}$	Parameter
$x(2)$	$a(3)$, postion of rear brg
$x(3)$	Kf, lateral stiffness of fro
$x(4)$	Kr, lateral brg stiffness of rear brg

General constrained optimum design defines the following equality and inequality constraints respectiveiy:

$$
\begin{align*}
& h_{j}(\mathbf{x})=0 \tag{4.2}\\
& g_{i}(\mathbf{x}) \leq 0 \tag{4.3}
\end{align*}
$$

For this optimization problem there exists no equality constraints. The foilowing equations define the inequality constraints.

$$
\begin{gather*}
x_{1} \geq a_{1}+D \tag{4.4}\\
x_{2} \leq a_{4}-O H \tag{4.5}\\
x_{3} \leq K_{f \text { max }} \tag{4.6}\\
x_{4} \leq K_{r \max } \tag{4.7}
\end{gather*}
$$

To summarize these constraints, the first constraint (eqn. 4.4) stipulates that the location of the rear bearing must be beyond the iocation of the puliey by a distance, $\overline{\mathbf{D}}$. This is required to ensure that the pulley is "outboard" of the support bearings and there is sufficient spacing to accommodate the width of the pulley and the width of the bearing. The second constraint (eqn. 4.5) requires that there exist a sufficient overnang to accommodate features in the spindie shaft to accept and support the tool. The third and forth constraints (eqns. 4.6-4.7) ensure that the bearings' stiffness values are physicaily
obtainabie. Without these constraints the optimization could potentiaily specify a bearing with an infinite iateral stiffness.

Prior to developing the process used for this optimization analysis it is imporiant to first introduce the Lagrange function and the Lagrange M̂ultiplier Theorem, Arora, (1989). For general constrained optimization the form of the Lagrange equation is:

$$
\begin{equation*}
L(\mathbf{x}, \mathbf{v}, \mathbf{u})=f(\mathbf{x})+\sum_{j=1}^{n} v_{j} h_{j}(\mathbf{x})+\sum_{i=1}^{m} u_{i}\left(g_{i}(\mathbf{x})+s_{i}^{2}\right) \tag{4.8}
\end{equation*}
$$

Since there are no equality constraints in this analysis the Lagrange equation reduces to:

$$
\begin{equation*}
L(\mathbf{x}, \mathbf{u})=f(\mathbf{x})+\sum_{i=1}^{m} u_{i}\left(g_{i}(\mathbf{x})+s_{i}{ }^{2}\right) \tag{4.9}
\end{equation*}
$$

From eqn $4.9, \tilde{f}(\mathbf{x})$ is the cost function, m is the number of constraint equations, u is the lagrange mulitplier for the $i_{i=1}^{i \pi}$ constraint equation, g_{i} is the $i_{i=0}^{i \pi}$ constraint equation, and s_{i} the slack variable for the $i^{\text {in }}$ constraint equation. The slack variable is a constant that converts the inequaiity constraint to an equality constraint.

$$
\begin{equation*}
g_{i}(\mathrm{x})+s_{i}^{2}=0 \tag{4.10}
\end{equation*}
$$

If the design point, \mathbf{x} is a local minimum the Lagrange Mulitpier Theorem stipulates the foliowing Kuhn-Tucker Conditions:

$$
\begin{array}{ll}
\frac{\partial L}{\partial x_{j}}=0 & \text { for } \mathrm{j}=1 \text { to } \mathrm{n} \\
\frac{\partial L}{\partial u_{i}}=0 & \text { for } \mathrm{i}=1 \text { to } \mathrm{m} \\
\frac{\partial L}{\partial s_{1}}=0 & \text { for } \mathrm{i}=1 \text { to } \mathrm{m} \tag{4.13}
\end{array}
$$

If the in constraint is inactive s_{i} is equal to zero. If the ${ }^{\text {ith }}$ constraint is active u_{i} is equal to zero. Therefore:

$$
\begin{equation*}
u_{i} s_{i}=0 \tag{4.14}
\end{equation*}
$$

The Lagrange multipliers and the slack variables can be found by solving this system of equations (eqns 4.ii-4.i4).

In order to apply numerical methods to soive for the design change an approximate quadratic programming subprobiem (QP subproblem) was defined. The QP subprobiem can be obtained from a Tayior series expansion of the cost function. it has a quadratic cost function and iinear constraints. The problem is defined as the minimization of:

$$
\begin{equation*}
\bar{f}=\mathbf{c}^{\mathbf{i}} \mathbf{d}^{(k)}+0.5\left(\mathbf{d}^{\mathbf{i}} \mathbf{d}\right)^{(k)} \tag{4.15}
\end{equation*}
$$

where:

$$
\begin{equation*}
\bar{f} \cong f\left(\mathbf{x}^{(k)}+\mathbf{d}^{(k)}\right)-f\left(\mathbf{x}^{(k)}\right) \tag{4.16}
\end{equation*}
$$

subject to the following constraints:

$$
\begin{equation*}
\mathbf{A}^{t} \mathbf{d}^{(n)} \leq \mathbf{p} \tag{4.17}
\end{equation*}
$$

where $d^{(k)}$ is a vector of changes in the design variables for the $\mathrm{k}^{\text {tim }}$ design point, c is a vector containing the gradient of the cost function $f\left(x^{(1)}\right)$, and A is the gradient of the inequality constraints.

In order to solve the QP problem a search direction and a step size must be determined. The constrained steepest descent method was used to solve for these two entities. When no constraints exist the search direction is simply in the direction of the
negative of the gradient vector ($\mathbf{d}=-\mathbf{c}$). In the case of the spindie optimization constraints exist and they must be included in the deveiopment of a search direction.

In order to accommodate the constraints in solving for a search direction a descent function must be defined for the constrained probiem. Â descent function must possess two properties. First, it must be equal to the cost function at the optimum point. Next it must aliow for a unit step size near the optimum point. This is important because a unit step size will yield a nign rate of convergence. The Pshenichny's descent function Φ was chosen since it obeys these two rules.

$$
\begin{equation*}
\Phi(\mathbf{x})=f(\mathbf{x})+R V(\mathbf{x}) \tag{4.18}
\end{equation*}
$$

In eqn 4.18, R is the penalty parameter and V is the maximum constraint violation. The user specifies the initial value of \hat{R}. A subsequent value for R is caiculated at the end each iteration in the optimization process. In order to satisfy the necessary condition the penalty parameter must be greater than or equai to the sum of Lagrange multipliers at the $\mathrm{k}^{\text {th }}$ iteration.

$$
\begin{equation*}
R \geqq r_{k} \tag{4.19}
\end{equation*}
$$

For the m constraint equations, r_{k} is defined as:

$$
\begin{equation*}
r_{k}=\sum_{i=1}^{m} u_{i}{ }^{k} \tag{4.20}
\end{equation*}
$$

where $u_{i}{ }^{k}$ is the Lagrange multiplier for the ${ }_{i}^{\text {it }}$ constraint at the k^{k} design point. The Lagrange multipiers can be found by solving the system of equations previously mentioned (eqns. 4.11-4.14).

The maximum constraint violation at the $\mathrm{k}^{\text {ti }}$ iteration, V_{k} is defined as:

$$
\begin{equation*}
V_{k}=\max \left\{0 ; g_{1}, g_{2}, \ldots, g_{m}\right\} \tag{4.21}
\end{equation*}
$$

The next step in soiving the optimization probiem is to define a step size determination procedure. The decent function wili yieid the search direction, the step size determination wiil dictate how far to adjust the design variabies in that direction. For this analysis an inexact iine search method was used. For this method a sequence of triai siep sizes, $\mathfrak{i}_{\mathfrak{j}}$ was defined.

$$
\begin{equation*}
t_{j}=\left(\frac{1}{2}\right)^{j} \quad \text { for } \mathrm{j}=0,1,2, \ldots \tag{4.22}
\end{equation*}
$$

Each iteration degins with the trial step size $\mathrm{t}_{0}=1$. If a defined descent condition is not satisfied the step size is cut in half $\left(\mathrm{t}_{1}=\mathrm{i} / 2\right)$. For a step size iteration, j and a descent iteration, k the new design variabie vector is defined as:

$$
\begin{equation*}
\mathbf{x}^{\left(k+\iota_{j}\right)}=\mathbf{x}^{(k)}+t_{j} \mathbf{d}^{(k)} \tag{4.23}
\end{equation*}
$$

The acceptabie step size will be the smaliest integer j that satisfies the descent condition.

$$
\begin{equation*}
\Phi_{k+h, j} \leq \Phi_{k}-t_{j} \beta_{k} \tag{4.24}
\end{equation*}
$$

where $\Phi_{\mathrm{k}+1_{\mathrm{j}}}$ is the descent function defined in eqn 4.11 evaiuated at the trial step size. The constant β_{k} is found using the search direction, $\mathrm{d}^{(\mathrm{k})}$

$$
\begin{equation*}
\boldsymbol{\beta}_{k}=\gamma_{\boldsymbol{N}^{\|}} \mathbf{d}^{(k)} \|^{2} \tag{4.25}
\end{equation*}
$$

The constant γ is specified by the user and has a value between 0 and 1 . The value of γ affects the aiiowabie step size. Larger values of γ wiil result in smaiier values for the step size. The end result is a slower rate of convergence. Alternatively very smaii vaiues for
γ can lead to instabilities in the optimization process. Typicaily experimentation takes place to find a suitabie vaiue for the engineering probiem being soived.

Iterations of search direction and step size are continued untii the method converges on a local minimum for the cost function. Convergence is defined as the design point were

$$
\begin{equation*}
\| d_{n}^{\|} \leq \varepsilon_{1} \tag{4.26}
\end{equation*}
$$

where ε_{1} is a specified small positive number.

4.2 The Constrained Steepest Descent Aigorithm:

A CSD aigorithm was used to optimize the design variabies in a spindile shaft. This section describes the steps to this aigorithm.

The first step to the CSD aigorithm is to set the counter, k equal to zero. At this step initial values for the design variabies \mathbf{x}, the penaity parameter R , the constant γ, and the convergence criteria ε_{1}. An additionai convergence criteria was aiso added to the anaiysis. It was stipulated that the maximum constraint violation, V_{k} must not exceed a predefined vaiue ε_{2}. This assures that design points with excessive constraint vioiations are not allowed. A vaiue for this constant is also needed at this step. Since the goai of this analysis is to optimize an existing spindie design the initial vaiues for the design variables would simply be the parameters used in the existing design. The initial value for the penaity parameter was defined as $\mathrm{R}=1$. The constant γ was defined as 0.5 . Finaiiy the values for the convergence constants ε_{1} and ε_{2} were both defined to be 0.1 .

The next step is to caicuiate values for the cost and constraint functions as weil as their gradients. it is important to note here that the design variabies were normaiized for this anaiysis. Since the magnitudes of the variables vary significantily it wouid be inappropriate io use there gradients in obtaining a search directions and step size. The gradient of the cost function was caiculated by applying the forward difference method to the static and dynamic model previousiy deveioped.

$$
\begin{equation*}
\frac{\partial f}{\partial x_{j}}=\frac{f\left(x_{j}+\Delta_{j}\right)-f\left(x_{j}\right)}{\Delta_{j}} \tag{4.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{j}=0.001 x_{j} \tag{4.28}
\end{equation*}
$$

The forward difference method was selected because it oniy required two calculations of the cost function. This helped to speed up the time to convergence. The central difference method would have required three caicuiations for each design variabie. Âil of the constraints are iinear so their gradients were easily obtainable analytically. The final calcuiation at this step is the maximum consiraint violation V_{k} (see eqn. 4.2i).

The third step is to use the information from the first two steps to define the QP subproblem (eqns. 4.15-4.17). At this point the QP subprobiem can be used to solve for the search direction, \mathbf{d} and Lagrange multipliers, \mathbf{u}. In order to obtain these values the cost function, $\mathrm{f}(\mathrm{x})$ in the Lagrange Equation must be replaced by the QP cost function (eqn. 4.i5) and the system of equations, $4.1 \mathrm{i}-4.14$, must be soived simultaneously. The forth step is to check the convergence criteria to see that:

$$
\left\|\boldsymbol{d}_{i j}\right\|_{1}
$$

and

$$
V_{k} \leq \varepsilon_{2}
$$

If these conditions are satisfied the aigorithm has converged and the analysis can stop. Otherwise continue to step five of the algorithm.

The next step of the analysis is to modify the penalty parameter, R. For the $\mathrm{k}^{\text {ti }}$ iteration the new penaity parameter $\mathrm{R}_{\mathrm{k}+1}$ becomes:

$$
\begin{equation*}
R=\max \left\{R_{k}, r_{k}\right\} \tag{4.29}
\end{equation*}
$$

where \mathbf{R}_{k} is the existing penalty parameter and r_{k} is the sum of the Lagrange muitipliers caiculated in third step of the aigorithm. By updating the penaity parameter the necessary condition wili aiways be satisfied.

Next the step size must be determined. The inexact line search method previousiy developed was used here to calcuiate the proper step size. Once the step size is determined the design point can be indexed. Therefore:

$$
\mathbf{x}^{(k+i, j)}=\mathbf{x}^{(\hat{k})}+t_{j} \mathbf{d}^{(k)}
$$

The finai step to the algorithm is to index the counter, $\mathrm{k}=\mathrm{k}+\mathrm{i}$, and repeat ail but the first step. Iterations will continue until convergence is reached.

4.3 Matiab Solution:

The CSD aigorithm was impiemented for the optimization of the spindie shaft using Mailab. The optimization applied to both the static and the dynamic modeis deveioped in Chapters 3 and 4. The optimization program wili return optimal vaiues for the lateral stiffness and location of the spindie support bearings. As in previous chapters
the Matiab program reads in a batch fiie. The batch file aliows the user to define the spindle parameters. The optimization constants used by the CSD algorithm were nard coded into the program. Therefore the user of the program does not have the flexibiiity to change these. The programming code used to perform the optimization anaiysis can be found in Appendix D.

The sampie spindie anaiyzed staticaliy and dynamicaliy in Chapters 2 and 3 was aiso optimized to demonstrate the Optimization program. Figure 4.2 illustrates the batch file read in by the program. The optimum parameters returned by the program for the static and dynamic anaiysis are listed in tabies 4.2 and 4.3 respectively.

Table 4.2 Optimum Values for Static Analysis

Design Variable	Optimum Value	Original Value
a_{2} 2 (in.)	7.47	7.5
a_{1} (in.)	16.09	13.5
K_f (tofin.)	1000000	500000
K_r (ibfin.)	1000000	100000

Table 4.3 Optimum Values for Dynamic Ânalysis

Design Vanable	Optimum Value	Original Value
$\mathbf{a} 2$ 2 (in.)	7.3	7.5
a^{3} (in.)	16.15	13.5
K_f(tbfin.)	1000000	500000
K_r (ibfin.)	1000000	100000

The static deflection of the existing spindle was approximateiy $.0048^{\prime \prime}$ The corresponding static defiection of the optimized spindle was approximately $.00079^{\prime \prime}$. The optimization reduced the deffection by a factor of 6 . For the dynamic analysis the initial deffection was about $.0023^{\prime \prime}$ The corresponding deflection of the optimized spindie was approximately $.00025^{\prime \prime}$. Here the deflection improved by a factor of 9 . The optimization

Batch File:

Geometry:

Number of Sections(\#): $\quad 6$

Section (\#)	Length (in)	Outer Diameter (in)	1nner Diameter (in)	Area $\sin 2)$	Moment of inertia (in 4)
1	3	2.25	2	0.83449	047265783
2	3	2.375	2.125	0.83857	0.560861726
3	3	2.5	2.25	0.93266	0.659419991
4	3	2.625	2.375	0.98175	0.76890787
5	3	275	2.5	1.03084	0.889900605
6	3	2875	2625	107992	1.022973438
7				0	0
8				0	0
9				0	0
10				0	0
1i				0	0
12				0	0
13				0	0
14				0	0
15				0	0

Bearings:

Lat Stifness of Rear Beanng (ibAn): Lat Stiffness of Front Bearing (lbín) Tor. Stiffness of Front Bearing (in-lb) Fraction of morn. ori Fromt Bearing Locathon of Rear Beanng (in),
Location of Front Bearing (in.)

100000
500000
10000
0.1
7.5
13.5

Pulley:

Locaton of Fulley (in)
Mass of Pulley (lb- $s^{2} 2$ /n):
Static Belt Tension (Ib)
fiarmornic Drive Foree (it)
Drive Frequency (Hz):
Pulley Unbalance (lb-s~2):

4.5
0007763975
50
50
133.33
0.002279727

Tool:

Static Cutting Force (1 b): Harmonic Cutting Force (ib)
Cutting Frequency ($(\mathrm{H} 2 \mathrm{z}$):
Tool Unbalance (1 b- $\mathbf{s}^{2} 2$):
Length of Tool (in)

0.025879917
300
300
0.0045594533
2

Speed:
Spindle Shaft Speed (rpm):
16.66666667
iñaterià Properties:
Modulus of Eiastucrty (psi):

30000000
0.289

Density (Ib/n^3):

Figure 4.2 Batch File for Sample Spindle Problem
improved the deflection of the spindle significantly for both the static and dynamic models.

5.0 Conclusion:

The anaiysis of a machine tool spindie began by deveioping a model to soive for the static lateral deflection. A program was developed using Matlab that reads in the geometry and ioad information for a spindie and reports plots of the lateral defiection. The user must simply enter the appropriate information into a spreadsheet, termed a "batch file" and the program will supply a plot of the spindies deformed shape. A sample spindle was analyzed using this program and the FEA program Ansys. Both anaiyses yielded comparable results.

Ňext the analysis was extended to include the dynamic response of tine spindie. Again a program was developed that would read in a batch file containing the appropriate geometry and ioad information for the spindle. The program would then report plots of the first four mode shapes of the spindle as well as a plot of its dynamic forced response. A sample spindie was aiso analyzed using the dynamic program and the resuits compared to an FEA analysis. The FEA analysis agreed very closely with the dynamic analysis program for both the mode snapes and laterai deflection.

Finally a program was developed that would optimize the spindie by minimizing the defiection at the interface between the cutting tooi and the spindie shaft. Tine program performs an optimization for both the static and dynamic analyses. The program optimizes the location and stiffness of the spindie support bearings. A sample spindie was optimized both statically and dynamicaliy using the program. One key result of these anaiyses was that the optimum parameters for both the static and dynamic anaiysis were approximately the same. This is very important because the complexity and time
required to analyze and optimize the spindie dynamically was significantly more than that of the static anaiysis and optimization. Therefore if the goal of a spindie designer is to optimize an existing spindie design, it could be done staticaliy with much iess effort and time than it could be done dynamically.

Aithough these programs are very powerfui in designing a machine tooi spindie, further work could make them of more value to a spindle designer. Tine first recommendation wouid be to equip these programs with a graphical user interface. This would make the interface between the designer and the program much more user friendly.

The next recommendation would be to make the programming code more efficient. Currently it takes a considerable amount of time to process the dynamic analysis and optimization. There are severai iterations in each of these analyses. The dynamic optimization takes several hours to run.

Another recommendation for future work would be to enhance the dynamic ioads applied to the spindie model. Currently harmonic ioads are assumed for the cutting force and drive force. The accuracy of the forced response could be further refined by taking measurements of the cutting force and drive force for an existing machine tool spindles. This could be taken one step further by creating a database of the cutting forces for various cutting tools. If a spindle was to primarily use one type of cutting tooi the ioad information couid be read into the dynamic program from the database.

One final suggestion for future work would be to work with a bearing manuf́acturer to create a database of bearings and their stiffiness vaiues. This wouid
provide the stiffness for the static and dynamic analyses as weli as the maximum aliowable stiffness vaiues for the optimization analyses.

RETERENCES

[1] Ái-Shareef̂, K.J.H, Brandon, J.A., "On ihe Ápplicaỏilitiy of Móodai and Response Representations in the Dynamic Analysis of Machine Tool Spindle Bearing Sysiems, " Journal of Engineering Míanufacture, Voi. 20̂5, i99i, pp. 139-145.
[2] Ai-Shareef, K.J.H, Brandon, J.A., "On the Quasi-Static Design of Machine Tool Spinales, "Journai of Engineering Míaufaciure, Voi. 204, 1990, pp. 91-îú4.
[3] Árora, J, Introáuction io Optimum Design, ḾcGraw-Hili İnc., Boston, 1989.
[4] Curii,G., Raffa, F.Á., Vatia, F., "Sieady-State Únbaiance Response of Conïnuous Roiors on Ánisoiropic Supporis, " Vibration of Rotaiing Sysiems, Voi. 60, ÁSME 1993, pp. 27-34.
[5] Dahieh, M.D., Thomson, W.T., Theory of Vibration with Appiications, PrenticeHail, Inc., London, 1998.
[6] Lewinchai, L., "Macnine Tooí Spindle Áppications," SKF Indusiries, inc. Engineering and Research, SKF Norden, Feb 1983.
[7] Lewinchal, L., 'Míachine Tool Spindie Áppications," SKF Inảustries, Inc. Engineering and Research, SKF Norden, Feb 1985.
[8] Montusiewicz,, \mathbf{j}., Osycska,Â., "Computer Aided Optimum Design of Machine Tool Spindie Sysiems with Hydrostatic Bearings" Journal of Engineering Manufacture, Voi. 21 i, 1997, pp. 43-51.
[9] Murphy,B., "Improved Rotordynamics Unỏaiance Response Calculations Using the Polynomial Míinod", Vibration of Rotating Systems, Vol. 60, ASME 1993, pp. 35-42.

Appendix \mathbf{A}

Tempiate for Batch Fiie

Batch Fiie:

Geometry:

Section (\#)	Length (in)	$\begin{aligned} & \hline \text { Outer Diameter } \\ & \text { (in) } \end{aligned}$	Inner Diameter (in)	$\begin{gathered} \text { A rea } \\ (\text { in } 2) \end{gathered}$	Moment of Inertia (in 4)
1	3	2.25	2	0.83449	0.47265783
2	3	2.375	2125	0.88357	0560861726
3	3	2.5	2.25	0.93265	0.659419991
4	3	2.625	2.375	0.98175	076890787
5	3	275	25	103084	0889900605
6	3	2.875	2.625	107992	1022973438
7				0	0
8				0	0
9				0	0
10				0	0
11				0	0
12				0	0
13				0	0
14				0	0
15				0	0

Bearings:

Lat Stiffness of Rear Bearing (Ib/in): Lat. Stiffness of Front Bearing (Ib/in.): Tor. Stiffness of Front Bearing (in-Ib): Fraction of mom. on Front Bearing: Location of Fear Beaning (in.) Location of Front Bearing (in.)

100000
500000
10000
0.1
1.5
13.5

Pulley:

Location of Pulley (in.)
Mass of Pulley (lb-s²hn):
Static Belt Tension (Ib):
Harmonic Drive Force (b)
Orive Frequency (itz):
Pulley Unbalance (${ }^{(16)} \mathbf{s}^{\wedge}$) :

4.5
0.007763975
50
50
133.33
0.002279727

Tooi:

n̄ass oi Tooi (iib-s"2in):
Static Cutting Force (lb):
Harmonic Cutting F orce (lb):
Cutting Frequency (Hz):
Toot Untalante (ib-s"2):
Length of Tool (in)

0.025879917
300
300
0.004559453
2

Speed:
Spindle Shaft Speed (rm):

Miaterial Properties:

Modulus of Elasticity (psi):
Density (lb/n`3):

30000000
0.289

Appendix B

Matiab Programs for the Static Anaiysis

\% Fiiename : spindlec
$\%$ ihis file is the parent to ali other subroutines that will be employed
$\%$ to perform the static and dynamic analysis.
$\%$ Revision ${ }^{\text {" }}{ }^{\text {i }}$
clear
$\%$ Reads in geometry and loading information from "Batchỉ.wki" coñistañitse
\% Calculates the static deformation.
deformationc
\% Caicuiates the dynamic response.
dynamicc
\% Fiiename : "Constantsc"
\% This subroutine collects the constants required to perform the static and dynamic analysis.
\% The subroutine requires a spreadsheet "batch" to be in the foider "RevC" \% "batch" contains ail the inputs required to drive the anaiysis.
ciear;
temp $=0$;
ct $=$ wkiread ('Batchi');
metool $=\operatorname{ct}(49,4)$;
mepuiley $=\operatorname{ct}(\mathbf{4} \mathbf{1}, \mathbf{4})$;
speed $=c t(53,4) ;$
tlunbal $=$ metool $^{*}\left(\right.$ speed $^{*} 2^{*}{ }^{*}$ pi $^{\wedge}{ }^{\wedge}$ 2;
piunbal $=$ mepuliey $^{*}\left(\text { speed }^{*} 2^{*}{ }^{*} \mathrm{pi}\right)^{\wedge} 2$;
ftharm $=\operatorname{ct}(\mathbf{4} 7,4)$;
fpharm $=\operatorname{ct}(39,4)$;
freqpuiiey $=\operatorname{ct}(40,4)$;
freqtool $=\operatorname{ct}(48,4)$;
$\mathrm{E}=\operatorname{ct}(57,4)$;
density $=\operatorname{ct}(58,4)$;
$\mathrm{N}=\operatorname{ct}(5,4)$;
Mípulley $=\operatorname{ct}(37,4)$;
Mitool $=\operatorname{ct}(45,4)$;
$\mathrm{Kr}=\operatorname{ct}(27,4)$;
$\mathrm{Kf}=\operatorname{ct}(28,4)$;

$$
\begin{aligned}
& K t f=\operatorname{ct}(29,4) ; \\
& x 1=\operatorname{ct}(30,4) ; \\
& t l=\operatorname{ct}(50,4) ; \\
& \mathrm{fl}=\mathrm{ct}(38,4) ; \\
& f 2=\operatorname{ct}(46,4) ; \\
& \text { for } n=1: N ; \\
& b(n)=c t(8+n, 2)+t e m p ; \\
& \text { temp }=\mathrm{b}(\mathrm{n}) \text {; } \\
& \operatorname{Area}(\mathrm{n})=\operatorname{ct}(8+\mathrm{n}, 5) ; \\
& \text { Inertia(} \mathrm{n})=\operatorname{ct}(8+\mathrm{n}, 6) ; \\
& \text { R_out }(\mathrm{n})=\mathrm{ct}(8+\mathrm{n}, 3) / 2 \text {; } \\
& \mathrm{R}_{-} \mathrm{in}(\mathrm{n})=\mathrm{ct}(8+\mathrm{n}, 4) / 2 ; \\
& \text { end } \\
& \text { Omsft }=\operatorname{ct}(53,4) ; \\
& a(1)=\operatorname{ct}(36,4) ; \\
& a(2)=\operatorname{ct}(31,4) ; \\
& a(3)=\operatorname{ct}(32,4) ; \\
& \mathrm{a}(4)=\mathrm{b}(\mathrm{~N}) \text {; } \\
& \text { if } a(1)<=b(1) \\
& X \sec A(1)=\operatorname{Area}(1) ; \\
& X \sec (1)=\operatorname{Inertia}(1) ; \\
& \text { XsecR(1) = R_out(1); }
\end{aligned}
$$

end
for $\mathrm{n}=\mathbf{1}: \mathbf{N}$

$$
\begin{aligned}
& \text { if } b(n)<a(1) \\
& \text { if } b(n+1)>a(1) \\
& \quad X \sec A(1)=\operatorname{Area}(n+1) \\
& \quad X \sec I(1)=\operatorname{Inertia}(n+1) \\
& \\
& X \sec R(1)=R _\operatorname{out}(n+1)
\end{aligned}
$$

end
end
if $b(n)<a(2)$
if $b(n+1)>a(2)$
$X \sec A(2)=\operatorname{Area}(\mathrm{n}+1) ;$
$X \sec I(2)=\operatorname{Inertia}(\mathrm{n}+1) ;$
XsecR(2) = R_out($\mathrm{n}+1$);
end
end
if $b(n)<a(3)$
if $b(n+1)>a(3)$
$X \sec A(3)=\operatorname{Area}(\mathrm{n}+1)$;
$\operatorname{Xsec} I(3)=\operatorname{Inertia}(n+1) ;$
XsecR(3) = R_out($\mathrm{n}+1$);
end
end
end
$X \sec A(4)=\operatorname{Area}(N) ;$
$X \sec (4)=\operatorname{Inertia}(N) ;$
$\operatorname{Xsec}(4)=R _\operatorname{out}(\mathbf{N})$;
for $\mathrm{n}=1:(\mathrm{N}-1)$;
$r(n)=$ Inertia($n+1) / \operatorname{Inertia}(n) ;$
$R(n)=(\operatorname{Area}(\mathrm{n}+1) / \operatorname{Inertia}(\mathrm{n}+1))^{\wedge} .25 /(\operatorname{Area}(\mathrm{n}) / \operatorname{Inertia}(\mathrm{n}))^{\wedge} .25 ;$
end
$x(1)=0$;
for $\mathrm{n}=1: \mathrm{N}$

$$
\mathrm{z}=2 * \mathrm{n}
$$

$$
x(z)=b(n)
$$

$$
\text { if } z<2 * N
$$

$$
\mathrm{x}(\mathrm{z}+1)=\mathrm{b}(\mathrm{n})
$$

end
end
for $\mathrm{n}=1: \mathrm{N}$

$$
\mathrm{z}=2 * \mathrm{n}-1
$$

$\operatorname{Outer}(\mathrm{z})=$ R_out(n);
Outer $(\mathbf{z}+1)=$ R_out(n$)$;

```
    Inner(z)= R_in(n);
    Inner(z+1)= R_in(n);
end
plot(x,Outer,x,Inner,a(1),XsecR(1),'s',a(2),XsecR(2),'*',a(3),XsecR(3),'*',a(4),XsecR(4),'p
');
xlabel('x,(in)')
ylabel('shaft radius, (in)')
title('input dimensions')
legend('OD','ID','Pulley','Rear Bearing','Front Bearing','Tool',2)
axis([0,b(N),0,(b(N))/2])
```

\% Filename : deformationc
\% This subroutine will calculate the static lateral deflection of the spindle \% Revision "C"
\% Contribution due to bearing deformation
deflbrgc
\% Contribution due to shaft deformation
deflshftc
$y t=y b+y s ;$
\% Creates Plots of the shaft deformation
plotsc
\% Filename : deflbrgc
\% This subroutine will calcuate the deformation of the bearings \% Revision "C"
$x=\operatorname{linspace}(0,(a(4)), 100) ;$
$\mathrm{mb}=\mathrm{f} 2 *((\mathrm{a}(4)+\mathrm{tl})-\mathrm{a}(3))^{*} \mathrm{x} 1 ;$
$R 1=\left(f 1 *(a(3)-a(1))+m b-f 2^{*}((a(4)+t l)-a(3))\right) /(a(3)-a(2)) ;$
$\mathrm{R} 2=\mathrm{f} 1+\mathrm{f} 2-\mathrm{R} 1$;
deltal $=-\mathrm{R} 1 / \mathrm{Kr}$;
delta $2=-\mathrm{R} 2 / \mathrm{Kf}$;
$\mathrm{m}=($ delta2-delta1 $) /(\mathrm{a}(3)-\mathrm{a}(2)) ;$
for $\mathrm{n}=1: 100$
$\mathrm{yb}(\mathrm{n})=\mathrm{m}^{*}(\mathrm{x}(\mathrm{n})-\mathrm{a}(2))+$ deltal;
end

```
% Filename: deflshftc
% This subroutine will calculate the deformation of the elastic shaft
% in rigid supports
% This portion of the routine will scale the loads:
% Revision "C"
for j=1:3
    n(j)=1;
    for i}=2:
        if a(j)>b(i-1)
            if a(j)<=b(i)
                n(j)= i;
            else
            end
        else
            n(j)=n(j);
        end
    end
end
fle= Inertia(N)/Inertia(n(1))*fl;
R1e = Inertia(N)/Inertia(n(2))*R1;
mbe = Inertia(N)/Inertia(n(3))*mb;
R2e = Inertia(N)/Inertia(n(3))*R2;
for i=1:(N-1)
```

```
voi=R1*\operatorname{sing}(b(i),a(2),0)+R2*\operatorname{sing}(b(i),a(3),0)-f1*\operatorname{sing}(b(i),a(1),0);
moi=R1 * (b(i)-a(2)) * sing(b(i),a(2),0)+R2*(b(i)-a(3))*sing(b(i),a(3),0)
    -fl*(b(i)-a(1))*sing(b(i),a(1),0)-mb*\operatorname{sing}(b(i),a(3),0);
v(i)=Inertia(N)*(1/Inertia(i) - 1/Inertia(i+1))*voi;
m(i)=Inertia(N)*(1/Inertia(i) - 1/Inertia(i+1))*moi;
```

end
$x=\operatorname{linspace}(0, a(4), 100) ;$
templ $=0$;
temp2 $=0 ;$
for $r=1:(N-1)$
templ $=$ templ $+v(r) / 6^{*} \operatorname{sing}(a(3), b(r), 3)-v(r) / 6^{*} \operatorname{sing}(a(2), b(r), 3) \ldots$
$\quad+m(r) / 2^{*} \operatorname{sing}(a(3), b(r), 2)-m(r)!2^{*} \operatorname{sing}(a(2), b(r), 2)$
temp2 $=$ temp $2+\mathrm{v}(\mathrm{r}) / 6^{*} \operatorname{sing}(\mathrm{a}(2), \mathrm{b}(\mathrm{r}), 3)+\mathrm{m}(\mathrm{r}) / 2^{*} \operatorname{sing}(\mathrm{a}(2), \mathrm{b}(\mathrm{r}), 2) ;$
end
$\mathrm{ql}=1 /(\mathrm{a}(2)-\mathrm{a}(3))^{*}\left(\mathrm{fle} / 6^{*} \operatorname{sing}(\mathrm{a}(3), \mathrm{a}(1), 3)-\mathrm{Rle} / 6^{*} \operatorname{sing}(\mathrm{a}(3), \mathrm{a}(2), 3)+\right.$ templ-
fle/6* $\operatorname{sing}(a(2), a(1), 3)$);
$q 2=-f 1 e / 6^{*} \operatorname{sing}(a(2), a(1), 3)-\operatorname{temp} 2-q 1 * a(2) ;$
for $r=1: 100$
temp3 $=0$;
for $s=1:(N-1)$
temp $3=$ temp $3+v(s) / 6^{*} \operatorname{sing}(x(r), b(s), 3)+m(s) / 2^{*} \operatorname{sing}(x(r), b(s), 2) ;$
end
$y s(r)=-1 /\left(E^{*} \operatorname{Inertia}(N)\right)^{*}\left(f l e / 6^{*} \operatorname{sing}(x(r), a(1), 3)-R 1 e / 6^{*} \operatorname{sing}(x(r), a(2), 3) \ldots\right.$
$\left.-\mathbf{R} 2 \mathrm{e} / 6^{*} \operatorname{sing}(\mathrm{x}(\mathrm{r}), \mathrm{a}(3), 3)+\operatorname{temp} 3+m b e / 2 * \operatorname{sing}(x(\mathrm{r}), a(3), 2)+\mathrm{ql}{ }^{*} \mathrm{x}(\mathrm{r})+\mathrm{q} 2\right) ;$
nd
\% Filename plotsc\% This subroutine will create plots of the shaft deformation\% Revision "C"figure
$\operatorname{plot}(x, y b)$
title('Deflection Contribution of Bearings')figure
$\operatorname{plot}(x, y s)$
title('Deflection Contribution of Elastic Shaft')
figure
plot(x, yt)
title('Combined Spindle Deflection')
function sing $=\mathbf{f}(0, p, q)$
\% Function : Singularity
\% This subroutine defines a new function to be used in subsequent calculations if $\mathbf{o}<p$

$$
\operatorname{sing}=0
$$

else

$$
\operatorname{sing}=(o-p)^{\wedge q}
$$

end

Appendix C

Matlab Programs for the Dynamic Analysis
\% Filename : "dynamicc"
\% Rev C
\% This subroutine solves for the dynamic response of the spindle. $\%$ Must read in the batch file prior to executing this subroutine.
\% Solves for the eigenvalues.
frequencyc
\% Solves for the eigenvectors.
modec
\% Solves for the dynamic response.
forcedc

```
% Filename : "frequencyc"
% This subroutine is used to plot the frequency equation.
% There needs to be a matrix A that drives this subroutine.
Omega = linspace(1,2000,50);
for n=1:50;
    w = Omega(n);
    X1 = (density* X SecA(1)* w^2/E/X SecI(1))^.25*a(1);
    X2 = (density* X SecA(2)* w^2/E/X SecI(2))^.25*a(2);
    X3 = (density* XsecA(3)* w^2/E/X SecI(3))^.25*a(3);
    X4 = (density*}X\operatorname{Xec}A(4)*\mp@subsup{w}{}{*}2/E/X\operatorname{secI}(4)\mp@subsup{)}{}{\wedge}.25*a(4)
    Transferc
    Cl = Mpulley*X1/(density*XsecA(1)*a(1));
    C2= Kr/(X2/a(2))^3/E/X Secl(2);
    C3 = Ktf/(X3/a(3))}\mp@subsup{)}{}{\wedge}2/E/X\operatorname{secI}(3)
    C4= Kf/(X3/a(3))^3/E/X SecI(3);
    C5 = Mtool*X4/(density*XsecA(4)*a(4));
    templ(1,:)=[\begin{array}{llll}{1}&{0}&{-1}&{0}\end{array}];
    templ(2,:)=[\begin{array}{llll}{0}&{1}&{0}&{-1}\end{array}];
    Q1 = temp1*T1;
    temp2(1,:)=[-(\operatorname{sinh}(\textrm{X1})-\textrm{Cl}}\mp@subsup{}{*}{*}\operatorname{cosh}(\textrm{X}1))-(\operatorname{cosh}(\textrm{X}1)-\textrm{C}1*\operatorname{sinh}(\textrm{X}1))-(\operatorname{sin}(\textrm{X}1)
C1*}\operatorname{cos}(\textrm{X}1))(\operatorname{cos}(\textrm{X}1)+C1*\operatorname{sin}(\textrm{X}1))]
    temp2(2,:) = [-cosh(X1) - - inh(X1) - cos(X1) - sin(X1)];
    temp2(3,:) = [-sinh(X1) - cosh(X1) \operatorname{sin}(\textrm{X1})-\operatorname{cos}(\textrm{X}1)];
```

```
temp2(4,:)=[-\operatorname{cosh(X1) -sinh(X1) \operatorname{cos}(X1) \operatorname{sin}(\textrm{X}1)];};;;;
Q2 = temp2*T2;
temp3(1,:)=[ \operatorname{sinh}(\textrm{X}2)\operatorname{cosh}(\textrm{X}2)\operatorname{sin}(\textrm{X}2) - cos(X2)];
temp3(2,:) = [-cosh(X2) - sinh(X2) - cos(X2) - sin(X2)];
temp3(3,:) = [-sinh(X2) - cosh(X2) sin(X2) - cos(X2)];
temp3(4,:) = [-cosh(X2) - sinh(X2) \operatorname{cos(X2) sin(X2)];};;;
Q3 = temp3*T3;
temp4(1,:)=[ sinh(X3) cosh(X3) \operatorname{sin}(\textrm{X}3)-\operatorname{cos}(\textrm{X}3)];
temp4(2,:) = [-\operatorname{cosh(X3) - sinh(X3) - cos(X3) - sin(X3)];}
temp4(3,:) = [-\operatorname{sinh}(X3)-\operatorname{cosh}(X3) \operatorname{sin}(\textrm{X}3)-\operatorname{cos}(X3)];
temp4(4,:)=[\operatorname{cosh(X3) \operatorname{sinh}(X3) - cos(X3) - sin(X3)];};;;
```

$\mathrm{Q} 4=\operatorname{temp} 4 * \mathrm{~T} 4 ;$
$A(1,:)=[Q 1(1,1) Q 1(1,2) Q 1(1,3) Q 1(1,4) 000000000000] ;$
$\mathrm{A}(2,:)=[\mathrm{Q} 1(2,1) \mathrm{Q} 1(2,2) \mathrm{Q} 1(2,3) \mathrm{Q} 1(2,4) 000000000000] ;$
$\mathrm{A}(3,:)=[\sinh (\mathrm{X} 1) \cosh (\mathrm{X} 1) \sin (\mathrm{X} 1)-\cos (\mathrm{X} 1) \mathrm{Q} 2(1,1) \mathrm{Q} 2(1,2) \mathrm{Q} 2(1,3) \mathrm{Q} 2(1,4) 0000$
0000];
$\mathrm{A}(4,:)=[\cosh (\mathrm{X} 1) \sinh (\mathrm{X} 1) \cos (\mathrm{X} 1) \sin (\mathrm{X} 1) \mathrm{Q} 2(2,1) \mathrm{Q} 2(2,2) \mathrm{Q} 2(2,3) \mathrm{Q} 2(2,4) 0000$ 000 0];
$\mathrm{A}(5,:)=[\sinh (\mathrm{X} 1) \cosh (\mathrm{X} 1)-\sin (\mathrm{X} 1) \cos (\mathrm{X} 1) \mathrm{Q} 2(3,1) \mathrm{Q} 2(3,2) \mathrm{Q} 2(3,3) \mathrm{Q} 2(3,4) 0000$ 0000 ;
$\mathrm{A}(6,:)=[\cosh (\mathrm{X} 1) \sinh (\mathrm{X} 1)-\cos (\mathrm{X} 1)-\sin (\mathrm{X} 1) \mathrm{Q} 2(4,1) \mathrm{Q} 2(4,2) \mathrm{Q} 2(4,3) \mathrm{Q} 2(4,4) 000$ 0000 0];
$\mathrm{A}(7,:)=[0000(\mathrm{C} 2 * \cosh (\mathrm{X} 2)-\sinh (\mathrm{X} 2))(\mathrm{C} 2 * \sinh (\mathrm{X} 2)-\cosh (\mathrm{X} 2))(\mathrm{C} 2 * \cos (\mathrm{X} 2)-$ $\sin (\mathrm{X} 2))(\mathrm{C} 2 * \sin (\mathrm{X} 2)+\cos (\mathrm{X} 2)) \mathrm{Q} 3(1,1) \mathrm{Q} 3(1,2) \mathrm{Q} 3(1,3) \mathrm{Q} 3(1,4) 0000] ;$
$A(8,:)=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & \cosh (X 2) \sinh (X 2) \cos (X 2) \sin (X 2) Q 3(2,1) \\ \text { Q3 } & (2,2) & Q 3(2,3) & Q 3(2,4)\end{array}\right.$

0000 ;
$A(9,:)=\left[\begin{array}{llll}0 & 0 & 0 & 0 \sinh (X 2) \cosh (X 2)-\sin (X 2) \cos (X 2) Q 3(3,1) Q 3(3,2) Q 3(3,3) Q 3(3,4)\end{array}\right.$ 0000];
$A(10,:)=\left[\begin{array}{llll}0 & 0 & 0 & 0 \cosh (X 2) \sinh (X 2)-\cos (X 2)-\sin (X 2) Q 3(4,1) Q 3(4,2) Q 3(4,3)\end{array}\right.$
Q3 $(4,4) 0000$];
$\mathrm{A}(11,:)=\left[00000000\left(\mathrm{C}^{*} \cosh (\mathrm{X} 3)-\sinh (\mathrm{X} 3)\right)(\mathrm{C} 4 * \sinh (\mathrm{X} 3)-\cosh (\mathrm{X} 3))\right.$ (C4* $\cos (\mathrm{X} 3)-\sin (\mathrm{X} 3))(\mathrm{C} 4 * \sin (\mathrm{X} 3)+\cos (\mathrm{X} 3)) \mathrm{Q} 4(1,1) \mathrm{Q} 4(1,2) \mathrm{Q} 4(1,3) \mathrm{Q} 4(1,4)]$;
$\mathrm{A}(12,:)=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0 \cosh (\mathrm{X} 3) \sinh (\mathrm{X} 3) \cos (\mathrm{X} 3) \sin (\mathrm{X} 3) \mathrm{Q} 4(2,1) \mathrm{Q} 4(2,2) \mathrm{Q} 4(2,3)\right.$ Q4(2,4)];
$\mathrm{A}(13,:)=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0 \sinh (\mathrm{X} 3) \cosh (\mathrm{X} 3)-\sin (\mathrm{X} 3) \cos (\mathrm{X} 3) \mathrm{Q} 4(3,1) \mathrm{Q} 4(3,2) \mathrm{Q} 4(3,3)\right.$ Q4(3,4)];

$$
A(14,:)=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)(C 3 * \sinh (X 3)-\cosh (X 3))(C 3 * \cosh (X 3)-\sinh (X 3))(-
$$ $\mathrm{C} 3 * \sin (\mathrm{X} 3)+\cos (\mathrm{X} 3))(\mathrm{C} 3 * \cos (\mathrm{X} 3)+\sin (\mathrm{X} 3)) \mathrm{Q} 4(4,1) \mathrm{Q} 4(4,2) \mathrm{Q} 4(4,3) \mathrm{Q} 4(4,4)]$;

$$
A(15,:)=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right.
$$

$A(16,:)=\left[000000000000\left(\sinh (\mathrm{X} 4)+\mathrm{C} 5^{*} \cosh (\mathrm{X} 4)\right)(\cosh (\mathrm{X} 4)+\mathrm{C} 5 * \sinh (\mathrm{X} 4))\right.$ $(\sin (\mathrm{X} 4)+\mathrm{C} 5 * \cos (\mathrm{X} 4))(-\cos (\mathrm{X} 4)+\mathrm{C} 5 * \sin (\mathrm{X} 4))]$;
for $k=1: 15$
$A(k,:)=A(k,:) / A(k, k) ;$
for $p=k+1: 16$

$$
A(p,:)=A(p,:)-A(k,:)^{*} A(p, k)
$$

end
end
$\operatorname{freq}(\mathrm{n})=\mathrm{A}(16,16) ;$
end
$\mathrm{n}=1 ;$
for $s=\mathbf{2 : 5 0}$;

```
    sign = freq(s)*freq(s-1);
    if sign < 0
    if abs((freq(s)-freq(s-1))/(Omega(s)-Omega(s-1)))<.25
            bisectc
    end
end
end
```

```
% Filename : "transferj"
% This subroutine creates the matrices to transform the constants.
T1=eye(4);
T2=eye(4);
T3=eye(4);
T4=eye(4);
for counter = 1:(N-1)
    betal = (Area(counter)* density* w^2/(E*Inertia(counter)))}\mp@subsup{)}{}{\wedge}.25
    beta2 = (Area(counter +1 )*density*w^2/(E*Inertia(counter +1)))^.25;
    rl = r(counter);
    R1 = R(counter);
    ll = b(counter);
    flag = 0;
    T = zeros(4,4);
    T(1,1)=((rl*R1^2+1)/2*(cosh(beta1*l1)*}\operatorname{cosh(beta2*ll)-
R1*sinh(beta1*11)*sinh(beta2*11)));
    T(1,2)=((rl*R1^2+1)/2*(cosh(betal*l1)*sinh(beta2*l1) -
R1*sinh(beta1*l1)*}\operatorname{cosh(beta2*11)));
    T(1,3)=-((r1*R1^2-1)/2*(cosh(betal*l1)* cos(beta2*l1)+
R1*sinh(beta1*l1)*sin(beta2*l1));
    T(1,4)=-((r1*R1^2-1)/2*(cosh(beta1*l1)*sin(beta2*l1) -
R1*sinh(beta1*ll)*}\operatorname{cos(beta2*l1)));
    T(2,1)=((r1*R1^2+1)/2*(R1* cosh(betal *l1)* sinh(beta2*l1)-
sinh(betal*l1)*}\operatorname{cosh(beta2*l1)));
    T(2,2)=((r1*R1^2+1)/2*(R1* cosh(beta1*l1)* cosh(beta2*11) -
sinh(betal*ll)*sinh(beta2*l1)));
```

$$
\mathrm{T}(2,3)=\left(\left(\mathrm{r} 1^{*} \mathrm{R} 1^{\wedge} 2-1\right) / 2^{*}\left(\mathrm{R} 1^{*} \cosh \left(\text { beta } 1^{*} 11\right) * \sin (\text { beta } 2 * 11)+\right.\right.
$$ $\sinh \left(\right.$ betal $\left.{ }^{*} 11\right) * \cos ($ beta2*11)));

$\mathrm{T}(2,4)=\left(\left(\mathrm{r} 1^{*} \mathrm{R} 1^{\wedge} 2-1\right) / 2^{*}\left(\sinh \left(\right.\right.\right.$ beta $\left.1^{*} 11\right) * \sin ($ beta2* 11$)-$ R1* $\cosh \left(\right.$ beta $\left.{ }^{*} 11\right) * \cos ($ beta2*11)));
$\mathrm{T}(3,1)=\left(\left(\mathrm{r} 1^{*} \mathrm{R} 1^{\wedge} 2-1\right) / 2^{*}\left(\mathrm{R} 1^{*} \sin \left(\right.\right.\right.$ beta $\left.1^{*} 11\right) * \sinh ($ beta2* 11$)-$ $\cos \left(\right.$ betal $\left.{ }^{*} 11\right) * \cosh ($ beta2*11)));

$$
\mathrm{T}(3,2)=\left(\left(\mathrm{r} 1^{*} \mathrm{R} 1^{\wedge} 2-1\right) / 2^{*}\left(\mathrm{R} 1^{*} \sin \left(\text { beta } 1^{*} 11\right)^{*} \cosh \left(\mathrm{beta} 2^{*} 11\right)-\right.\right.
$$ $\cos ($ beta1*11)* $\sinh ($ beta2*11)));

$T(3,3)=\left(\left(r 1^{*} \mathrm{R} 1^{\wedge} 2+1\right) / 2^{*}\left(\cos \left(\right.\right.\right.$ beta $\left.1^{*} 11\right) * \cos ($ beta2* 11$)+$ R1* ${ }^{*} \sin ^{(b e t a}{ }^{*} 11$)* $\sin ($ beta2*11)));
$\mathrm{T}(3,4)=\left(\left(\mathrm{r} 1^{*} \mathrm{R} 1^{\wedge} 2+1\right) / 2^{*}\left(\cos \left(\right.\right.\right.$ beta $\left.1^{*} \mathrm{l} 1\right) * \sin \left(\right.$ beta2$\left.{ }^{*} 11\right)-$ R1* $\sin \left(\right.$ beta1 ${ }^{*} 11$)* $\cos ($ beta2*11)));
$\mathrm{T}(4,1)=-\left(\left(\mathrm{r} 1^{*} \mathrm{R} 1^{\wedge} 2-1\right) / 2^{*}\left(\mathrm{R} 1^{*} \cos \left(\right.\right.\right.$ beta $\left.1^{*} 11\right) * \sinh ($ beta2* 11$)+$ $\sin ($ beta1*11)* $\cosh ($ beta2*11)));
$\mathrm{T}(4,2)=-\left(\left(\mathrm{r} 1^{*} \mathrm{R} 1^{\wedge} 2-1\right) / 2^{*}\left(\mathrm{R} 1^{*} \cos \left(\right.\right.\right.$ beta $\left.1^{*} 11\right) * \cosh ($ beta2* 11$)+$ $\sin \left(\right.$ beta1 $\left.{ }^{*} 11\right) * \sinh \left(\right.$ beta2* $\left.\left.{ }^{*} 11\right)\right)$);
$T(4,3)=\left(\left(r 1^{*} \mathrm{R} 1^{\wedge} 2+1\right) / 2^{*}\left(\sin \left(\text { beta } 1^{*} 11\right)^{*} \cos \left(b e t a 2^{*} 11\right)-\right.\right.$ R1* $\cos \left(\right.$ betal $\left.\left.{ }^{*} 11\right) * \sin \left(\operatorname{beta} 2^{*} 11\right)\right)$);
$\mathrm{T}(4,4)=\left(\left(\mathrm{r} 1^{*} \mathrm{R} 1^{\wedge} 2+1\right) / 2^{*}\left(\sin \left(\right.\right.\right.$ beta1 $\left.{ }^{*} 11\right) * \sin ($ beta2* 11$)+$ R1* $\cos ($ beta1*11)* $\cos ($ beta2*11)));
if $\mathbf{a}(3)<\mathbf{b}$ (counter)

$$
\begin{aligned}
& \mathrm{T} 4=\mathrm{T} 4 * \mathrm{~T} \\
& \mathrm{flag}=1
\end{aligned}
$$

end
if $\mathbf{a}(2)<\mathbf{b}$ (counter)

$$
\text { if flag }<1 \text {; }
$$

$$
\mathrm{T} 3=\mathrm{T} 3 * \mathrm{~T}
$$

$$
\text { flag }=1 ;
$$

end
end

$$
\text { if } a(1)<b \text { (counter) }
$$

$$
\text { if flag }<1 \text {; }
$$

$$
\mathrm{T} 2=\mathrm{T} 2 * \mathrm{~T} ;
$$

$$
\text { flag }=1 ;
$$

end
end
if flag <1;
$\mathrm{T} 1=\mathrm{T} 1 * \mathrm{~T} ;$
flag $=0$;
end
end

```
% Filename : "bisectc"
% This subroutine refines the incremental root finding search
% using the bisection method.
Xlow = Omega(s-1);
Xhigh = Omega(s);
freq_ref = freq(s-1);
freq_new = freq(s-1);
while abs(Xhigh-Xlow)>1e-12;
Xnew = .5*(Xlow+Xhigh);
w = Xnew;
X1 = (density* XsecA(1)*w^2/E/XsecI(1))^.25*a(1);
X2 = (density*}X\operatorname{sec}A(2)*\mp@subsup{w}{}{\wedge}2/E/X\operatorname{secI}(2)\mp@subsup{)}{}{\wedge}.25*a(2)
```



```
X4 = (density*XsecA(4)* w^2/E/X SecI(4))^.25*a(4);
Transferc
Cl = Mpulley*X1/(density*XsecA(1)*a(1));
C2 = Kr/(X2/a(2))^3/E/XsecI(2);
C3 = Ktf/(X3/a(3))}\mp@subsup{)}{}{\wedge}/\textrm{E}/\textrm{X}\operatorname{SecI(3);
C4 = Kf/(X3/a(3))^3/E/XsecI(3);
C5 = Mtool*X4/(density*XsecA(4)*a(4));
temp1(1,:)=[\begin{array}{llll}{1}&{0}&{-1}&{0}\end{array}];
temp1(2,:)=[\begin{array}{llll}{0}&{1}&{0}&{-1}\end{array}];
Q1 = templ*T1;
```

```
    temp2(1,:) \(=\left[-\left(\sinh (\mathrm{X} 1)-\mathrm{C} 1^{*} \cosh (\mathrm{X} 1)\right)-(\cosh (\mathrm{X} 1)-\mathrm{C} 1 * \sinh (\mathrm{X} 1))-(\sin (\mathrm{X} 1)-\right.\)
\(\left.\left.\mathrm{C} 1^{*} \cos (\mathrm{X} 1)\right)\left(\cos (\mathrm{X} 1)+\mathrm{C} 1^{*} \sin (\mathrm{X} 1)\right)\right] ;\)
    temp2(2,:) \(=[-\cosh (\mathrm{X} 1)-\sinh (\mathrm{X} 1)-\cos (\mathrm{X} 1)-\sin (\mathrm{X} 1)]\);
    \(\operatorname{temp} 2(3,:)=[-\sinh (\mathrm{X} 1)-\cosh (\mathrm{X} 1) \sin (\mathrm{X} 1)-\cos (\mathrm{X} 1)] ;\)
    temp2(4,:) \(=[-\cosh (\mathrm{X} 1)-\sinh (\mathrm{X} 1) \cos (\mathrm{X} 1) \sin (\mathrm{X} 1)]\);
    Q2 \(=\) temp2* \({ }^{*}\) 2;
    temp3(1,:) \(=[\sinh (\mathrm{X} 2) \cosh (\mathrm{X} 2) \sin (\mathrm{X} 2)-\cos (\mathrm{X} 2)]\);
    temp3(2,:) \(=[-\cosh (\mathrm{X} 2)-\sinh (\mathrm{X} 2)-\cos (\mathrm{X} 2)-\sin (\mathrm{X} 2)] ;\)
    temp3(3,:) \(=[-\sinh (\mathrm{X} 2)-\cosh (\mathrm{X} 2) \sin (\mathrm{X} 2)-\cos (\mathrm{X} 2)] ;\)
    temp3(4,:) \(=[-\cosh (\mathrm{X} 2)-\sinh (\mathrm{X} 2) \cos (\mathrm{X} 2) \sin (\mathrm{X} 2)]\);
    Q3 \(=\) temp3*T3;
    temp4(1,:) \(=[\sinh (\mathrm{X} 3) \cosh (\mathrm{X} 3) \sin (\mathrm{X} 3)-\cos (\mathrm{X} 3)]\);
    temp4(2,:) \(=[-\cosh (\mathrm{X} 3)-\sinh (\mathrm{X} 3)-\cos (\mathrm{X} 3)-\sin (\mathrm{X} 3)]\);
    temp4(3,:) \(=[-\sinh (\mathrm{X} 3)-\cosh (\mathrm{X} 3) \sin (\mathrm{X} 3)-\cos (\mathrm{X} 3)]\);
    temp4(4,:) \(=[\cosh (\mathrm{X} 3) \sinh (\mathrm{X} 3)-\cos (\mathrm{X} 3)-\sin (\mathrm{X} 3)]\);
    Q4 = temp4*T4;
    A(1,:) \(=[\) Q1(1,1) Q1(1,2) Q1(1,3)Q1(1,4) 000000000000\(]\);
    \(\mathrm{A}(2,:)=[\mathrm{Q} 1(2,1)\) Q1(2,2) Q1(2,3) Q1(2,4) 000000000000 ;
    \(\mathrm{A}(3,:)=[\sinh (\mathrm{X} 1) \cosh (\mathrm{X} 1) \sin (\mathrm{X} 1)-\cos (\mathrm{X} 1) \mathrm{Q} 2(1,1) \mathrm{Q} 2(1,2) \mathrm{Q} 2(1,3) \mathrm{Q} 2(1,4) 0000\)
0000 ];
    \(\mathrm{A}(4,:)=[\cosh (\mathrm{X} 1) \sinh (\mathrm{X} 1) \cos (\mathrm{X} 1) \sin (\mathrm{X} 1) \mathrm{Q} 2(2,1) \mathrm{Q} 2(2,2) \mathrm{Q} 2(2,3) \mathrm{Q} 2(2,4) 0000\)
000 0];
    \(\mathrm{A}(5,:)=[\sinh (\mathrm{X} 1) \cosh (\mathrm{X} 1)-\sin (\mathrm{X} 1) \cos (\mathrm{X} 1)\) Q2(3,1) Q2(3,2) Q2(3,3) Q2(3,4) 0000
0000 ];
```

$\mathrm{A}\left(6_{0}:\right)=[\cosh (\mathrm{X} 1) \sinh (\mathrm{X} 1)-\cos (\mathrm{X} 1)-\sin (\mathrm{X} 1) \mathrm{Q} 2(4,1) \mathrm{Q} 2(4,2)$ Q2(4,3) Q2(4,4) 000 00000];
$\mathrm{A}(7, \mathrm{~S})=[0000(\mathrm{C} 2 * \cosh (\mathrm{X} 2)-\sinh (\mathrm{X} 2))(\mathrm{C} 2 * \sinh (\mathrm{X} 2)-\cosh (\mathrm{X} 2))(\mathrm{C} 2 * \cos (\mathrm{X} 2)-$ $\sin (\mathrm{X} 2))(\mathrm{C} 2 * \sin (\mathrm{X} 2)+\cos (\mathrm{X} 2))$ Q3(1,1) Q3(1,2) Q3(1,3) Q3(1,4) 00000 ;
$\mathrm{A}(8,:)=[0000 \cosh (\mathrm{X} 2) \sinh (\mathrm{X} 2) \cos (\mathrm{X} 2) \sin (\mathrm{X} 2) \mathrm{Q} 3(2,1) \mathrm{Q} 3(2,2) \mathrm{Q} 3(2,3) \mathrm{Q} 3(2,4)$ 0000];
$\mathrm{A}(9, \mathrm{~S})=[0000 \sinh (\mathrm{X} 2) \cosh (\mathrm{X} 2)-\sin (\mathrm{X} 2) \cos (\mathrm{X} 2) \mathrm{Q} 3(3,1) \mathrm{Q} 3(3,2) \mathrm{Q} 3(3,3) \mathrm{Q} 3(3,4)$ 0000];
$\mathrm{A}(10, \mathrm{O})=[0000 \cosh (\mathrm{X} 2) \sinh (\mathrm{X} 2)-\cos (\mathrm{X} 2)-\sin (\mathrm{X} 2) \mathrm{Q} 3(4,1) \mathrm{Q} 3(4,2) \mathrm{Q} 3(4,3)$ Q3 $(4,4) 0000$];
$\mathrm{A}(11$,) $)=[00000000(\mathrm{C} 4 * \cosh (\mathrm{X} 3)-\sinh (\mathrm{X} 3))(\mathrm{C} 4 * \sinh (\mathrm{X} 3)-\cosh (\mathrm{X} 3))$ (C4* $\cos (\mathrm{X} 3)-\sin (\mathrm{X} 3))(\mathrm{C} 4 * \sin (\mathrm{X} 3)+\cos (\mathrm{X} 3)) \mathrm{Q} 4(1,1) \mathrm{Q} 4(1,2) \mathrm{Q} 4(1,3) \mathrm{Q} 4(1,4)] ;$
$\mathrm{A}(12, \mathrm{~S})=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array} 0 \cosh (\mathrm{X} 3) \sinh (\mathrm{X} 3) \cos (\mathrm{X} 3) \sin (\mathrm{X} 3) \mathrm{Q} 4(2,1) \mathrm{Q} 4(2,2) \mathrm{Q} 4(2,3)\right.$ Q4(2,4)];
$\mathrm{A}(13,:)=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 \sinh (\mathrm{X} 3) \cosh (\mathrm{X} 3)-\sin (\mathrm{X} 3) \cos (\mathrm{X} 3) \\ \mathrm{Q} 4(3,1) & \mathrm{Q} 4(3,2) \mathrm{Q} 4(3,3)\end{array}\right.$ Q4(3,4)];
$\mathrm{A}(14$,) $)=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array} 000(\mathrm{C} 3 * \sinh (\mathrm{X} 3)-\cosh (\mathrm{X} 3))(\mathrm{C} 3 * \cosh (\mathrm{X} 3)-\sinh (\mathrm{X} 3))(-\right.$ $\mathrm{C} 3 * \sin (\mathrm{X} 3)+\cos (\mathrm{X} 3))(\mathrm{C} 3 * \cos (\mathrm{X} 3)+\sin (\mathrm{X} 3))$ Q4(4,1) Q4(4,2) Q4(4,3) Q4(4,4)];
$A(15,:)=\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 000 \cosh (\mathrm{X} 4) \sinh (\mathrm{X} 4)-\cos (\mathrm{X} 4)-\sin (\mathrm{X} 4)\right]$;
$\mathrm{A}(16,:)=[000000000000(\sinh (\mathrm{X} 4)+\mathrm{C} 5 * \cosh (\mathrm{X} 4))(\cosh (\mathrm{X} 4)+\mathrm{C} 5 * \sinh (\mathrm{X} 4))$ $\left.(\sin (\mathrm{X} 4)+\mathrm{C} 5 * \cos (\mathrm{X} 4))\left(-\cos (\mathrm{X} 4)+\mathrm{C}^{*} \sin (\mathrm{X} 4)\right)\right]$;
for $\mathbf{k}=\mathbf{1}: 15$
$A(k)=,A(k,) / A(k, k) ;$
for $\mathbf{p}=\mathbf{k}+1: 16$

$$
\mathrm{A}(\mathrm{p},:)=\mathrm{A}(\mathrm{p},:)-\mathrm{A}(\mathrm{k} ;)^{*} \mathrm{~A}(\mathrm{p}, \mathbf{k}) ;
$$

end
end

```
    freq_new = A(16,16);
    if (freq_new*freq_ref)<0
        Xhigh = Xnew;
    else
        Xlow = Xnew;
        freq_ref = freq_new;
    end
end
Root(n) = Xnew; % This will be in rad/s
Frequency(n)= Xnew/2/pi;
n}=\mathbf{n}+1
```

```
% Filename : "modec"
% This subroutine calculates the first (4) mode shapes.
globai c
for m=1:4
    w = Root(m);
    X1 = (density*XsecA(1)*w^2/E/X SecI(1))^.25*a(1);
    X2 = (density* }\textrm{Xsec}A(2)*\mp@subsup{W}{}{*}2/\textrm{E}/\textrm{X}\operatorname{secI(2)}\mp@subsup{)}{}{\wedge}.25*a(2)
    X3 = (density*}X\operatorname{lec}A(3)*\mp@subsup{w}{}{\wedge}2/E/X\operatorname{secI}(3)\mp@subsup{)}{}{\wedge}.25*a(3)
    X4 = (density*XsecA(4)* w
    Transferc
    Cl = Mpulley*X1/(density*XsecA(1)*a(1));
    C2 = Kr/(X2/a(2))^3/E/X 
    C3 = Ktff(X3/a(3))^2/E/XsecI(3);
    C4=Kf((X3/a(3))^3/E/X SecI(3);
    C5 = Mtool*}\mp@subsup{}{}{*}4/(\mathrm{ density* XsecA(4)*a(4));
    templ(1,:)=[\begin{array}{llll}{1}&{0}&{-1}&{0}\end{array}];
    templ(2,:)=[\begin{array}{llll}{0}&{1}&{0}&{-1}\end{array}];
    Q1 = temp 1*T1;
```



```
C1*}\operatorname{cos(X1))}(\operatorname{cos(X1)+C1*}\operatorname{sin}(\textrm{X}1))]
    temp2(2,:) = [-\operatorname{cosh(X1) - sinh(X1) - cos(X1) - sin(X1)];}
    temp2(3,:) = [-\operatorname{sinh}(\textrm{X}1)-\operatorname{cosh}(\textrm{X}1)\operatorname{sin}(\textrm{X}1)-\operatorname{cos}(\textrm{X}1)];
    temp2(4,:) = [-\operatorname{cosh(X1) -sinh(X1) cos(X1) \operatorname{sin}(\textrm{X1})];};;;
```

```
Q2 = temp2*T2;
temp3(1,:)=[ sinh(X2) cosh(X2) \operatorname{sin}(\textrm{X}2)-\operatorname{cos}(\textrm{X}2)];
temp3(2,:) = [-cosh(X2) - \operatorname{sinh}(X2) - - - (X2) - - sin(X2)];
```



```
temp3(4,:)=[-\operatorname{cosh(X2) -sinh(X2) cos(X2) \operatorname{sin}(X2)];};;;
Q3 = temp3*T3;
temp4(1,:)=[ sinh(X3) cosh(X3) \operatorname{sin}(\textrm{X}3)-\operatorname{cos}(\textrm{X}3)];
temp4(2,:) = [-cosh(X3) - sinh(X3) - cos(X3) - \operatorname{sin}(X3)];
temp4(3,:) = [-sinh(X3) - cosh(X3) \operatorname{sin}(\textrm{X}3)-\operatorname{cos}(\textrm{X}3)];
```



```
Q4 = temp4*T4;
A(1,:)=[Q1(1,1)Q1(1,2)Q1(1,3)Q1(1,4)0000000000000];
A(2,:)=[Q1(2,1)Q1(2,2)Q1(2,3)Q1(2,4)00000000000000];
A(3,:)=[\operatorname{sinh}(X1) cosh(X1) \operatorname{sin}(\textrm{X}1)-\operatorname{cos}(\textrm{X}1)\textrm{Q}2(1,1) Q2(1,2) Q2(1,3) Q2(1,4) 0000
0000];
```

$\mathrm{A}(4,:)=[\cosh (\mathrm{X} 1) \sinh (\mathrm{X} 1) \cos (\mathrm{X} 1) \sin (\mathrm{X} 1) \mathrm{Q} 2(2,1) \mathrm{Q} 2(2,2) \mathrm{Q} 2(2,3) \mathrm{Q} 2(2,4) 0000$ 0000];
$A(5,:)=[\sinh (X 1) \cosh (X 1)-\sin (X 1) \cos (X 1) Q 2(3,1) Q 2(3,2) Q 2(3,3) Q 2(3,4) 0000$ 0000];
$\mathrm{A}(6,:)=[\cosh (\mathrm{X} 1) \sinh (\mathrm{X} 1)-\cos (\mathrm{X} 1)-\sin (\mathrm{X} 1) \mathrm{Q} 2(4,1) \mathrm{Q} 2(4,2) \mathrm{Q} 2(4,3) \mathrm{Q} 2(4,4) 000$ 00000];
$A(7,:)=[0000(C 2 * \cosh (X 2)-\sinh (X 2))(C 2 * \sinh (X 2)-\cosh (X 2))(C 2 * \cos (X 2)-$ $\sin (\mathrm{X} 2))(\mathrm{C} 2 * \sin (\mathrm{X} 2)+\cos (\mathrm{X} 2)) \mathrm{Q} 3(1,1) \mathrm{Q} 3(1,2) \mathrm{Q} 3(1,3) \mathrm{Q} 3(1,4) 0000]$;
$A(8,:)=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ \cosh (X 2) & \sinh (X 2) & \cos (X 2) \sin (X 2) Q 3(2,1) & Q 3(2,2) \\ \text { Q3 } & (2,3) & \text { Q3 }(2,4)\end{array}\right.$ 0000];
$A(9,:)=\left[\begin{array}{llll}0 & 0 & 0 & 0 \sinh (X 2) \cosh (X 2)-\sin (X 2) \cos (X 2) Q 3(3,1) \\ \text { Q3 } & (3,2) \text { Q3 }(3,3) & \text { Q3 }(3,4)\end{array}\right.$ 0000 ;
$\mathrm{A}(10,:)=\left[\begin{array}{llll}0 & 0 & 0 & 0 \cosh (\mathrm{X} 2) \sinh (\mathrm{X} 2)-\cos (\mathrm{X} 2)-\sin (\mathrm{X} 2) \mathrm{Q} 3(4,1) \mathrm{Q} 3(4,2) \mathrm{Q} 3(4,3)\end{array}\right.$
Q3 $(4,4) 0000]$;
$\mathrm{A}(11,:)=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array} 00(\mathrm{C} 4 * \cosh (\mathrm{X} 3)-\sinh (\mathrm{X} 3))(\mathrm{C} 4 * \sinh (\mathrm{X} 3)-\cosh (\mathrm{X} 3))\right.$
$\left.\left(\mathrm{C} 4^{*} \cos (\mathrm{X} 3)-\sin (\mathrm{X} 3)\right)(\mathrm{C} 4 * \sin (\mathrm{X} 3)+\cos (\mathrm{X} 3)) \mathrm{Q} 4(1,1) \mathrm{Q} 4(1,2) \mathrm{Q} 4(1,3) \mathrm{Q} 4(1,4)\right] ;$
$\mathrm{A}(12,:)=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0 \cosh (\mathrm{X} 3) \sinh (\mathrm{X} 3) \cos (\mathrm{X} 3) \sin (\mathrm{X} 3) \mathrm{Q} 4(2,1) \mathrm{Q} 4(2,2) \mathrm{Q} 4(2,3)\right.$ Q4(2,4)];
$A(13,:)=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0 \sinh (X 3) \cosh (X 3)-\sin (X 3) \cos (X 3) Q 4(3,1) Q 4(3,2) Q 4(3,3)\right.$ Q4(3,4)];
$\mathrm{A}(14,:)=[00000000(\mathrm{C} 3 * \sinh (\mathrm{X} 3)-\cosh (\mathrm{X} 3))(\mathrm{C} 3 * \cosh (\mathrm{X} 3)-\sinh (\mathrm{X} 3))(-$ $\mathrm{C} 3 * \sin (\mathrm{X} 3)+\cos (\mathrm{X} 3))(\mathrm{C} 3 * \cos (\mathrm{X} 3)+\sin (\mathrm{X} 3)) \mathrm{Q} 4(4,1) \mathrm{Q} 4(4,2) \mathrm{Q} 4(4,3) \mathrm{Q} 4(4,4)] ;$
$A(15,:)=\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0_{0} 00 \cosh (X 4) \sinh (X 4)-\cos (X 4)-\sin (X 4)\right] ;$
$\mathrm{A}(16,:)=[000000000000(\sinh (\mathrm{X} 4)+\mathrm{C} 5 * \cosh (\mathrm{X} 4))(\cosh (\mathrm{X} 4)+\mathrm{C} 5 * \sinh (\mathrm{X} 4))$ $\left.\left(\sin (\mathrm{X} 4)+\mathrm{C} 5^{*} \cos (\mathrm{X} 4)\right)\left(-\cos (\mathrm{X} 4)+\mathrm{C} 5^{*} \sin (\mathrm{X} 4)\right)\right] ;$
for $k=1: 15$
$A(k,:)=A(k,:) / A(k, k) ;$
for $p=k+1: 16$

$$
A(p,:)=A(p,:)-A(k,:)^{*} A(p, k)
$$

end
end

$$
\begin{aligned}
& \mathrm{c}(16, \mathrm{~m})=1 \\
& \text { for } \mathrm{k}=1: 15 \\
& \mathrm{~g}=16-\mathrm{k} \\
& \text { temp }=0 \\
& \text { for } \mathrm{p}=\mathrm{g}+1: 16
\end{aligned}
$$

```
        temp = temp + A(g,p)*c(p,m);
    end
    c(g,m) = -temp;
end
xl = linspace(0,a(4),31);
for n=1:31
    x=x1(n);
    delta = 12;
    if }\textrm{x}1(\textrm{n})<\textrm{a}(3
        delta = 8;
        if }xl(n)<a(2
            delta = 4;
            if }\mathbf{xl(n)<a(1);
            delta=0;
        end
    end
end
z=1;
for i=1:N
        if }x>=b(i)
        z=i;
        end
```

end
$\operatorname{ydyn}(n, m)=$
$c((\operatorname{delta}+1), \mathrm{m})^{*} \cosh \left(\mathrm{x}^{*}\left(\text { density }{ }^{*} \operatorname{Area}(\mathrm{z})^{*} \mathrm{w}^{\wedge} 2 / \mathrm{E} / \operatorname{Inertia}(\mathrm{z})\right)^{\wedge} .25\right)+\mathrm{c}((\operatorname{delta}+2), \mathrm{m})^{*} \sinh \left(\mathrm{x}^{*}(\right.$ density* $\operatorname{Area}(\mathrm{z})^{*} \mathrm{w}^{\wedge} 2 / \mathrm{E} /$ Inertia(z) $\left.)^{\wedge} .25\right)+c((\operatorname{delta}+3), \mathrm{m})^{*} \cos \left(x^{*}\left(\right.\right.$ density* $\operatorname{Area}(\mathrm{z})^{*} \mathrm{w}^{\wedge} 2 / \mathrm{E} / \mathrm{I}$ nertia(z$\left.))^{\wedge} .25\right)+\mathrm{c}((\text { delta }+4), \mathrm{m})^{*} \sin \left(\mathrm{x}^{*}\left(\text { density* } \operatorname{Area}(\mathrm{z})^{*} \mathrm{w}^{\wedge} 2 / \mathrm{E} / \operatorname{Inertia}(\mathrm{z})\right)^{\wedge} .25\right)$;
end
figure
$\operatorname{plot}\left(x 1, y d y n(:, m),{ }^{\prime *}\right)$
$\mathrm{L}=\operatorname{sprintf(}\left(\right.$ mode $\left.\% 0.5 \mathrm{~g}^{\prime}, \mathrm{m}\right)$;
title(L)
end

```
% Filename : "modec"
% This subroutine calculates the first (4) mode shapes.
globai c
for m=1:4
    w = Root(m);
    X1 = (density*XsecA(1)*w^2/E/X SecI(1))^.25*a(1);
    X2 = (density*}X\operatorname{sec}A(2)*\mp@subsup{w}{}{\wedge}2/E/X\operatorname{secI}(2)\mp@subsup{)}{}{\wedge}.25*a(2)
    X3 = (density* XsecA(3)* w^2/E/X SecI(3))^.25*a(3);
    X4 = (density*XsecA(4)* w^2/E/X SecI(4))^.25*a(4);
    Transferc
    C1 = Mpulley*X1/(density*XsecA(1)*a(1));
    C2 = Kr/(X2/a(2))^3/E/X Secl(2);
    C3 = Ktf/(X3/a(3))^2/E/X SecI(3);
    C4 = Kfl(X3/a(3))^3/E/X SecI(3);
    C5 = Mtool*}\mp@subsup{}{}{*}4/(\mathrm{ density* XsecA(4)*a(4));
    temp1(1,:)=[\begin{array}{llll}{1}&{0}&{-1}&{0}\end{array}];
    temp1(2,:)=[[\begin{array}{llll}{0}&{1}&{0}&{-1}\end{array}];
    Q1 = templ*T1;
    temp2(1,:) = [-(\operatorname{sinh}(\textrm{X}1)-C1*}\operatorname{cosh(X1)) -(\operatorname{cosh(X1)-C1*}\operatorname{sinh}(\textrm{X}1)) -(\operatorname{sin}(\textrm{X}1)
C1*}\operatorname{cos}(\textrm{X}1))(\operatorname{cos}(\textrm{X}1)+C1*\operatorname{sin}(\textrm{X}1))]
```



```
    temp2(3,:)=[-sinh(X1) - cosh(X1) \operatorname{sin}(\textrm{X}1)-\operatorname{cos}(\textrm{X}1)];
    temp2(4,:)=[-\operatorname{cosh}(X1)-\operatorname{sinh}(X1) \operatorname{cos}(X1)\operatorname{sin}(\textrm{X}1)];
```

```
Q2 = temp2*T2;
temp3(1,:)=[ sinh(X2) cosh(X2) \operatorname{sin}(\textrm{X}2)-\operatorname{cos}(\textrm{X}2)];
temp3(2,:) = [-cosh(X2) - sinh(X2) - cos(X2) - sin(X2)];
temp3(3,:) = [-\operatorname{sinh}(X2) - cosh(X2) \operatorname{sin}(\textrm{X}2) - - cos(X2)];
temp3(4,:)=[-\operatorname{cosh(X2) -sinh(X2) cos(X2) \operatorname{sin}(\textrm{X}2)];};;;
Q3 = temp3*T3;
temp4(1,:)=[ sinh(X3) \operatorname{cosh(X3) \operatorname{sin}(\textrm{X}3)-\operatorname{cos}(X3)];};;\mathrm{ ;}
temp4(2,:) = [-cosh(X3) - sinh(X3) - cos(X3) - sin(X3)];
temp4(3,:) = [-\operatorname{sinh}(X3) - cosh(X3) \operatorname{sin}(\textrm{X}3)-\operatorname{cos}(\textrm{X}3)];
temp4(4,:) = [\operatorname{cosh(X3) \operatorname{sinh}(X3) - cos(X3) - sin(X3)];}
Q4 = temp4*T4;
A(1,:)=[Q1(1,1)Q1(1,2) Q1(1,3) Q1(1,4) 00000000000000];
A(2,:)=[Q1(2,1)Q1(2,2)Q1(2,3)Q1(2,4)000000000000];
A(3,:)=[\operatorname{sinh}(X1) cosh(X1) \operatorname{sin}(\textrm{X1})-\operatorname{cos(X1)Q2(1,1)Q2(1,2) Q2(1,3) Q2(1,4) 0000}
0000];
    A(4,:)=[\operatorname{cosh(X1) sinh(X1) cos(X1) sin(X1)Q2(2,1)Q2(2,2) Q2(2,3)Q2(2,4)}0000
0000];
    A(5,:)=[\operatorname{sinh}(X1) cosh(X1) - sin(X1) cos(X1) Q2(3,1) Q2(3,2) Q2(3,3) Q2(3,4) 0000
0000];
    A(6,:)=[cosh(X1) sinh(X1) -cos(X1) - sin(X1) Q2(4,1) Q2(4,2) Q2(4,3) Q2(4,4) 000
00000];
    A(7,:) =[0000(C2* cosh(X2)-sinh(X2)) (C2* 年nh(X2)-cosh(X2)) (C2*}\operatorname{cos}(\textrm{X}2)
sin(X2))(C2*sin(X2)+\operatorname{cos(X2)) Q3(1,1) Q3(1,2) Q3(1,3) Q3(1,4) 0 0 0 0];};
    A(8,:)=[0}00000\operatorname{cosh(X2)}\operatorname{sinh}(X2)\operatorname{cos(X2)}\operatorname{sin}(\textrm{X}2)\textrm{Q}3(2,1)Q3(2,2)Q3(2,3)Q3(2,4
0000];
```

$\mathrm{A}(9, \mathrm{~B})=[0000 \sinh (\mathrm{X} 2) \cosh (\mathrm{X} 2)-\sin (\mathrm{X} 2) \cos (\mathrm{X} 2) \mathrm{Q} 3(3,1) \mathrm{Q} 3(3,2) \mathrm{Q} 3(3,3) \mathrm{Q} 3(3,4)$ 0000];
$\mathrm{A}(10, \mathrm{~B})=[0000 \cosh (\mathrm{X} 2) \sinh (\mathrm{X} 2)-\cos (\mathrm{X} 2)-\sin (\mathrm{X} 2) \mathrm{Q} 3(4,1) \mathrm{Q} 3(4,2) \mathrm{Q} 3(4,3)$
Q3 $(4,4) 00000$;
$\mathrm{A}(11$,) $)=\left[00000000\left(\mathrm{C} 4^{*} \cosh (\mathrm{X} 3)-\sinh (\mathrm{X} 3)\right)(\mathrm{C} 4 * \sinh (\mathrm{X} 3)-\cosh (\mathrm{X} 3))\right.$
(C4* $\cos (\mathrm{X} 3)-\sin (\mathrm{X} 3))(\mathrm{C} 4 * \sin (\mathrm{X} 3)+\cos (\mathrm{X} 3)) \mathrm{Q} 4(1,1) \mathrm{Q} 4(1,2) \mathrm{Q} 4(1,3) \mathrm{Q} 4(1,4)]$;
$\mathrm{A}(12, \mathrm{I})=[00000000 \cosh (\mathrm{X} 3) \sinh (\mathrm{X} 3) \cos (\mathrm{X} 3) \sin (\mathrm{X} 3) \mathrm{Q} 4(2,1) \mathrm{Q} 4(2,2) \mathrm{Q} 4(2,3)$
Q4(2,4)];
$\mathrm{A}(13,:)=[00000000 \sinh (\mathrm{X} 3) \cosh (\mathrm{X} 3)-\sin (\mathrm{X} 3) \cos (\mathrm{X} 3) \mathrm{Q} 4(3,1) \mathrm{Q} 4(3,2) \mathrm{Q} 4(3,3)$ Q4 $(3,4)$];
$\mathrm{A}(14,:)=[00000000(\mathrm{C} 3 * \sinh (\mathrm{X} 3)-\cosh (\mathrm{X} 3))(\mathrm{C} 3 * \cosh (\mathrm{X} 3)-\sinh (\mathrm{X} 3))(-$ C3* $\sin (\mathrm{X} 3)+\cos (\mathrm{X} 3))(\mathrm{C} 3 * \cos (\mathrm{X} 3)+\sin (\mathrm{X} 3)) \mathrm{Q}(4,1) \mathrm{Q} 4(4,2) \mathrm{Q} 4(4,3) \mathrm{Q} 4(4,4)] ;$
$A(15,:)=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array} 000000 \cosh (X 4) \sinh (X 4)-\cos (X 4)-\sin (X 4)\right] ;$
$\mathrm{A}(16,:)=[00000000000(\sinh (\mathrm{X} 4)+\mathrm{C} 5 * \cosh (\mathrm{X} 4))(\cosh (\mathrm{X} 4)+\mathrm{C} 5 * \sinh (\mathrm{X} 4))$ $(\sin (\mathrm{X} 4)+\mathrm{C} 5 * \cos (\mathrm{X} 4))(-\cos (\mathrm{X} 4)+\mathrm{C} 5 * \sin (\mathrm{X} 4))] ;$
for $k=1: 15$

$$
\mathrm{A}(\mathrm{k}, \mathrm{i})=\mathrm{A}(\mathrm{k}, \mathrm{I} / \mathrm{A}(\mathrm{k}, \mathrm{k}) ;
$$

for $p=k+1: 16$

$$
\mathrm{A}(\mathrm{p},:)=\mathrm{A}(\mathrm{p},:)-\mathrm{A}(\mathrm{k},:)^{*} \mathrm{~A}(\mathrm{p}, \mathrm{k}) ;
$$

end
end

$$
\begin{aligned}
& c(16, m)=1 \\
& \text { for } k=1: 15 \\
& g=16-k \\
& \text { temp }=0 ; \\
& \text { for } p=g+1: 16 ;
\end{aligned}
$$

```
    temp = temp + A(g,p)*c(p,m);
end
c(g,m) = -temp;
end
xl = linspace(0,a(4),31);
for n=1:31
    x = xl(n);
    delta = 12;
    if }\textrm{xl}(\textrm{n})<\textrm{a}(3
        delta = 8;
        if }\textrm{xl}(\textrm{n})<\textrm{a}(2
            delta = 4;
            if }\textrm{xl}(\textrm{n})<\textrm{a}(1)
            delta = 0;
        end
    end
end
z=1;
for i=1:N
    if }x>=b(i)
        z=i;
    end
```

end

$$
\operatorname{ydyn}(n, m)=
$$

$\mathrm{c}((\operatorname{delta}+1), \mathrm{m})^{*} \cosh \left(\mathrm{x}^{*}\left(\text { density }{ }^{*} \operatorname{Area}(\mathrm{z})^{*} \mathrm{w}^{\wedge} 2 / \mathrm{E} / \text { Inertia }(\mathrm{z})\right)^{\wedge} .25\right)+\mathrm{c}((\text { delta }+2), \mathrm{m})^{*} \sinh \left(\mathrm{x}^{*}(\right.$
 nertia(z) $\left.)^{\wedge} .25\right)+c((\text { delta }+4), m)^{*} \sin \left(x^{*}\left(\text { density }{ }^{*} \operatorname{Area}(z)^{*} w^{\wedge} 2 / E / \operatorname{Inertia}(z)\right)^{\wedge} .25\right)$;
end
figure
$\operatorname{plot}\left(x 1, y d y n(:, m),{ }^{\prime *}\right)$
$\mathrm{L}=\operatorname{sprintf}($ 'mode $\% 0.5 \mathrm{~g}$ ', m);
title(L)
end
function integ $=f(X H, X L, m d$, sec, beta $)$
\% Function : integral of $\mathrm{phi}^{\wedge} 2$ from Xlow to Xhigh
\% This subroutine defines a new function to be used in subsequent calculations
global c

```
integ = 1/beta*(c(sec,md)^2/2*(cosh(beta*XH)*sinh(beta*XH)+beta*XH)...
    +c(sec+l,md)^2/2*(cosh(beta*XH)*sinh(beta*XH)-beta*XH)
    +c(sec+2,md)}\mp@subsup{)}{}{\wedge}/\mp@subsup{2}{}{*}(\operatorname{cos}(beta*XH)*sin(beta*XH)+beta*XH)..
    +c(sec+3,md)^2/2*(-cos(beta*XH)*sin(beta*XH)+beta*XH).
    +c(sec,md)*c(sec+1,md)*(sinh(beta*XH))^2 +
c(sec,md)*c(sec+2,md)*(cosh(beta*XH)*sin(beta*XH)+sinh(beta*XH)*}\operatorname{cos(beta*XH))
    +c(sec,md)*c(sec+3,md)*(sinh(beta*XH)*}\operatorname{sin}(beta*XH)
cosh(beta*XH)*}\operatorname{cos(beta*}\mp@subsup{}{}{*}\textrm{XH})).
    +
c(sec+l,md)*c(sec+2,md)*(\operatorname{sinh}(beta*XH)*\operatorname{sin}(\textrm{beta*}XH)+\operatorname{cosh(beta*XH)*}\operatorname{cos}(\textrm{beta}
).
    +c(sec+1,md)*q(sec+3,md)*(cosh(beta*XH)*sin(beta*XH)-
sinh(beta*XH)*}\operatorname{cos(beta*XH))..
    +o(sec+2,md)*}(\mathbf{sec}+3,md)*(\operatorname{sin}(beta*XH)\mp@subsup{)}{}{\wedge}2).
    -1/beta*(c(sec,md)^2/2*(cosh(beta*XL)*sinh(beta*XL)+beta*XL)...
    +c(sec+1,md)}\mp@subsup{)}{}{\wedge}/\mp@subsup{2}{}{*}(\operatorname{cosh(beta*XL)*}\operatorname{sinh(beta*XL)-beta*XL)
    +c(sec+2,md)^2/2*(cos(beta*XL)*sin(beta*XL)+beta*XL)...
    +c(sec+3,md)^2/2*(-cos(beta*XL)*}\operatorname{sin}(\mp@subsup{\mathrm{ beta*XL )+beta*XL)}}{}{*
    + c(sec,md)*c(sec+1,md)*(sinh(beta*XL))^2 +
c(sec,md)*c(sec+2,md)*(cosh(beta*XL)*sin(beta*XL)+\operatorname{sinh}(beta*XL)*}\operatorname{cos(beta*XL))...
    +c(sec,md)*c(sec+3,md)*(sinh(beta*XL)*sin(beta*XL)-
cosh(beta*XL)*}\operatorname{cos(beta*XL))..
    +
c(sec+1,md)*c(sec+2,md)*(sinh(beta*XL)*sin(beta*XL)+\operatorname{cosh(beta*XL)*}\operatorname{cos(beta*XL))}
    +o(sec+1,md)*c(sec+3,md)*(cosh(beta*XL)*sin(beta*XL)-
sinh(beta*XL)*}\operatorname{cos}(\mp@subsup{\mathrm{ beta*}}{}{*}XL)).
    +c(sec+2,md)*c(sec+3,md)*(sin(beta*XL))}\mp@subsup{)}{}{\wedge}2)
```


Appendix D

Matlab Programs for the Optimization

```
% filename : "optimize"
% this file launches the optimization subroutines
constantso
stop = 0;
for nn=1:1000;
    if stop <=0;
    % Step 1;
    kk=1;
    R(1)=1;
    gamma = .5;
    epsl = .01;
    eps2 = .01;
    Hess = eye(4);
    Kr_max = le6;
    Kf_max = le6;
    DELTA = .5;
    OH=2;
    xn(1)=a(2)/(a(1)+DELTA ;
    xn(2)=a(3)/(a(4)-OH);
    xn(3) = Kf/Kf_max;
    xn(4) = Kr/Kr_max;
    % Step 2
```

```
deformationo
yt(100)
constraint
temp = max(G);
if temp}<
    V = 0;
else
    V = temp;
end
gradient
dytn(1)=\operatorname{dyt}(1)*(a(1)+DELTA}
dytn(2)=\operatorname{dyt}(2)*(a(4)-OH)
dytn(3)= dyt(3)*Kf_max
dytn(4) = dyt(4)*Kr_max
% Step 3
multiplier
% Step 4
if abs_dd < eps1
    stop = 1;
    if V > eps2
        stop = 0;
```

end
end
\% Step 5
$r=u u(1)+u u(2)+u u(3)+u u(4) ;$
$R((k k+1))=\max (\pi, R(k k)) ;$
\% Step 6
step_size
\% Step 7
$\mathbf{k k}=\mathbf{k} \mathbf{k}+1$;
end
end

```
% filename · "gradient"
% this subroutine calculates the gradient of yt with respect to the design variables
% the design variables are Kf, Kr, a(1), a(2), a(3)
deformationo
yt_k = yt(100);
% the gradient of yt w.r.t. a(2):
Delta1 =a(2)*.001;
a(2) = a(2)+Deltal;
deformationo
yt_kp = yt(100);
dyt(1) = (yt_kp-yt_k)/Delta1;
% the gradient of yt w.r.t. a(3):
Delta2 = a(3)*.01;
a(3) = a(3)+Delta2;
deformationo
yt_kp = yt(100);
dyt(2) = (yt_kp-yt_k)/Delta2;
% the gradient of yt w.r.t. Kf:
Delta3 = Kf*.01;
Kf=Kf+Delta3;
deformationo
yt_kp = yt(100);
dyt(3) = (yt_kp-yt_k)/Delta3;
```

\% the gradient of yt w.r.t. Kr :
Delta4 $=\mathbf{K r}^{*} .01$;
$\mathrm{Kr}=\mathrm{Kr}+\mathrm{Delta} 4 ;$
deformationo

$$
\begin{aligned}
& \mathrm{yt} \mathrm{kp}=\mathrm{yt}(100) \\
& \operatorname{dyt}(4)=\left(y t_{-k p-y t _k}\right) / \text { Delta } 4
\end{aligned}
$$

\% Filename : "constraint"
\% This subroutine calculates the constraint violations and their derivatives.
$\mathrm{G}=[(-\mathrm{xn}(1)+1)(\mathrm{xn}(2)-1)(\mathrm{xn}(3)-1)(\mathrm{xn}(4)-1)] ;$
$d G 1=\left[\begin{array}{lll}-1 & 0 & 0\end{array}\right] ;$
dG2 $=\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right] ;$
$\mathrm{dG} 3=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right] ;$
dG4 = $\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right] ;$
\%Filename. "multiplier"
\% This file calculates the Lagrange Multipliers

clear AA CC

```
if \(\mathrm{xn}(1)>=1\)
    \(u(1)=0 ;\)
    \(\operatorname{ss}(1)=\operatorname{sqrt}(x n(1)-1) ;\)
    sw1 = 0;
```

else

$$
\operatorname{ss}(1)=0
$$

$$
\mathrm{sw} 1=1
$$

end
if $\operatorname{xn}(2)<=1$
$u(2)=0$;
$\operatorname{ss}(2)=\operatorname{sqrt}(x n(2)-1) ;$
sw2 $=0$;
else

$$
\operatorname{ss}(2)=0
$$

$$
\mathrm{sw} 2=1
$$

end

$$
\begin{aligned}
& \text { if } \mathrm{xn}(3)<=1 \\
& \operatorname{uu}(3)=0 \\
& \operatorname{ss}(3)=\operatorname{sqtt}(\operatorname{xn}(3)-1) \\
& \operatorname{sw} 3=0
\end{aligned}
$$

```
else
        ss(3)=0;
        sw3 = 1;
end
if }\operatorname{xn}(4)<=
    uu(4) = 0;
    sw4 = 0;
    ss(4)= sqrt(xn(4)-1);
else
ss(4)=0;
    sw4 = 1;
end
binary =swl* * 2^3+sw2* 2^2+sw3** }\mp@subsup{2}{}{\wedge}1+sw4*2^
if binary == 0
    mult0
end
if binary == 1
    multl
end
if binary ==2
    mult2
end
```

if binary $==2$
mult2
end
if binary $==3$
mult 3
end
if binary $==4$
mult4
end
if binary $=5$
mult5
end
if binary $==6$
mult6
end
if binary $==7$
mult7
end
if binary $==8$
mult8
end
if binary $=9$

```
    mult9
end
if binary == 10
    mult10
end
if binary == 11
    mult11
end
if binary = 12
    mult 12
end
if binary == 13
    mult13
end
if binary == 14
    mult14
end
if binary == 15
    mult15
end
abs_dd = sqrt(dd(1)}\mp@subsup{)}{}{\wedge}2+dd(2\mp@subsup{)}{}{\wedge}2+dd(3)^^2+dd(4)^2
%if sw1 == 0
```

\% $\mathrm{ss}(1)=\operatorname{sqrt}(\mathrm{dd}(1)-\mathrm{dd}(2)-\mathrm{DELTA} / \mathrm{a}(4))$;
\%end
$\%$ if $s w 2=0$
$\% \operatorname{ss}(2)=\operatorname{sqrt}(\operatorname{dd}(3)-1) ;$
\%end
$\%$ if sw3 $=0$
$\% \operatorname{ss}(3)=\operatorname{sqrt}(\operatorname{dd}(4)-1)$;
\%end
$\%$ if $\operatorname{sw} 4=0$
$\% \operatorname{ss}(4)=\operatorname{sqrt}(\operatorname{dd}(5)-1)$;
\%end

\% Filename . "multiplier"

\% This file calculates the Lagrange Multipliers

clear AA CC

```
if \(\mathrm{xn}(1)>=1\)
    \(u(1)=0\);
    \(\mathbf{s s}(1)=\operatorname{sqrt}(x n(1)-1) ;\)
    swl \(=0\);
```

else

$$
\begin{aligned}
& \mathrm{ss}(1)=0 \\
& \mathrm{sw} 1=1
\end{aligned}
$$

end
if $\mathrm{xn}(2)<=1$
$u(2)=0$;
$\operatorname{ss}(2)=\operatorname{sqrt}(x n(2)-1) ;$
$s w 2=0 ;$
else

$$
\begin{aligned}
& \operatorname{ss}(2)=0 \\
& \operatorname{sw} 2=1
\end{aligned}
$$

end

$$
\begin{aligned}
& \text { if } \mathrm{xn}(3)<=1 \\
& \operatorname{uu}(3)=0 \\
& \operatorname{ss}(3)=\operatorname{sqrt}(\mathrm{xn}(3)-1) \\
& \operatorname{sw} 3=0
\end{aligned}
$$

else

$$
\begin{aligned}
& \operatorname{ss}(3)=0 \\
& \operatorname{sw} 3=1 \\
& \text { end } \\
& \text { if } \operatorname{xn}(4)<=1 \\
& \operatorname{uu}(4)=0 \\
& \operatorname{sw} 4=0 \\
& \operatorname{ss}(4)=\operatorname{sqn}(\operatorname{xn}(4)-1)
\end{aligned}
$$

else

$$
\operatorname{ss}(4)=0
$$

$$
\text { sw4 }=1
$$

end
binary $=s w 1^{*} 2^{\wedge} 3+s w 2^{*} 2^{\wedge} 2+s w 3^{*} 2^{\wedge} 1+s w 4^{*} 2^{\wedge} 0$
if binary $=0$
mult0
end
if binary $=1$
mult 1
end
if binary $=2$
mult2
end
if binary $=2$
mult2
endif binary $==3$
mult 3
end
if binary $==4$
mult4
end
if binary $=5$
mult5
end
if binary $==6$
mult6
end
if binary $==7$
mult7
end
if binary $==8$
mult8
end
if binary $==9$

```
    mult9
end
if binary = 10
    mult10
end
if binary == 11
    mult11
end
if binary = 12
    mult12
end
if binary = 13
    mult 13
end
if binary = 14
    mult14
end
if binary =15
    mult15
end
abs_dd = sqrt(dd(1)}\mp@subsup{)}{}{\wedge}2+dd(2\mp@subsup{)}{}{\wedge}2+dd(3)^2+dd(4)^2
%if swl = 0
```

\% $s s(1)=\operatorname{sqrt}(d d(1)-\mathrm{dd}(2)-$ DELTA/a(4));
\%end
$\%$ if sw2 $=0$
$\% \operatorname{ss}(2)=\operatorname{sqrt}(\operatorname{dd}(3)-1) ;$
\%end
$\%$ if sw3 $=0$
$\% \operatorname{ss}(3)=\operatorname{sqrt}(\operatorname{dd}(4)-1)$;
\%end
$\%$ if sw4 $=0$
$\% \operatorname{ss}(4)=\operatorname{sqrt}(\operatorname{dd}(5)-1)$;
\%end
\% Filname : "mult0"
$\mathrm{AA}(1,:)=[(\operatorname{Hess}(1,1))(\operatorname{Hess}(1,2)+\operatorname{Hess}(2,1))(\operatorname{Hess}(1,3)+\operatorname{Hess}(3,1))$ $(\operatorname{Hess}(1,4)+\operatorname{Hess}(4,1))]$;
$\mathrm{AA}(2,:)=[(\operatorname{Hess}(2,1)+\operatorname{Hess}(1,2))(\operatorname{Hess}(2,2))(\operatorname{Hess}(2,3)+\operatorname{Hess}(3,2))$ (Hess(2,4)+Hess(4,2))];

AA(3,:) $=[(\operatorname{Hess}(3,1)+\operatorname{Hess}(1,3))(\operatorname{Hess}(3,2)+\operatorname{Hess}(2,3))(\operatorname{Hess}(3,3))$ (Hess(3,4)+Hess(4,3))];
$\mathrm{AA}(4,:)=[(\operatorname{Hess}(4,1)+\operatorname{Hess}(4,1))(\operatorname{Hess}(4,2)+\operatorname{Hess}(2,4))(\operatorname{Hess}(4,3)+\operatorname{Hess}(3,4))$ (Hess(4,4))];
$C C(1,:)=[-\operatorname{dytn}(1)] ;$
$\operatorname{CC}(2,:)=[-\operatorname{dytn}(2)] ;$
$\operatorname{CC}(3,:)=[-\operatorname{dytn}(3)] ;$
$\operatorname{CC}(4,:)=[-\operatorname{dytn}(4)] ;$
$\mathrm{dd}=\operatorname{inv}(\mathrm{AA})^{*} \mathrm{CC}$
\% Filname : "mult0"

```
AA(1,:)=[(Hess(1,1))(Hess(1,2)+Hess(2,1))(Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1))];
AA(2,:)=[(Hess(2,1)+Hess(1,2))(Hess(2,2))(Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2))];
AA(3,:) = [(Hess(3,1)+Hess(1,3))(Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3))];
AA(4,:)=[(Hess(4,1)+Hess(4,1))(Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4))];
CC(1,:) = [-dytn(1)];
CC(2,:) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:)=[-dytn(4)];
dd = inv(AA)*CC
```

\% Filname : "mult2"
$\mathrm{dd}(4)=-\mathrm{G}(3)$;
AA(1,:) $=[(\operatorname{Hess}(1,1))(\operatorname{Hess}(1,2)+\operatorname{Hess}(2,1))(\operatorname{Hess}(1,4)+\operatorname{Hess}(4,1)) 0]$;
$\mathrm{AA}(2,:)=[(\operatorname{Hess}(2,1)+\operatorname{Hess}(1,2))(\operatorname{Hess}(2,2))(\operatorname{Hess}(2,4)+\operatorname{Hess}(4,2)) 0] ;$
$\mathrm{AA}(3,:)=[(\operatorname{Hess}(3,1)+\mathrm{Hess}(1,3))(\operatorname{Hess}(3,2)+\operatorname{Hess}(2,3))(\operatorname{Hess}(3,4)+\operatorname{Hess}(4,3)) 1] ;$
AA(4,:) $=[(\operatorname{Hess}(4,1)+H e s s(4,1))(H e s s(4,2)+H e s s(2,4))$ Hess $(4,4) 0]$;
$\mathrm{CC}(1,:)=\left[-\operatorname{dytn}(1)-(\operatorname{Hess}(1,3)+\operatorname{Hess}(3,1))^{*} \operatorname{dd}(3)\right] ;$
$\mathrm{CC}(2,:)=\left[-\operatorname{dytn}(2)-(\mathrm{Hess}(2,3)+\mathrm{Hess}(3,2))^{*} \mathrm{dd}(3)\right] ;$
$\mathrm{CC}(3,:)=[-\operatorname{dytn}(3)-\operatorname{Hess}(3,3) * \operatorname{dd}(3)] ;$
$\mathrm{CC}(4,:)=\left[-\mathrm{dytn}(4)-(\operatorname{Hess}(3,4)+\text { Hess }(4,3))^{*}\right.$ dd(3$\left.)\right]$;
temp_mult $=\operatorname{inv}(A A) * C C$;
dd $(1,1)=$ temp_mult $(1,1)$;
dd(2,1) $=$ temp_mult(2,1);
$\operatorname{dd}(4,1)=$ temp_mult(3,1);
$u(3)=$ temp_mult(4,1);

```
% Filname : "mult3"
AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) 0 0];
AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 00];
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 1 0];
AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4))(Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 1];
AA(5,:)=[[\begin{array}{llllll}{0}&{1}&{0}&{0}&{0}\end{array}];
AA(6,:)=[[\begin{array}{llllll}{0}&{0}&{1}&{0}&{0}\end{array}];
CC(1,:) = [-dytn(1)];
CC(2,:)=[-dytn(2)];
CC(3;:)=[-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,:) = [-G(3)];
CC(6,:) = [-G(4)];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
u(3) = temp_mult(5,1);
u(4) = temp_mult(6,1);
```

\% Filname : "mult4"
$\operatorname{dd}(2,1)=-G(2) ;$
$A A(1,:)=[(\operatorname{Hess}(1,1))(\operatorname{Hess}(1,3)+\operatorname{Hess}(3,1))(\operatorname{Hess}(1,4)+\operatorname{Hess}(4,1)) 0] ;$
$\mathrm{AA}(2,:)=[(\operatorname{Hess}(3,1)+\operatorname{Hess}(1,3))(\operatorname{Hess}(3,2)+\operatorname{Hess}(2,3))(\operatorname{Hess}(3,4)+\operatorname{Hess}(4,3)) 1] ;$
$\mathrm{AA}(3,:)=[(\operatorname{Hess}(3,1)+\operatorname{Hess}(1,3))(\operatorname{Hess}(3,3))(\operatorname{Hess}(4,3)+\operatorname{Hess}(3,4)) 0] ;$
$\mathrm{AA}(4,:)=[(\operatorname{Hess}(4,1)+\operatorname{Hess}(1,4))(\operatorname{Hess}(4,3)+\operatorname{Hess}(3,4))(\operatorname{Hess}(4,4)) 0]$;
$\mathbf{C C}(1,:)=\left[-\operatorname{dytn}(1)-(\operatorname{Hess}(1,2)+\operatorname{Hess}(2,1))^{*} \mathrm{dd}(2)\right] ;$
$\mathrm{CC}(2,:)=\left[-\mathrm{dytn}(2)-(\operatorname{Hess}(2,2))^{*} \mathrm{dd}(2)\right] ;$
$\mathrm{CC}(3,:)=\left[-\operatorname{dytn}(3)-(\operatorname{Hess}(3,2)+\operatorname{Hess}(2,3))^{*} \mathrm{dd}(2)\right] ;$
$\mathrm{CC}(4,:)=\left[-\operatorname{dytn}(4)-(\operatorname{Hess}(4,2)+\operatorname{Hess}(2,4))^{*} \mathrm{dd}(2)\right]$;
temp_mult $=\operatorname{inv}(\mathrm{AA}) * \mathrm{CC}$;
dd $(1,1)=$ temp_mult $(1,1)$;
$\operatorname{dd}(3,1)=$ temp_mult $(2,1) ;$
$\operatorname{dd}(4,1)=$ temp_mult $(3,1) ;$
$u(2)=$ temp_mult $(4,1)$;

```
% Filname : "mult5"
AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) 0 0];
AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 1 0];
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0 0];
AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4))}01]
AA(5,:)=[[\begin{array}{llllll}{1}&{0}&{0}&{0}&{0}\end{array}];
AA(6,:)=[[\begin{array}{llllll}{0}&{0}&{1}&{0}&{0}\end{array}];
CC(1,:) = [-dytn(1)];
CC(2,:)=[-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,:) = [-G(2)];
CC(6,:) = [-G(4)];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1)= temp_mult(3,1);
dd(4,1)= temp_mult(4,1);
u(2) = temp_mult(5,1);
u(4) = temp_mult(6,1);
```

```
% Filname : "mult6"
AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) 0 0];
AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 1 0];
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3))}0\mathrm{ 1];
AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 0];
AA(5,:)=[[lllllll
AA(6,:)=[[\begin{array}{llllll}{0}&{1}&{0}&{0}&{0}\end{array}];
CC(1,:) = [-dytn(1)];
CC(2,:) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,:)=[-G(2)];
CC(6,:) = [-G(3)];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
u(2) = temp_mult(5,1);
u(3) = temp_mult(6,1);
```

```
% Filname · "mult7"
AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1))}00000
AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) l }000\mathrm{ 0;
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) O l 0];
AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 00 1];
AA(5,:)=[[\begin{array}{lllllll}{1}&{0}&{0}&{0}&{0}&{0}\end{array}];
AA(6,:) =[[\begin{array}{lllllll}{0}&{1}&{0}&{0}&{0}&{0}\end{array}];
AA(7,:) =[[\begin{array}{lllllll}{0}&{0}&{1}&{0}&{0}&{0}\end{array}];
CC(1,:) = [-dytn(1)];
CC(2;:) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5;) = [-G(2)];
CC(6;:) = [-G(3)];
CC(7,:) = [-G(4)];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1)= temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
```

$$
\begin{aligned}
& u(2)=\text { temp_mult }(6,1) \\
& u(3)=\text { temp_mult }(7,1) \\
& u(4)=\text { temp_mult }(8,1)
\end{aligned}
$$

```
% Filname : "mult8"
AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) 1];
AA(2,:) = [(Hess(2,1)+Hess(1,2))(Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 0];
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0];
AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0];
AA(5,:) = [llllllll
CC(1,:) = [-dytn(1)];
CC(2,:) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(6,:) = [-G(1)];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
u(1) = temp_mult(5,1);
```

\% Filname : "mult9"
$\mathrm{AA}(1,:)=[(\operatorname{Hess}(1,1))(\operatorname{Hess}(1,2)+\operatorname{Hess}(2,1))(\operatorname{Hess}(1,3)+\operatorname{Hess}(3,1))$
(Hess(1,4)+Hess(4,1))-10];
$\mathrm{AA}(2,:)=[(\operatorname{Hess}(2,1)+\operatorname{Hess}(1,2))(\operatorname{Hess}(2,2))(\operatorname{Hess}(2,3)+\operatorname{Hess}(3,2))$ (Hess $(2,4)+\operatorname{Hess}(4,2)) 00] ;$
$\mathrm{AA}(3,:)=[(\operatorname{Hess}(3,1)+\operatorname{Hess}(1,3))(\operatorname{Hess}(3,2)+\operatorname{Hess}(2,3))(\operatorname{Hess}(3,3))$
(Hess(3,4)+Hess(4,3)) 00];
$\mathrm{AA}(4,:)=[(\operatorname{Hess}(4,1)+\operatorname{Hess}(4,1))(\operatorname{Hess}(4,2)+\operatorname{Hess}(2,4))(\operatorname{Hess}(4,3)+\operatorname{Hess}(3,4))$ (Hess(4,4)) 01$]$;
$\mathrm{AA}(6,:)=\left[\begin{array}{llllll}-1 & 0 & 0 & 0 & 0 & 0\end{array}\right] ;$
$\mathbf{A A}(7,:)=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0\end{array}\right] ;$
$\operatorname{CC}(1,:)=[-\operatorname{dytn}(1)] ;$
$\operatorname{CC}(2,:)=[-\operatorname{dytn}(2)] ;$
$\operatorname{CC}(3,:)=[-\operatorname{dytn}(3)] ;$
$\operatorname{CC}(4,:)=[-\operatorname{dytn}(4)] ;$
$C C(5,:)=[-G(1)] ;$
$\operatorname{CC}(6,:)=[-G(4)] ;$
temp_mult $=\operatorname{inv}(A A)^{*} C C ;$
dd $(1,1)=$ temp_mult $(1,1)$;
$\operatorname{dd}(2,1)=$ temp_mult $(2,1) ;$
$\operatorname{dd}(3,1)=$ temp_mult $(3,1) ;$
$\operatorname{dd}(4,1)=$ temp_mult(4,1 ; ;
$u(1)=$ temp_mult $(5,1) ;$
$u(4)=$ temp_mult $(6,1)$;
\% Filname : "mult10"
$\mathrm{AA}(1,:)=[(\operatorname{Hess}(1,1))(\operatorname{Hess}(1,2)+\operatorname{Hess}(2,1))(\operatorname{Hess}(1,3)+\operatorname{Hess}(3,1))$
(Hess(1,4)+Hess(4,1))-1 0];
$\mathrm{AA}(2,:)=[(\operatorname{Hess}(2,1)+\operatorname{Hess}(1,2))(\operatorname{Hess}(2,2))(\operatorname{Hess}(2,3)+\mathrm{Hess}(3,2))$
(Hess(2,4)+Hess(4,2)) 0 0];
AA(3,:) $=[(H e s s(3,1)+\operatorname{Hess}(1,3))(\operatorname{Hess}(3,2)+\operatorname{Hess}(2,3))(\operatorname{Hess}(3,3))$
(Hess(3,4)+Hess(4,3)) 0 1];
AA(4,:) $=[(\operatorname{Hess}(4,1)+\operatorname{Hess}(4,1))(\operatorname{Hess}(4,2)+\operatorname{Hess}(2,4))(\operatorname{Hess}(4,3)+\operatorname{Hess}(3,4))$ (Hess $(4,4)$) 00 0;
$\mathrm{AA}(5,:)=\left[\begin{array}{lllllll}-1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right] ;$
$\mathrm{AA}(6,:)=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$ $]$;
$\operatorname{CC}(1,:)=[-\operatorname{dytn}(1)] ;$
$\operatorname{CC}(2,:)=[-d y \operatorname{tn}(2)] ;$
$\operatorname{CC}(3,:)=[-d y \operatorname{tn}(3)]$,
$\operatorname{CC}(4,:)=[-d y \operatorname{tn}(4)] ;$
$\mathrm{CC}(5,:)=[-\mathrm{G}(1)] ;$
$C C(6,:)=[-G(3)] ;$
temp_mult $=\operatorname{inv}(A A) * C C$;
dd(1,1) $=$ temp_mult $(1,1)$;
dd(2,1) $=$ temp_mult(2,1);
dd(3,1) $=$ temp_mult(3,1);
dd(4,1) $=$ temp_mult(4,1);
$\mathbf{u}(1)=$ temp_mult $(5,1)$;
$u(3)=$ temp_mult(6,1);

```
% Filname : "mult11"
AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) -1 0 0];
AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) O O 0];
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) O 1 0];
AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 00 1];
AA(5,:)=[-1-1000000000];
AA(6,:) = [llllllllll
AA(7,:)=[[\begin{array}{lllllll}{0}&{0}&{1}&{0}&{0}&{0}\end{array}];
CC(1,:) = [-dytn(1)];
CC(2,:) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,:) = [-G(1)];
CC(6,:) = [-G(3)];
CC(7,:) = [-G(4)];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
```

$$
\begin{aligned}
& u(1)=\text { temp_mult }(5,1) \\
& u(3)=\text { temp_mult }(6,1) \\
& u(4)=\text { temp_mult }(7,1)
\end{aligned}
$$

```
AA(1,:)= [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) -1 0];
AA(2,:)= [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 1 0];
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0 0];
AA(4,:)=[(Hess(4,1)+Hess(4,1))(Hess(4,2)+Hess(2,4))(Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 0];
AA(5,:)=[[-1 1000400
AA(6,:)=[[lllllll
CC(1,:)= [-dytn(1)];
CC(2,:) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,:) = [-G(1)];
CC(6,:) = [-G(2)];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1)= temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1)= temp_mult(4,1);
u(1) = temp_mult(5,1);
u(2) = temp_mult(6,1);
```

```
% Filname : "mult13"
AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1))(Hess(1,5)+Hess(5,1)) -1 00];
AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) (Hess(2,5)+Hess(5,2))}010]
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) (Hess(3,5)+Hess(5,3))}0000]
AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) (Hess(4,5)+Hess(5,4)) 00 1];
AA(5,:)=[-1-10}00000000000]
AA(6,:) =[[\begin{array}{lllllll}{1}&{0}&{0}&{0}&{0}&{0}\end{array}];
AA(7,:) =[[\begin{array}{lllllll}{0}&{0}&{1}&{0}&{0}&{0}\end{array}];
CC(1,:) = [-dytn(1)];
CC(2,:) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,:) = [-G(1)];
CC(6,:) = [-G(2)];
CC(7,:)=[-G(4)];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1)= temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
```

$$
\begin{aligned}
& u(1)=\text { temp_mult }(5,1) \\
& u(2)=\text { temp_mult }(6,1) \\
& u(4)=\text { temp_mult }(7,1)
\end{aligned}
$$

```
% Filname : "mult14"
AA(1,:)=[(Hess(1,1)) (Hess(1,2)+Hess(2,1))(Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) -1 0 0];
AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2))}
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3))00 1];
AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 00 0];
AA(6,:) =[-[-10000000000];
AA(7,:)=[[\begin{array}{lllllll}{1}&{0}&{0}&{0}&{0}&{0}\end{array}];
AA(8,:)=[[\begin{array}{lllllll}{0}&{1}&{0}&{0}&{0}&{0}\end{array}];
CC(1,:) = [-dytn(1)];
CC(2,:)=[-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,:) = [-G(1)];
CC(6,:) = [-G(2)];
CC(7,:) = [-G(3)];
temp_mult = inv(AA)*CC;
dd(1,1)= temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
```

$$
\begin{aligned}
& u(1)=\text { temp_mult }(5,1) \\
& u(2)=\text { temp_mult }(6,1) \\
& u(3)=\text { temp_mult }(7,1)
\end{aligned}
$$

$\mathrm{AA}(1,:)=[(\operatorname{Hess}(1,1))(\operatorname{Hess}(1,2)+\operatorname{Hess}(2,1))(\operatorname{Hess}(1,3)+\operatorname{Hess}(3,1))$ $(\operatorname{Hess}(1,4)+\operatorname{Hess}(4,1))(\operatorname{Hess}(1,5)+\operatorname{Hess}(5,1))-1000]$;

AA(2,:) $=[(\operatorname{Hess}(2,1)+\operatorname{Hess}(1,2))(\operatorname{Hess}(2,2))(H e s s(2,3)+H e s s(3,2))$
$(\operatorname{Hess}(2,4)+\operatorname{Hess}(4,2))(\operatorname{Hess}(2,5)+\operatorname{Hess}(5,2)) 0100] ;$
AA(3,:) $=[(\operatorname{Hess}(3,1)+\operatorname{Hess}(1,3))(H e s s(3,2)+H e s s(2,3))(H e s s(3,3))$
$(\operatorname{Hess}(3,4)+\operatorname{Hess}(4,3))(\operatorname{Hess}(3,5)+\operatorname{Hess}(5,3)) 0010]$;
$\mathrm{AA}(4,:)=[(\operatorname{Hess}(4,1)+\operatorname{Hess}(4,1))(\operatorname{Hess}(4,2)+\operatorname{Hess}(2,4))(\operatorname{Hess}(4,3)+\operatorname{Hess}(3,4))$
$(\operatorname{Hess}(4,4))(H e s s(4,5)+\operatorname{Hess}(5,4)) 0001] ;$
$\mathrm{AA}(5,:)=\left[\begin{array}{llllllll}-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] ;$
$\mathrm{AA}(6,:)=\left[\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$;
$\mathrm{AA}(7,:)=\left[\begin{array}{lllllll}0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right] ;$
$\mathrm{AA}(8,:)=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right] ;$
$\operatorname{CC}(1,:)=[-\operatorname{dytn}(1)] ;$
$\operatorname{CC}(2,:)=[-\operatorname{dytn}(2)] ;$
$\operatorname{CC}(3,:)=[-\operatorname{dytn}(3)] ;$
$\operatorname{CC}(4,:)=[-\operatorname{dytn}(4)] ;$
$\mathrm{CC}(5,:)=[-\mathrm{G}(1)] ;$
$\mathrm{CC}(6,:)=[-\mathrm{G}(2)]$;
$\operatorname{CC}(7, \therefore)=[-\mathrm{G}(3)] ;$
$\operatorname{CC}(8,:)=[-G(4)] ;$
temp_mult $=\operatorname{inv}(\mathrm{AA}) * C C$;
$\operatorname{dd}(1,1)=$ temp_mult $(1,1) ;$
$\operatorname{dd}(2,1)=$ temp_mult $(2,1) ;$

$$
\begin{aligned}
& \mathrm{dd}(3,1)=\text { temp_mult }(3,1) ; \\
& \mathrm{dd}(4,1)=\text { temp_mult }(4,1) ; \\
& u(1)=\text { temp_mult }(5,1) ; \\
& \mathbf{u}(2)=\text { temp_mult }(6,1) ; \\
& \mathbf{u}(3)=\text { temp_mult }(7,1) \\
& \mathbf{u}(4)=\text { temp_mult }(8,1)
\end{aligned}
$$

