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Abstract

In modern machine tool applications the performance of a machine tool is judged

by its ability to produce work-pieces accurately and efficiently. The stiffness of the

machine tool spindle has a profound impact on the overall machine performance. The

work presented here provides a tool for machine tool spindle designers to develop

spindles that are sufficiently stiff to meet their needs. The analysis presented here is

divided into three main sections.

The first portion is a static analysis. The static analysis calculates the lateral

deflection of the spindle-bearing system. AMatlab programwas developed that aiiows

the user to enter the spindle parameters into a batch file and obtain the plots ofthe

deformed shape of the spindle.

The next portion is a dynamic analysis of the spindle. This portion includes both

the modes ofvibration and the forced response. The modal analysis treats the spindle as a

continuous Euier-Bernouiii beam. A numerical method for handling the steps in the shaft

and applied boundary conditions was developed that could be extended to many other

applications in rotor dynamics. AMatlab program was developed for the dynamic

analysis. This program provides a designerwith plots of the mode shapes and forced

response given the spindle design parameters.

The final section is an optimization of the spindle design. Given constraints on

the location and stiffness of the support bearings, aMatlab program will return values for

these parameters resulting in the spindle configuration that presents the minimum

deflection at the spindle's gauge line.
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Nomenclature

Symbol

A Cross sectional area ofbeam [in2]

A Gradient vector of inequality constraint [dependent on constraint]

ai Location ofdrive pulley [in]

a? Location of rear bearing [in]

a3 Location of front bearing [in]

&4 Location ofgauge line [in]

bk Location ofkth joint in spindle shaft [in]

c Gradient vector [in/in]

d Vector ofdesign changes [unitless]

gi(x) Ith inequality constraint [dependent on contraint]

D Distance between support bearings [in]

E Young's modulus [psi]

f Quadratic subproblem [unitless]

FQ Cutting force [Ibf]

Fcub Unbalance force due to cutting tool [Ibf]

Fd Drive force [Ibf]

Fde Equivalent drive force [ibf]

Fdub Unbalance force due to unbalance ofdrive puiiey [ibf]

f(x) Cost function [in]

In Moment of inertia ofnth beam segment [in4]



Kf Lateral stiffness of front bearing [Ibf/in]

Kfmax Maximum lateral stiffness of front bearing [ibf/in]

Kg Torsional stiffness of front bearing [in-ibfj

K; Generalized stiffness [ibf/in]

Kr Lateral stiffness of rear bearing [ibf/in]

Kfmax Maximum lateral stiffness of rear bearing [ibf/in]

M(x) Bending moment in spindle shaft [in-ibfj

MappHedExternally applied moments [in-ibfj

Mb Reaction moment at front bearing [in-lbfj

Mbe Equivalent reaction moment at front bearing [Ibf]

M; Generalized mass [lbf-s2/in]

Mk Moment induced at kth joint in spindle shaft [in-lbfj

Mt Moment at guage line due to cutting force and tool length [in-ibfj

OH Cantilever, distance between front bearing and gauge line [in]

q,; Generalized coordinate [in]

Qi Generalized force [Ibf]

R Penalty parameter [unitless]

Rf Reaction force at front bearing [ibf]

Rfe Equivalent reaction force at front bearing [Ibf]

Rr Reaction force at rear bearing [ibf]

Rre Equivalent reaction force at rear bearing [ibf]

Sj Siack variable for ith constraint [unitless]



T Kinetic energy [in-ibfj

tj Step size [dependent on design variable]

[Ty] Transformation matrix between ith and jth beam segments [unitless]

ti Length of cutting tool [in]

u Strain energy [in-lbfj

U Potential energy [in-ibfj

Uj Lagrange multiplier [unitless]

V Maximum constraint violation [dependent on constraint]

V(x) Shear force in spindle shaft [ibf]

Vk Shear force induced at kth joint in spindle shaft [ibf]

x Axial position along shaft [in]

x Vector ofdesign variables

x0 Fraction ofmoment exerted by front bearing [unitless]

yb Elastic deflection of spindle shaft [in]

y* Elastic deflection of spindle shaft [in. ]

6f Deflection at front bearing [in]

5q; Virtual displacement [in]

6r Deflection at rear bearing [in]

8wj Virtual work [in-lbfj

Ei Convergence criteria [unitless]

82 Maximum allowable constraint violation [unitless]

<j>i Ith normal mode [unitless]



<p Descent function [in]

p Mass density [Ibf-sTin4]

to Circular frequency [rad/sec]



1,0 Introduction:

Great demands are placed on the capabilities of today's modern machine tools to

produce parts that are dimensionaiiy correct with increasing accuracy and throughput.

Some of the machine tool components that impact the accuracy and throughput ofthe

machine are the drive systems, way systems, control and feedback systems, and finally

the machine tool spindle. The machine tool spindle is the element of the machine that

either supports the work-piece or the cutting tool. In addition to being a support

structure, the spindle also rotates at high rates of speed to provide relative motion

between the work-piece and the cutting tool. Therefore the spindle has a direct impact on

both the throughput (material removal rate), and the accuracy of the finished part.

According to Lewinschai (1985), the most common requirements of a machine

tool spindle are:

High running accuracy

High speed capability

Great stiffness

Low and even running temperature

Minimum need ofmaintenance

Often in machine tool spindles these parameters will conflict with each other. In order to

achieve a higher speed capability the designer must trade off spindle stiffness for speed or

visa-versa. The spindle designer must carefully weigh the requirements of the user to

determine the best possible balance of these parameters.

10



The goal ofthis research is to provide a tool for a spindle designer to aid in the

evaluation of the spindle stiffness. High running accuracy, high operating speed

capability, low and even running temperature, and minimum need ofmaintenance are

typically functions of the bearing's geometry, manufacturing, lubrication, and method of

mounting. Ifthe spindle designer is able to quantify the stiffness requirements for the

bearing he can then work with the bearing manufacturer to select the proper bearings for

the application.

Al-Shareef et ai. (1990) developed a quasi-static method of analyzing machine

tool spindles. Their analysis takes the amplitude of the dynamic forces and applies them

to a static model of the spindie-bearing system. For the static analysis the deflection

contribution ofthe spindle shaft and the deflection contribution of the spindle support

bearings are superimposed to obtain the total deflection of the system.

The static analysis of the spindle shaft assumes that a stepped flexible shaft is

pinned in the location of the support bearings. The analysis of this flexible shaft consists

ofa transformation from a stepped shaft to a uniform shaft. This transformation yielded

additional shear and bending moments at each of the joints in the shaft. The resulting

uniform shaft was analyzed using classical mechanics.

The deflection contribution of the spindle support bearings assumes a rigid shaft

supported by linear springs. The reaction forces yielded the deflection at each of the

springs. Essentially, the deflection contribution of the bearings is a straight line fit

between the resulting deformed positions of the springs.
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In addition to the static analysis an optimization of the deflection at the end ofthe

spindie was presented. The optimization analysis consisted primarily ofvarying the

spindle design parameters and looking at the effect on the resulting deflection at the

spindie gauge line. Plots were presented iiiustrating the effect of the variation of these

parameters. The following conclusions were drawn from these plots.

In the design of a spindie there exist an optimum ratio of the bearing spacing

to the overhang of the spindie. As the flexurai stiffness increases and the ratio

of front to rear bearing stiffness decreases the optimum bearing-overhang

decreases.

A dimenskmless flexurai stiffness (Kf(OH)3/EI) ofgreater than 5 results in

minimum deflection at the cutting tool. The deflection at the end, or gauge

line, ofthe spindie is very sensitive to the flexurai stiffness for magnitudes

less than 5.

Having more than 3 steps in the shaft is desirable for obtaining minimal

deflection values.

The magnitude, position, and direction of the driving force greatly effects the

deflection at the gauge iine. For each scenario there exists an optimum

location of the drive pulley.

In Lewinchai (1983) a similar study on the variation of spindie design parameters

was presented. Plots were generated that illustrated the effect of the bearing spacing-

overhang ratio on the spindie stiffness for support bearings ofvarying stiffness. From

these plots it could be concluded that for very stiff support bearings the optimum spacing

12



between the bearings becomes shorter. It couid also be concluded that ifthe spindie has a

long overhang the stiffness of the bearings has a lesser impact on the stiffness of the

spindle.

Other work in the optimum design ofmachine tool spindles was also done in

Montusiewicz et ai. (1997). In this work a model of a machine tooi spindie supported by

hydrostatic bearings was presented. Tne study consisted of applying a four-stage

muiticriterion optimization strategy to a static modei of a spindie. The objective of the

analysis was to reduce the radial and axial deflection of a spindie, the total mass of the

spindie, the totai power loss of the bearings, and finaiiy the size ofthe bearings. The

analysis divides the spindie system into four subsystems. Each of these systems are

optimized locally, and finaiiy integrated to provide a giobal optimization. The outcome

of this analysis was a computer aided optimum design package. This package aiiows

spindie designers to interactiveiy design an optimum spindie, inputting required design

variables throughout the optimization process.

A qualitative dynamic analysis of a machine tooi spindie was presented in Al-

Shareefet ai. (i99I). Traditionally in the dynamic analysis ofmachine tooi spindies the

first mode is thought to be responsible for poor cutting quality. The purpose of this work

was to assess this assumption. There was concern that this would not be the case since

the range ofoperating frequencies for a given spindle often excite the higher modes. The

first four modes for an example spindie were solved for analytically and compared to

experimentai results. The modal analysis presented ignores damping and rotational

affects. The authors site an experimentai study that proved there to be little difference



between the non-rotationai natural frequencies and the rotational criticai speeds. By

looking at the individual mode shapes they found that the first mode contributed the most

to the deflection at the tooi to work-piece interface. Aii other modes in the operating

frequency range exhibited nodal characteristics at this interface. Since the excitation

force would be exerted here they concluded that the first mode would indeed be most

accountable for poor cutting quaiity. However they also noted that at the higher modes

there was significant deflection at the location of the support bearings. This couid result

in the degradation of these bearing and an eventual loss of spindle stiffness.

Some other works, pertaining more generally to the field of rotor dynamics, were

also researched. Two of these works deal primarily with the extension of the conventional

transformation matrix (CTM) technique. In the work done by Curti et ai. (1993) an

expression for an 8 x 8 dynamic stiffness matrix ofa rotating Timoshenko beam is

derived and reiated to the conventional 4x4 dynamic stiffness matrix. This provides for

the inclusion ofanisotropic supports.

In work done byMurphy (1993) a polynomial transfer matrix was deveioped to

replace the conventional transfer matrix for modal and forced response analyses. The

advantage ofthe polynomial transfer matrix is an increase in computational speed of3.5

to 100 times over the conventional transfer matrix. Example problems were analyzed

using both the CTM and PTM methods as weii as a finite element analysis. The results

for ail three cases were identical and the speed of the PTM method was considerably

faster.
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2.0 Static Anaiysis:

The static anaiysis calculates the lateral deflection ofthe spindie. Figure 2.1

illustrates the model under scrutiny. The following assumptions were necessary to

perform the anaiysis:

1 . The spindie shaft is assumed to be an Euier-Bernouiii Beam.

2. The spindie is subjected to a cutting force, a drive force, and the reaction forces at the

bearings. The drive force must be applied behind the rear bearing.

3. The torsional and axial deflections ofthe spindie shaft are neglected.

4. The centeriine of the spindie shaft is exactly iniine with the centeriine of the bearing

bores. There is no contribution to the lateral deflection due to manufacturing

misalignment.

5. The spindie housing and the cutting tooi are both assumed to have an infinite

stiffness.

6. It is assumed that the spindie is supported by only two bearings. This is common for

most machine tool spindles. Manufacturability precludes the use ofmore than two

bearings in most spindies.

7. The contribution of transverse shear deformation to the overall lateral deflection is

assumed to be negligible. It was observed in a study conducted by Al-Shareef and

Brandon, that the contribution of shear deformation is dependent on the ratio between

the length ofthe spindie and the spindie nose overhang. The shear deflection for

short spindies with small overhangs contributes more to the overall

15



Figure 2. i SpindieModel
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deflection than longer, more siender spindies. A variety of spindies were analyzed in this

study and a maximum contribution of 12 per cent was found (Ai-Shareef et ai., 1990)

Superposition was employed to calculate the iaterai deflection ofthe spindie. The

elastic deformation of the spindie shaft, ys and the deflection of the spindie bearings, yb

were superimposed to calculate the overall deflection ofthe spindie (see figs. 2.2a and

2.2b). Equation 2.1 gives the overall deflection of the spindie.

v. =ys+yb (2.1)

2.1 Deformation of Elastic Shaft:

For the elastic contribution of the spindie shaft Ai-Shareef and Brandon propose a

method to transform the stepped spindie shaft to a uniform shaft (Al-Shareef et. ai, 1990).

This approach will be employed in this analysis. When the shaft is transformed there is a

moment, M* and shear force, \\ induced at each step in the shaft (fig. 2.3). In addition

the applied forces and reactions must be transformed into equivalent forces applied to

beam segments with larger bending moments of inertia. These equivalent forces are

noted using the subcript
"e"

(i.e. Fj -> F<je).

The deflection ofthe uniform beam can be easily analyzed using conventional

beam theory and singularity functions. The singularity functions will be represented by

expressions in < >. If the value of the expression within these brackets is less than zero

the function becomes zero (i.e.
<2-4>2

= 0). If the value of the expression is greater than

zero, the function simply becomes the expression within the brackets (i.e.
<4-2>"

=

<4-2f).

The shear force, V(x) of the uniform beam can be found to be:

17



a1 H|

Figure 2.2a Elastic Deflection ofSpindie Shaft

'////

Figure 2.2b Deflection ofSpindie Bearings
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a2 y

X>xV\.
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Figure 2.3 Model ofUniform Beam
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Vix) =
F(x-u1)D
+Fc(x-a,-tl)D

-Rfe(x-a>r+iv*(*-b*r

The moment of the beam, M(x) becomes:

M(x) = ]V(x)dx+MappI,eJ

M(x) =
Fde{x-a1)1

+Fc{x-a4 -ttf -R^x-aJ

+Vt{x-bkf +Mk(x-bky

(2.2)

*=i

The slope of the beam, 8(x) becomes:

i

0(x) = --JM(x)dx

(2.3)

W

(2.5)

0(x) =
El

^{x-aiY+^(x-at-tiy-^(x-a^-^(x-a,y

+M{x-<*2) +1i

Integrating the slope of the beam yields the elastic deflection, ys(x):

y,(*) =

El.

(2.6)

{t-f(x-a$ +!f{x-a4 -tlY -%<x-a,V

o '6 o

-^(x-atf+t^ix-bj+t^x-btf
' (2.7)

o
i=i 6 i=1 2

Mu , ,2

+
-f-(x-a3)

+qlx + q2

The integration constants, qi & q2 can be found by applying the following boundary

conditions:

ys(x = a2)
= v

20



Solving for the integration constants yields:

o2 = ~%a2 -a;f-^-(a2 -bkf -^{a2 -bkf -qxa2 (2.8)
6 *=i o

k=l 2

(2-3)

1
<fe

6
fc3 ~{2 -i>3)-TL{3

t=i 6

+ f^L-b.)2-(a,-b.)2)

(2.9)

I S 2

The derivation for the moments and shear forces induced, and the equivalent

applied forces when the stepped shaft is transformed into a uniform shaft will now be

presented. The derivation begins by looking at the internal shear and bending moments

for an arbitrary segment in the stepped beam (Fig 2.4). An illustration ofthe shear and

bending moment diagrams is also offered (Fig. 2.5).

From the shear and bending moment diagrams it was found that:

V{x) = Vl=Vr (2.10)

and

M(x)=M,-V,x

From Castighano's Second Theorem:

dU

m
7=y

(2.11)

(2.12)

and

*>;r t

ou

dM
6 (2.13)
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The strain energy, U for one-dimensional bending is known to be:

'7777777777777777777777777777777'/. NJ/

Figure 2.4 Transformation of a Beam Segment
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V

/lx

J Vr

Figure 2.5 Shear and Bending Moment Diagrams for a Beam Segment
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r M
2

H^n* <214>
o

It should be noted that this expression for the strain energy does not include any

contribution due to transverse shear deformation. Substituting equation (2. 14) into

equations (2. 12) and (2.13), with eqns. (2. 10) and (2. 1 1) for the original beam segment

(prior to the transformation to the uniform shaft), yields the following y and 6:

*

EI\ 2 3 J

i f y p }

e = \Mrl--^-\ (2.16)
El\ 2 }

^

Similarly, when the analysis is repeated for the segment after its transformation the

deflection and slope,
y*

and
8*

are found to be:

v*=-\MZ-J.2Li (2.17)' EI*

{ 2 3 j

0*
= -\\MJ^-\ (2.18)
EI [

r

2 J

The differences in y and 8 must be compensated for with the induced shear force and

bending moment.

[EI EI }\ 2 3 )
(2.19)

A^ = ^J
l
Umi-LtL-). f2.20)

[/ / J[ 2 J
^

Therefore:
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i 1 1 \}Mf Vf\_\ 1
\\MJ>

VJT]
[EI ET)\ 2 6 J [ET}{ 2 6 j

(2-21)

[EI EI )[ 2 J [EI }[
md

2 J

Multiplying eqn. (2.22) by -1/2 and adding eqn. (2.21) yields:

(2.22)

V =/

1 1_
/ r

(2.23)

Substituting eqn. (2.23) into eqn. (2.21) yields:

MM=r
1 J.

i r
?w (2.24)

This anaiysis can be repeated to find an induced shear and bending moment at

each step in the shaft. The induced force and moment now become applied forces to a

beam segment with a moment of inertia of I This analysis can be extended to show that

aii applied forces must be scaled by a factor of In/I. Where In is the moment of inertia of

the uniform beam (largest moment of inertia in the stepped shaft), and I is the moment of

inertia ofthe segment that the force is appiied to. Therefore the induced forces and

moments become:

vk=i

Mk=In

1
7~

i

r

"i i
-~]M

(2-25)

(2.26)

where:

Vr =Rr{x- a2
)

+Rf{x-

a3

)

- fd{x -

a,

>*

- fc{x -

a4
-

ttf (2.27)
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Mr =RXbk-a2Xbk-a2y+Rf(bk-a3)(bk-a3y

-fc{K-<**-ti)(bk-a4-tl)-mb(bk-ay

The cutting, driving, and reaction forces from the stepped spindie shaft must also

be scaled to provide equivalent applied forces on the uniform shaft. The scaling of these

forces yieids:

E*=i~Fd (2.29)
Ifi

K=-rK (2 30)
*Rr

*Rf

Mbe=-^Mb (2.32)

2.2 Deflection ofBearings:

The deflection contribution of the spindle bearings was calculated by assuming

that the spindie is a rigid shaft supported by two flexible bearings (Figure 2.2b). The

cutting force Fc, and the driving force Fdwere used to soive for the reactions at the

bearing. The two reaction forces were used to calculate 6r and 5f, the deflections at

the two bearings. The deflection contribution of the bearings is a straight line through

8r and 8f.

(Sr-Sflx-a2)+Sr(a3-a2)
yt

-

t \ k^u)

{<*3-<*z)

26



Where

S
f

8 -
fcfo +a-a*)-mh-fA<>* ~a2))

(234)
(a3 -a2)Kr

fAas -a2)+mb-fc(p4 +tl-a3)-(fc + fd\a3_a2)

(a3-a2)Kf (2.35)

mb=fMA+d-<**K (2 36)

2.3Matlab Solution:

A program was developed usingMatlab to automate the static anaiysis of the

spindie shaft. The user must simply enter the geometry, loads, and support parameters

into a spreadsheet called a iSbatch
file"

A copy of the batch fiie template is presented in

Appendix A. TheMatlab programming code used to automate the static anaiysis can be

found in Appendix B.

An exampie of the anaiysis for a simpie spindie is presented here. Figure 2.6

illustrates the batch fiie for the static anaiysis. Upon the completion of the batch fiie the

program wiii read the fiie and report a geometric representation of the spindle. The plot

illustrates the geometry ofthe shaft as well as the locations ofthe bearings, cutting force,

and drive force (see figure 2.7). This feedback allows the user to easily check for

mistakes in the batch fiie. With ail the information correct the program calculates and

reports plots of the deflection contribution of the elastic shaft (figure 2.8a) and the

deflection contribution ofthe bearings (figure 2.8b). Finaiiy the program reports a piot of

the totai deformation of the spindle (see figure 2.9).

27



Batch File:

Geometry:

Number of Sectjons(#):

Section Length OuterDiameter InnerDiameter Area Moment of Inertia

(#) fin-) (ml (inl fin "21 fin "41

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3 2.25 2 0.83449 0.47265783

3 2.375 2.125 0.88357 0.560861726

3 2.5 2.25 0.93266 0.659419991

3 2.625 2.375 0.98175 0 76890787

3 2.75 2.5 103084 0.889900605

3 2.875 2625 1.07992 1022973438

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Bearings:

Lat Stiffness of Rear Bearing QbAri): 100000

Lat Stiffness of Front:BearingQb/n): 500000

Fraction of mom. on Front Bearing; 0.1

Location of RearBearing (in.) 75

Location of Front Bearing (in.) 13.5

Pulley:

Location of Pulley (in.)

Static Belt Tension (lb):

~x-nK$M-v<>:..-'.;;:

.

Tool:

'i^ml^i^M^^^M: "zM^ffi&ai&m,

Static Cutting Force fib): j 300

W^^^^^^t^^^- I 330
t^^^-f^U^i^f'^^-.-^j'

-','''.-
*&>*-?

^33:33-

^mmSi^timW^i *#>^flB*5SS4S3i

Length of Tool (in) 1 2

Speed:

Material Prooerties:

Modulus of Elasticity (psi):

Figure 2.6 Batch File forMatlab Solution
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input dimensions

7 -

6 -

-5-

4 -

3 -

1 1 1 1 T 1 1 1 1

-

OD

ID

? D Pulley
-e- -v- Rear Bearing

+ -*- Front Bearing
~ Tool

-

r * 1
...

,_,

1 1 1 1 1 1 1

8 10

x,(in)

12 14 16 18

Figure 2.7Matlab Representation ofGeometry

29



x 10
Deflection Contribution of Elastic Shaft

Figure 2.8a Deflection Contribution ofElastic Shaft

x 10
Oeflection Contribution of Bearings

-i
1

Figure 2.8b Deflection Contribution ofSupport Bearings
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x 10
Combined Spindle Deflection

0

Figure 2.9 Total Deflection ofSpindle
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In order to confirm the results offered by the program, a finite element analysis of

the sample spindle was performed usingAnsys. The spindle was modeled using
one-

dimensional linearly elastic beam elements. The bearings were modeled using linear

spring elements. The cutting force was transformed into a force moment couple and

applied at the end ofthe spindle shaft in order to account for the tool length. Figure 2. 10

compares the deflections of the shaft using bothmethods. It is clear from the plot that

there is an excellent correlation between the two analyses.
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8.00E-03
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>-
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*

? FEA

Matlab

X(in)

Figure 2. 10 Comparison ofTotal Spindle Deflection (FEA vs.Matlab)
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5.0 Dynamic Analysis:

The dynamic anaiysis for the spindie shaft consists oftwo portions. The first part

of the analysis is the modai analysis. The beam is treated as a continuous system for this

portion ofthe anaiysis. The second part of the anaiysis solves for the deflection ofthe

spindie by means ofmodal superposition. The following assumptions were made in

order to perform the anaiysis:

1 . The spindie shaft is assumed to be an Euler-Bernoulli Beam.

2. The spindie is subjected to a cutting force (FcSin(rj>ct)), a drive force (FdSin(Qdt)),

unbalance forces (FcubSin(cot) & (FdubSin(ot)), and the reaction forces at the bearings.

The drive force must be applied behind the rear bearing. The cutting force and drive

force are assumed to be harmonic.

3. The masses of the puiiey and cutting tooi are assumed to be concentrated. The mass

ofthe puiiey is assumed to be concentrated at the centeriine of the puiiey. The mass

of the tooi is assumed to be concentrated at the end of the spindie shaft. This point is

often referred to as the gauge iine.

4. There is no unbalance excitation introduced by the spindle shaft.

5. The rotational affects of the spindie shaft are neglected.

6. The torsionai and axiai deflections of the spindle shaft are neglected.

7. The centeriine ofthe spindle shaft is exactly iniine with the centeriine of the bearing

bores. There is no contribution to the lateral deflection due to manufacturing

misalignment.
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8. The spindie housing and the cutting tooi are both assumed to have an infinite

stiffness.

9. It is assumed that the spindie is supported by only two bearings. This is common for

most machine tooi spindles. Manufacturabiiity typically precludes the use ofmore

than two bearings in most spindies.

10. The contribution of transverse shear deformation to the overall lateral deflection is

assumed to be negligible.

1 i. Damping is neglected in the dynamic anaiysis.

The modei scrutinized in the dynamic anaiysis is very simiiar to the modei used in the

static analysis. One major difference is the use of a torsional spring to represent the

torsional stiffness of the front support bearings. In addition the masses of the puiiey and

cutting tooi are included. See figure 3. 1 for the dynamic modei under scrutiny.

3.1 Modal Anaiysis:

The foundation for the modal anaiysis is the derivation of the wave equation for

the iaterai vibration ofa continuous Euler-Bernoulli beam. Figure 3.2 represents the free

body diagram of an differential element ofan E-B beam. ApplyingNewton's second iaw

to the beam element it can be shown that:

~^
=

-pA~^ (31)
dx at

and

V^ (3.2)
OX
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bn

bk

b2

b1

3

FdSin(wdt)
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"X 12

Kr

FdubSin<wt)
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^

Mt

Tool i _~.

FcSin(wct)

FcubSin(wt)
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Figure 3.1 Dynamic SpindieModei
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Figure 3.2 Differential Element of an E-B Beam
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It can also be shown from Strengths ofMaterials that:

Substituting eq. 3.3 into 3.2 yieids:

M =EI^4 (33)

ox-

Finaliy, substituting eq. 3.4 into 3.1 and rearranging yields:

V =EI^4 (3.4)

d"v hJ d"v

-+^r^r
= 0 0.5)

dr pA
dx*

The following harmonic solution to eq. 3.5 was assumed:

y(x,t)
= y(x)smo)t (3.6)

Substituting the assumed solution (eq. 3.6), into the differential equation (3.5) yieids the

following forth-order differential equation:

dx4 P*y = 0 (3.7)

where:

P=B*EL (3.8)p
EI

It can be shown that the general solution to the preceding forth-order differential equation

is:

y(x)
= A cosh fix +B sinh fix+C cos fix +D sin fix (3

.9)

38



Equation 3.9 represents the wave equation for an E-B beam. The mode shapes for a

beam can be found by substituting values for p that correspond to the resonant

frequencies. The constants A,B,C, and D can be solved for by applying the boundary

condition for the beam.

A systematic method involving numerical methods was developed to soive for the

resonant frequencies and their corresponding mode shapes. This method is not exclusive

to the spindie probiem at hand. It can be extended to the lateral vibration ofmany
Euier-

Bernoulii problems. Listed below are the steps to this method:

1 . Establish the boundary conditions for the system.

2. Collect the system of equations into matrix form.

3 . Using Gaussian Elimination numerically reduce the matrix.

4. Using the BisectionMethod or a comparable root finding method soive for the

resonant frequency, p.

5 . Back substitute to find the constants A,B,C and D for the beam segment.

Figure 3.3 represents a simple beam used to illustrate this approach. Tne beam under

scrutiny here is a uniform E-B beam fixed at both ends. The first step is to find the

boundary conditions. Since the beam is fixed-fixed, the displacement and rotation at x
=

0,i are both equal to zero. Expressed mathematicaiiy:

K0) = 0 (3.10)

7(0) = 0 (3.11)

y(i)=v ^3.iz)

7(0-0 (3.13)
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x=u

Figure 3.3 Sample Euier-Bernouiii Beam



Substituting Eq. 3.9 into Eqs. 3.10-3.13 yieids:

V(U)
= A + C = 0

y [V)
= B + jj = v

y(l)
- a cosn(p/) + d smn(/) + c cos(/?/) +u sm(fit) = v

V-iV

(j.io;

y (/) = A sinh( />/) +B cosh(/?/)
- C sin(fii) +D cos(/w)

= 0 (3 17)

The next step is to collect this system of four equations into matrix form. This yieids Eq.

3.18:

10 10

0 10 1

cosh(/3?) sinh(yS0 cos(/#) sin(/?/)

sinh(>9/) cosh(y9/) -sin(yS7) cos(/37)

\A 0

B
< ? =

0
>

0

> 0

(3.18)

Step (3) reduces the matrix in eqn. 3. 18 using Guass-Jordan elimination. The reduced

system is illustrated in eqn. 3.19:

0

1

sin(/ff)-sinh(/ff)

cosOGf/)-cosh03T)

0 0 0 cos0G0cosh(y3/)-l

1 0 1

0 1 0

0 0 1

rA"
V

B 0
. = <

o}

D
K. J

0
L J

(3.19)

The reduced system can be used to soive for the resonant frequencies, pj

(cos(fil)cosh(fil) -l)D = 0 (3.20)

IfD was equai to zero, then AB, and C would aiso equal zero. This would not be a

meaningful result. Therefore it can be concluded that:

(cos(j0/)coshOSZ)-l) = O (3.21)



This is where the root finding method suggested in step (4) comes into piace. The

roots of eq. 3.21 iead to the resonant frequencies of the system. Solving for the roots

yieids:

fiti,fi2l,fi3l = 4.7,7.8.1 1.0

After solving for the roots the final step is to back substitute to obtain the

constants A3,C and D. Begin the substitution by assuming that D=i . Working

backward from D it can be shown that the remaining constants are:

sinh(ffi)-sin(/7/)

cos(p/)-cosnij&/)

B = -l

.

_

sin(/ff)-sinh(/?/)

cos(/)
-

cosh(/?/)

Substituting these constants into eq. 3.9 yieids the mode shape for the sample beam. The

equation for the mode shapes becomes:

sin(/y)-sinh(/?y/)

cos(B
7l)

-

coshifi ,1)
J }

j=U,.. (3.22)

cosifijl)
-

cosh(yff;7)

Figure 3.4 illustrates the first three mode shapes for the sample beam.

The method described here can be applied to find the mode shapes for ail uniform

E-B beam problems. However if the beam is stepped, as is the case with the spindie

shaft, there needs to be a set ofboundary conditions for each beam segment. This leads
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First Three modes for Sample Seam

-0.5 V /
\

/
\
w>

mode 1

- - - - mode 2

mode 3

-1.5

x (norm alized)

Figure 3.4 Mode Shapes for Sample Beam
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to a very iarge system of equations. Aside from the problem ofhaving a very large

system, the number of steps wouid change for different spindies. This wouid make

automation very difficult. A transformation matrix was developed to handle the steps in

the shaft. The transformation matrix relates the constants on one side of a step to the

constants on the other side ofthe step. This makes the number ofequations in the system

independent of the number of steps in the shaft.

The deveiopment ofthis transformation matrix begins by looking at an arbitrary

step in an Euier-Bernouiii beam (see figure 3.5). In order for continuity to exist the

deflection, slope, moment, and shear force at the joint must be the same for both beam

segments.

yi\i)
=

y2Kl) v>-<;

JV(/) = Jy(/) (3-24)

{EIl^Ml ={Ell^Ml (3.25)
ax" ax"

mm={EI),qM 0.26)
ax

'

ax

Substituting eq. 3.8 yieids:

ax cosn(pj/)
-+-

yjj smh(yDj/) +C, cos(y&,/) + uK sm(p,/)
=

A2 cosh(/y) + B2 sinh(/y) + C2 cos(J32l) +D2 sin(fi2l)

fit(A sinK^,/) + 5, cosh(/9/)
-

C, sin(#/) + Dx cosifij)) =

fi2 (A2 sinh(/y) + B2 cosh(j32l)
-

C2 sm(fi2l) + D2 cos(B2l))

fi^A, cosh(#/) + Br sinh(#/) -C, cos^fij)
-

Dx sin(#0) =

fi2{A2 cosh(fi2l)+B2 sinh(/?2/)-C2 cos(fi2l)-D2 sin(/?2/))
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3

/

/

\
\ \

El
El

Figure 3.5 Step in E-B Beam
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/V(4 sinh(#/) + fi, cosh{#/) +C, sin(#/)
-

>, cos(#/)) =

/?23(^2 smh(&/)+2 cosh(p2l) +C2 sin(fi2l) ~D2 cos0?2/))

The system of four equations and eight unknowns can be coiiected into matrix form

(3,30)

0091(0,;) smh(/y) cos(/y) sm(AO -cosh(/M) -sdnfa(p,i)

smh(#/) codtfyW) -saAfi,}) ooe<J,l) -smh(J?,/) -cosb^,/)

-cos(p,/)

, 2

-oos(JJ)

(&\0i (Ethfii (EJ\J: (EI\P?

srrin^i) coshil,!) snu^i) -cosf,^,ij
-

- -

siring)
-

-r-

ooA^fi^j
-

-r-

smtn^j 3
o^l^)

(7).tf. (EI\fii {EI\B{ (EI).^

'a 0

A 0

Q 0

A
.=.

0

0

5, 0

c2
n

iA,
0

(331)

Using Gauss-Jordan elimination foiiowed by back substitution a relationship can be

found between Ai-Di and A2-D2. Two ratios, Ri and n, were defined to simplify the

reiationsmp.

^ =
(^h

(0,
(3.32)

1=^ (3.33)
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A, =
tl/?1

+1i(cosh0g1/)cos(^2/)-/?1 sinh(#/)siiih(2/)K
\rR2

+\]

+-* '{cosK^Osin^/?,/)-^, sinh(#/)cosh(y92/)}82

_K _ ^{coshOgjOcosOg,/) + R} sinKAOshX^/)^

-

Cli?1

~1i{eo8hOg1Osin(^2/)-^l sinKAOco^OK

2

E1^1 J{sinh()g/)sirt(/y) -

i?, cosh(BJ)cos(B2l)p2

+**-*

'{, co&(0tl)w(B2l) + sinh^Ocos^OJCj

+

2

C, =
tli?1

'fa sin(#/) sinh(/y)
-

cos(y9I/)cosh(y92/)}^2

+M_ziJ^?] si^B1l)cosh(fi2l)-&nhifi1l)cos(fi2r)}B2

+
^ +1^{cos(#/)cos<2/)+ fl, sin(#/) sm(/y)}C2

+-l^^^s(^1/)sin(^/)-i?Jcos{^1/)sin<y92/)}D2

(3.34)

(3.35)

(3.36)
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Vr2

-ii
- i-J J {#, cos09,/)cosh(/?2/) + sin(#/) sinh(2/)}52

L 2 1 (337)

~^Rl2+%l co^OshX^/)
-

sin</y)sin</y))C2

+
*li?1 '{ft, co^OcosOff,/) + sin(#/) sin(/?2/)}D2

The coefficients from eqns. 3.34-3.37 can be collected into a transformation matrix [Tj,

such that:

(3.38)

The use of the transformation matrix can be iiiustrated by expanding the sample

beam problem to inciude steps in the beam (see figure 3.6). Applying the boundary

conditions wouid result in the following system of equations:

'

Ax 'K

< = {Tj
B2

>

IA, D,

10 10 0 0 0 0

0 10 10 0 0 0

0 0 0 0 eosh0ff3/3) sinh(^3/3) cos(B3l3) sm(fi3l3)

0 0 0 0 sinh(&/3) cosh(/?3/3) -sin(j03/3) cos(jff3/3)

'K

By 0

1C)
0

<

}A]
= <

0

0

\B>] 0

c3 0

A; 0
* J

(3.39)

If transformation matrices were not used, the only way to solve the system of equations

wouid be to relate A>-Di to A3-D3 by including the continuity equations. This wouid

increase the size of the system to 12 equations and 12 unknowns. It wouid also make the
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Figure 3.6 Sampie Stepped Euier-Bernouili Beam
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size or tne system aepenaent on tne nunroer or steps in tne snan. 1 nis in-turn wouia

make automation more difficult. If the transformation matrices were used the system of

equations wouid be reduced to 4 equations and 4 unknowns, regardiess ofthe number of

steps in the shaft. The first two equations in the system become:

10 10

0 10 1
K\T]

B3

c3
> = < (3.40)

The last two equations wiii be the same as represented in eqn. 3.39. Once the system of

equations is deveioped steps 3-5 of the pre-described method can be used to solve for the

resonant frequencies and their corresponding mode shapes.

The five-step process and transformation matrix can now be combined and

appiied to find the frequencies and modes shapes ofthe spindle depicted in Figure 3.1.

In order to encompass aii of the externally applied boundary conditions the beam must be

divided into four sections. Figures 3.7a-3.7d depict the four subdivisions. The first

section is between the rear free end and the drive puiiey. The second section is between

the puiiey and the rear support bearing. The third section is between the rear and front

support bearings. The forth and final section is between the front support bearing and the

cutting tooi. There wiii be four constants for each ofthe four sections for a total of

sixteen constants.

Beginning with the free end of section one, the shear force and bending moment

at x
= 0 are both equal to zero.

Expressed mathematicaiiy:
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V,(0) =
EI^- = 0 (3.41)

ax

and

M,(0) =
EI^- = 0 (3.42)

Substituting eqn. 3.9 into equations 3.10 and 3. 1 1 and setting x equal to zero yieids:

5,-D, =0 (3.43)

and

?~ s\

At the junction between sections 1 and 2 there are four boundary conditions. The

first three conditions involve the deflection, slope and bending moment at the joint

between sections i and 2. Since there are no externally applied moments, and the

structure is continuous, the deflection, slope, and bending moment at the joint must be

equai for both sections. Therefore:

Mai)=yiUh) (345)

JV(,) = JV(a.) (346>

Eiyx \a1)
=

niy2 \a,) (j.<w;

Substituting equation 3.9 into equations 3.45-3.47 yieids:

A, cosh(/5b, ) +Bi sinh(Sal ) + C5 cos(pat ) +Dt sin( fial )
-

A2 coshOfibj )
-

B2 sinh( fiax )
-

C2 cos(fiax )
-

D2 sin( fiax ) = 0

At sinh(/x7j )
-+-B. cosh(y(5bi )

-

C, sin(/3ar. ) +D, cosOSa, )
-

,42 sinh(Bax)-B2 coshfjSa, ) +C2 sin(fiax)-D2 cos(J3ax ) = 0

(3.48)

(3.49)

51



VI

4
a1

3

V2

Md /

/

Figure 3.7a Boundary Conditions for Section 1
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Figure 3.7b Boundary Conditions for Section 2
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Figure 3.7c Boundary Conditions for Section 3
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/////////
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Figure 3.7d Boundary Conditions for Section 4
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Ax cosh(/xjt) + .81 sinh(/x*5)-C5 cosOSa.)-D, sin^)

-

A2 coshfjfifatj )
-

B2 sinh(y8afj ) +C2 cosO^ ) +D2 sm(Bax ) = 0

The forth boundary condition at this joint is affected by the mass of the puiiey. The mass

ofthe puiiey introduces an external shear force. Figure 3.8 iiiustrates the free body

diagram at the joint. The shear force introduced by the mass is equal to the
D'

Aiembert

force associated with the puiiey mass.

Therefore:

Vm =

mpy
=

-mdm2y2(ax ) (3.51)

For equilibrium at the joint:

rr y \ -w t / \ rr /** J*>\

y^ai)-y2(ql)
=

vm (i.oz)

Ely^(ax)-Ely2^(ax) = -mda}2y2(ax) (3.53)

Substituting equation 3.9 into equation 3.53:

Ai sinh(/w, ) +Bx cosh(pax ) + C5 sinf/Sz, )
-

D, cosGSa, )

-4[sinK^I)-^^cosh(^0]-57[cosh(/fa1)-^^sinh(/b1)] (3.54)
p EI

-

fi'EI

^^cos(fiax )] +Afoostfb, )
-^

fi3EI
' 2 x

fi3EI

+C2[sin(^I)--f

cos^^ +Atcos^)--!sm(p\)]
= 0

The first three boundary conditions for the joint between the second and third

section are the same as the boundary conditions between the first and second joint.

Therefore:

A2 cosh(fi(a2
-

a, )) + B2 swh(fi(a2
-

ax )) +C2 cos(fi(a2
-

a, ))

+D2 sin(fi(a2
-

ax ))
-

A3 cosh(fi{a2
-

ax ))
-

B3 sinh( fi(a2
-

a, )) (3.55)
-

C3 cos(/?(a2
-

ax ))
-

D3 sin( fi(a2
-

ax )) = 0

54



V1(a1)

V2(a1)
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Figure 3.8 Free Body Diagram ofJoint 1
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a2 %\wi\p\a2 -ai))+n2 cemj>[a2 ~ax))-K.2 $m(p(a2 -a, jj

+D2 cos(fi(a2
-ax))-

A3 sinh( fi\a2
-

ax ))
-

B3 cosh(/5(a2
-

ax )) (3.56)

+C3 sm(fi(a2
-

ax ))
-

D3 cos(B(a2
-

a. )) = 0

A2 cosh(p'(a2
-

a, )) + 52 sinh(p(a2
-

a, ))
-

C2 cos(p(a2
-

a, ))

-D2 sin(/?(a2 -a,))-/43 cosh(/?(a2 -a,))-53 sinh(p(a2 -ax)) (3.57)

+C3 cos(fi(a2 -ax)) + D3 sin(p(a2
-

a, )) = 0

For the forth boundary condition at this joint the shear force introduced by the rear

support bearing must be accounted. Figure 3.9 iiiustrates the free body diagram at the

joint. The shear force introduced by the bearing is proportionaito the shaft's

displacement at the joint.

rr
r^-

s \ ?<* ^C\

vkr=Kry3ia2) (xrt)

For equilibrium at the joint:

rr / \ rr s \ rr s*y J?C\\

EIy2!,,(a2)-EIy3"!(a2) = KTy2(a2) (3.60)

Substituting equation 3.9 into equation 3.60:

A2 sinh( fi(a2 -ax))+B2 cosh(fi\a2 -ax)) + C2 sin(p(a2
-

ax ))

-D2 cos(B(a2 -ax))-A3[swh(fi(a2 -ax)) + -^-cosh(fi(a2 -a,))]
fi'EI

-53[cosh(/?(a2 -ax)) + -Smh(B(a2 -ax))]+C3[sm(B(a2 -ax))

K*U

fi'EI

+-^-cos(>9(a2 -aI))]+D3[cos(B(a2 -ax))^-sin(fi(a2 -ax))]
= 0

fi EI fi EI

The first two boundary conditions for the joint between the third and fourth

section are comprised of the continuity conditions (y3=y4 and y3'=y4?).
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rigure 3.9 Free BodyDiagram ofJoint 2

57



Therefore.

A2 cosh(/?(a2
-

a, )) + B2 sinh(p(a2
-

ax )) +C2 cos(/?(a2
-

a, ))

+D2 sin(p(a2 -ax))-A3 cosh(/?(a2 -aj)-53 sinh(/>(a2 -a,)) (3.62)
-

C3 cos(/>(a2
-ax))-

D3 sin(fi(a2 -ax)) = Q

A2 sinh(/>(a2
-

a, ))+B2 cosh(fi(a2
-

a, ))
-

C2 sin(^(a2
-

a, ))

+D2 cos(B(a2 -ax))-A3 sinh(/?(a2 -ax))-B3 cosh(/J(a2 -a,)) (3.63)

+C3 sin(/?(a2
-

ax ))
-

D3 cos(/?(a2
-

a5 )) = 0

The third and forth boundary conditions are influenced by the bending moment and

shear force associated with the torsional and iaterai stiffness of the front support bearing.

Figure 3.10 illustrates the free body diagram at joint 3.

For equilibrium at the joint:

rr / \ rr / \ rr f+
s~

*~\

^v3 ^3 )
-

r,iy4 ia3 ) = a , v4 ia3 ; vj od;

and

i
/

"* \ * / ^ /I jCiCi

^3l3;-Aj4(a3;=iWtr/ lJOOJ

EIy%"{a3) -EIy4'(a3) = Kfy4(<*3) (3 67)

Substituting eq. 3.9 into eqs. 3.65 and 3.67 yieids.

A3 sinh(/?(a3 -a2))+B3 cosh(pi>3 -a2)) + C3 sin(^(a3 -a2))

-D3 cos(B(a3 -a2))-A4[smh(B(a3 -a2))+^-cosh(>9(a3 -a2))]

ATy .,,,. in ^
(3-68)

54[cosh(^(a3 -a2)) + ^-sinh(y9(a3 -

a2 ))]+C4[sin(y?(a3 -a2))

+^-cos(^(3 -2))]+>4[cos(>9(^ -a,))-^-sin(>9(a, -a,))]
= 0

fi LI
'

fi EI
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Figure 3. 10 Free Body Diagram ofJoint 3
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ana

A3 cosh(p (a3 -a2)) +B3 sinh( fi(a3
-

a2 ))
-

C3 cos(/?(a3
-

a2 ))

-A sin(/?(fl3 -a,))-4[cosh(/?(a3 -a2))+^-sinh<Aa3 -a,))]

-54[anh(#a, -fll))+ -^7Cosh(>9(fl7 -a^M+CJcos^^, -a,))

^'^

+ -^sinO?(a, -a,))]+ Z)4[sra(jS(a, -a7))--^-cos(/?(a, -a,))] = 0
/?'/

" "

B"EI

The final two boundary conditions are related to the cutting end of the spindie.

The first ofthese conditions relates to the bending moment. Since the rotary inertia of

the cutting tooi is neglected the moment at the end of the spindie is equal to zero.

Therefore:

Ml(0) =
EI^-^- = 0 (3.70)

dx"

A4 cosh(p(a4
-

a3 )) + B4 sinh(p(a4
-

a3 ))
-

C4 cos(fi(a4
-a3))-

D4 sin(/?(<z4
-

a3 )) = 0

The last boundary condition involves the shear force at the end of the shaft. The shear

force is equai to the D'Aiembert force associated with the mass of the tooi.

Therfore:

V(a4 ) =mty(a4 ) = -mp2y(a4 ) (3
.72)

Substituting equation 3.9:
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A4[smh(P(a4
-

a3 )) +^-cosh(y?(a4 -

a3 ))]+Bs[cosh(8(a4
-

a, ))
fi El

2 2

+^-sinh(/?(a4 -a3))] +C4[sin(y?(a4 -aJ) +%-cas(P(a4 -a,))] (3.73)
fi EI fi'EI

m,(o"

.

i r-*

fi'EI
-D4[cos(fi(a4-a3))^wi(P(at-a3))]

= 0

In order to soive the set of simuitaneous equations, the set of sixteen equations and

sixteen unknowns were collected into a matrix.

3.2Matiab Soiution forMode Shapes:

A program was developed usingMatlab to automate the modal anaiysis of the

spindie shaft. Data is coiiected and entered into a spreadsheet. This sheet acts as the

batch fiie for the modai analysis. Much like the static anaiysis, the user must enter the

geometry, mass information, and support parameters into the batch fiie. A copy ofthe

batch fiie template is presented in Appendix A TheMatlab programming code used to

automate the modai anaiysis can be found in Appendix C.

An example of the anaiysis for a simpie spindie is presented here. Figure 311

iiiustrates the batch fiie for the modai anaiysis. The "grayed
our"

information does not

pertain to the modal analysis. Upon the completion of the batch file the programwill

read the fiie and report a geometric representation of the information. With aii the

information correct the program calculates and reports the resonant frequencies for the

sample spindie. The sample spindie was also modeled usingAnsys. A comparison

between the FEA and analytical results for the first three modes is presented in Figures

3. 12 through 3. 14.
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Batch File:

Geometry:

Number of Sections(#): ZJ

Section Length Outer Diameter Inner Diameter Area Moment of Inertia

(#) On) On) On) 0n~2) 0n~4)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3 2.25 2 083449 0.47265783

3 2.375 2.125 088357 0.560861726

3 2.5 2.25 0.93266 0.659419991

3 2625 2.375 098175 0.76890787

3 2.75 2 5 1 03084 0.889900605

3 2.875 2.625 1 07992 1 .022973438

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Bearings:

Lat. Stiffness of Rear Bearing (lb/In):

Lat Stiffness of Front Bearing (lb/in):

Tor^tiffnessofFrontBearing On- lb)

Location of Rear Bearing (in.)
Location of Front Bearing (in.)

Pulley:

Location of Pulley (in.)
Mass of Pulley (Ib-^gVinfr

Tool:

100000

500000

7.5

13.5

4.5

J
m

i33.33

emmmmsb

0 025879917

^ttR
MaRaseSc^:uJi^:."ftwe*>fe.); :

Length of Tool (in) | 2 I

Speed:

Material Properties:

Modulus of Elasticity (psi):

Density (lb^n~3):

30000000

0.289

Figure 3.11 Batch File for Sample Spindle
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Figure 3.12Mode 1 Comparison
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Mode 2 Comparison
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CF Solution
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Figure 3.13 Mode 2 Comparison
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Mode 3 Comparison

(FEA vs. Closed Form)
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Figure 3.14Mode 3 Comparison
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The resonant frequencies for the first three modes are compared in table 3.1. It is

clear from the table that the two methods correlate very closely for the two methods.

Table 3.1 Comparison ofResonant Frequencies (FEA vs. Analytical)

Mode FEA Analytical j Difference

(Hz) (Hz) (%)
1 19.26 19.17 0.4672897

2 61.28 61.72 0.7180157

3 95.57 100.33 4.9806425

3.3 Forced Response:

The forced response of the spindle is calculated using a numeric modal

summation procedure. The development of the forced response begins with the equation

ofmotion for a beam, Dahleh et. aL (1989).

[/v"(x,of +m(x)y(x,t) = f(x,t) (3.73)

The normal modes for the beam, <|>i(x), must satisfy the following equation:

(EI6)"-a>Mx)t'i=0 (3.74)

In addition to eqn. 3.74, since the normal modes are orthogonal they must also satisfy the

following equation:

i&rfjdx - 0 for * j
0

The solution to the forced response can be represented in terms <j>,(x) as:

y(x,t)
= 2>,(x)<7,(0

(3.75)

(3.76)
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Where q,(t) is the generalized coordinate. The generalized coordinate can be realized

using the Lagrange Equation. Looking first at the kinetic energy yields:

T = \]y\x,t)m{x)dx
2

0

Substituting eqn. 3.76 for y(x,t) yields:

T =

^HHaiaj
>JMj*"(x)dx

2', ;

T = \ZMa (377>

Where the generalized mass, Mj is defined as:

Ml=^2(x)m(x)dx (3.78)
o

The potential energy, U can be defined as:

U = ^EIy"2(x,t)dx
2

0

2
.

Where the generalized stiffness, Kj equals

1
' J 0

^4w (379)

K,=\EI[<p"(x)]2ax (3.80)
0

Ifeqn. 3.74 is substituted into eqn. 3.79 it can be shown that:
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tf =

A generalized force, Qi can be defined by looking at the work done by a virtual

displacement, 6qi.

(3.81)

<*,
= J/(*,o2>^*

rearranging:

<^,=2>,a (3.82)

where:

ft=J/(x,fM(*>*

From the Lagrange Equation:

f dT\

dt

8T dU

(3.83)

(3.84)

Substituting for the kinetic energy, potential energy, and the generalized force yields the

following differential equation.

<ii+a>i2<li=T

j/(*,0*,(x>fc

j<f,2(x)m(x)dx

(3.85)

where:

. (3.86)
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The model ofthe spindle assumes four simple harmonic loads. The harmonic

loads include the drive force, cutting force, unbalance ofthe pulley and unbalance of the

cutting tool (see fig. 3.1). All four of the forces are assumed to be in phase with each

other and of the form:

f(x,t) = F(x)sm(cot) (3.87)

Each of the forces are applied to a single point. Assuming the force is applied at x = x,, it

can be described using the delta dirac function as:

f(x,t) = Fsin(a>t)S(x-x0) (3.88)

By definition the delta dirac function is equal to zero for all x not equal to Xo. Further it

can be shown that:

]F(x)S(x-xo)dx = F(x0) (3.89)

Substituting this relationship into eqn. 3.85 yields:

4t^=4WW

(3.90)

j<f>2(x)m(x)dx

Assuming the following solution to eqn. 3.90:

qi(t)
=

q,sin(0Jt) (3.91)

yields:

ft
= M"f (392)
\co2

-G)2)\<t>2mdx
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The denominator of eqn. 3.92 must be broken down for the four sections ofthe spindle

and each of the segments (steps) in the shaft described in the modal analysis.

a,
= tl^K (3.93)

W _ft)2E'wS J (Ak cos^ix)+Bk sinh09,x)+Ct cos(0ix)+Dk
sin(#x))2

dx

n=\ k=\ o

For this analysis only the summation of the first four modes were utilized. After

the first fourmodes the difference between the resonant frequencies and the drive

frequencies become large and q, approaches zero. Therefore the steady state response

becomes:

Y =Mx + <t>2<l2 +&<73 +Ma (3
-94)

The deflections, Y were calculated for each of the four excitation forces and superposed

to yield the total forced response:

y,=y*+Ym+Y*+YA* (3-95>

3.4Matlab Solution for Forced Response:

A program was developed usingMatlab to automate the calculation of the forced

response for the spindle shaft. The magnitude and frequency of the excitation forces is

entered into a batch file. In addition to the load information the program reads the first

four modes calculated in the modal analysis program. TheMatlab programming code

used to automate the forced response can be found in Appendix C.

An example of the analysis for a simple spindle is presented here. Figure 3.15

illustrates the batch file used for this example problem. The "grayed
out"

information

does not pertain to this analysis. It should be noted that the program will not function
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Batch File:

Geometry:

Number of Sectjons(#): 3

Section Length

Of) (in)

Outer Diameter

On)

InnerDiameter Area

fin) (in~2)

Moment of Inertia

fin-4)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3 a25 2 0.834486 047265783

3 2.375 2.125 0.883573 0.560861726

3 2.5 Z25 093266 0.659419991

3 2.625 2.375 0.981748 0.76890787

3 2.75 2.5 1030835 0.889900605

3 2.875 2 625 1079922 1.022973438

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

Bearings:

Lat Stiffness of RearBearing (ItMn):

Lat Stiffness of Front Bearing (lb/In.):

Tor Stiffness of Front Bearing (in- lb):

10000C

Location of RearBeanng(in)
Location of Front Bearing (in.)

Pullev:

Location of Pulley (in.)
Mass of Pulley (\b-s~2Ari

Harmonic Drive Force (lb):

Drive Frequency (Hz):

Pulley Unbalance (rb-s~2):

Tool:

Mass of Tool Oj>^n):

Harmonic Cutting Force (lb):

Cutting Frequency (Hz):
Tool Unbalance (lb-s"2):

Length of Tool (in)

Speed:

Spindle Shaft Speed (Hz):

Material Properties:

Modulus of Elasticity (psi):

Density (lb/fn'3):

30C

133.33

0.004559453

16.666665671

30000000

0.289

Figure 3.15 Batch File for Sample Spindle Forced Response
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properly if the modal analysis from section 3.2 is not completed first. The sample spindle

was also modeled usingAnsys. A comparison between the FEA and analytical results for

the forced response is presented in Figure 3.16. The comparison between the FEA and

analytical responses shows a close correlation between the two methods. There is a 6.5%

difference in the deflection at the tool for the two methods.
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-0.004

-0.006

-0.008

-0.01

X (in.)

Figure 3.16 Comparison ofForced Response FEA vs. Analytical

73



4.0 Optimization Anaiysis:

The optimization anaiysis consists ofminimizing the deflection of the spindie

shaft at the gauge line (see figure 4. 1). This anaiysis builds upon the static as weii as the

dynamic anaiysis. Optimal parameters are offered for both cases. The foiiowing

assumptions appiy to the optimization anaiysis:

i . The design variables for this anaiysis are the iaterai stiffness and the position ofthe

two bearings. All other parameters are assumed to be constant.

2. Each design iteration is approximated using the Tayior series expansion. This

approximation is required to define a quadratic programming subprobiem.

3. The optimization point may ormay not be the global minimum. However the vaiues

assure a local minimum.

4.i Optimization Modei:

The development ofthe optimization problem rests in minimizing a cost function,

f(x), where x is the design variable vector. For the optimization of the machine tooi

spindie the cost function, f is defined as the deflection at the spindle's gauge line.

/(i) = ^(a4) (4i>

Given vaiues for the design parameters, a value for yt(a4) can be obtained numerically

using theMatlab routines developed in Chapters 2& 3. The design variabies, x are listed

in table 4. 1 . The remainder of the spindie design parameters are assumed to be fixed.

This is a fairly accurate assessment since for an existing spindie design the other

parameters wouid significantly influence the supporting components (i.e. gearbox and

spindie housing).
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Figure 4.1 Optimization Modei ofSpinaie



Tabie 4.1 Table ofDesign Variables

Design Variable Vector Parameter

xfl) a(2), postion of rear org

x(2) a(3), position of front brg

x(3) 1Kf, lateral stiffness of front bra.

x(4) jKr, lateral stiffness of rear brg

Generai constrained optimum design defines the following equality and inequality

constraints respectively:

g,.(x)<u v^.j;

For this optimization problem there exists no equality constraints. The following

equations define the inequality constraints.

xx>ax+D (4.4)

x2<a4-GH (4.5)

x3<KfimK V)

*4
< Krnax (4.7)

To summarize these constraints, the first constraint (eqn. 4.4) stipulates that the location

of the rear bearing must be beyond the location of the puiiey by a distance, D. This is

required to ensure that the pulley is
"outboard"

of the support bearings and there is

sufficient spacing to accommodate the width of the puiiey and
the width of the bearing.

The second constraint (eqn. 4.5) requires that there exist a sufficient overhang to

accommodate features in the spindie shaft to accept and support the tooi. Tne third and

forth constraints (eqns. 4.6-4.7) ensure that the
bearings'

stiffness vaiues are physically



obtainable. Without these constraints the optimization could potentiaiiy specify a bearing

with an infinite lateral stiffness.

Prior to developing the process used for this optimization anaiysis it is important

to first introduce the Lagrange function and the LagrangeMultiplier Theorem, Arora,

(1989). For general constrained optimization the form of the Lagrange equation is:

n m

1=1

Since there are no equality constraints in this anaiysis the Lagrange equation reduces to:

m

i=l

From eqn 4.9, f\x) is the cost function, m is the number ofconstraint equations, uis the

lagrange mulitplier for the
f1

constraint equation, gi is the
i"1

constraint equation, and Sj the

slack variable for the
t"
constraint equation. The slack variable is a constant that

converts the inequality constraint to an equality constraint.

gj(x) +S2=0 (4.10)

If the design point, x is a locai minimum the LagrangeMuiitpiier Theorem stipulates the

following Kuhn-Tucker Conditions:

forj
= lton (4.11)

fori=ltom (4.12)

fori=ltom (4.13)
els.

3L

dxj

= 0

dL
= 0

CL,
= 0
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Ifthe
f"

constraint is inacti%'e Si is equal to zero. If the
f*5

constraint is active Hi is equal to

zero. Therefore:

u1si
= 0 (4.14)

The Lagrange multipliers and the slack variables can be found by solving this system of

equations (eqns 4. 1 1-4. 14).

In order to apply numerical methods to soive for the design change an

approximate quadratic programming subprobiem (QP subprobiem) was defined. The QP

subprobiem can be obtained from a Taylor series expansion of the cost function. It has a

quadratic cost function and linear constraints. The probiem is defined as the

minimization of:

/ =
c*d'*'

+ 0.
5(d*d/'

(4. 15)

where:

/ =
f(xw

+
dw

)
-

/<xw

) (4. 16)

subject to the following constraints:

A*dw<p (4.17)

/t-\ *i-

where
<r*";

is a vector ofchanges in the design variables for the
km

design point, c is a

vector containing the gradient of the cost function f^x^*), and A is the gradient of the

inequality constraints.

In order to soive the QP probiem a search direction and a step size must be

determined. The constrained steepest descent method was used to soive for these two

entities. When no constraints exist the search direction is simpiy in the direction of the
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negative ofthe gradient vector (d=-c). In the case of the spindie optimization constraints

exist and they must be included in the development ofa search direction.

In order to accommodate the constraints in solving for a search direction a descent

function must be defined for the constrained probiem. A descent function must possess

two properties. First, it must be equai to the cost function at the optimum point. Next it

must allow for a unit step size near the optimum point. This is important because a unit

step size wiii yieid a high rate of convergence. The Pshenichny's descent function <p was

chosen since it obeys these two rules.

<pix; = / tx; + av ix, i <t 1o;

In eqn 4. 18, R is the penalty parameter and V is the maximum constraint violation. The

user specifies the initiai vaiue ofR. A subsequent value for R is calculated at the end

each iteration in the optimization process. In order to satisfy the necessary condition the

penalty parameter must be greater than or equai to the sum ofLagrange multipliers at the

k*

iteration.

R>rk (4.19)

For the m constraint equations, rk is defined as:

r,*=2>/ (42)
j=i

where
Ujk

is the Lagrange multiplier for the
1th

constraint at the
k*

design point. The

Lagrange muitipiiers can be found by solving the system of equations previously

mentioned (eqns. 4. 1 1-4. 14).

The maximum constraint violation at the
kfe

iteration, \\ is defined as:



Vk=TMXp,gx,g2,....,gm} (421)

The next step in solving the optimization probiem is to define a step size

determination procedure. The decent function wiii yield the search direction, the step

size determination wiii dictate how far to adjust the design variables in that direction. For

this analysis an inexact line search method was used. For this method a sequence oftriai

step sizes, tj was defined.

/ A r\r%\( 1 V
t.=\-\ forj=0.1.2 (4.22)

Each iteration begins with the triai step size to=i. If a defined descent condition is not

satisfied the step size is cut in naif (ti=I/2). For a step size iteration, j and a descent

iteration, k the new design variable vector is defined as:

x<*+u)
=
xi*)

+
^dw

(4.23)

The acceptable step size wiii be the smallest integer j that satisfies the descent condition.

Qw^t-'A (424>

where *k+ij is the descent function defined in eqn, 4, 1 i evaluated at the trial step size.

The constant fik is found using the search direction,
d^7

fik=rYk)\ (4-25)

The constant y is specified by the user and has a value between 0 and 1 . The value ofy

affects the allowable step size. Larger vaiues ofy wiii result in smaller vaiues for the step

size. The end result is a slower rate of convergence. Alternatively very small vaiues for
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y can iead to instabilities in the optimization process. Typicaiiy experimentation takes

place to find a suitable value for the engineering problem being solved.

iterations of search direction and step size are continued untii the method

converges on a iocai minimum for the cost function. Convergence is defined as the

design point were

|jdjj<^ (4.26)

where Ei is a specified small positive number.

4.2 Tne Constrained Steepest Descent Aigorithm:

A CSD aigorithm was used to optimize the design variables in a spindie shaft.

This section describes the steps to this aigorithm.

The first step to the CSD aigorithm is to set the counter, k equai to zero. At this

step initial vaiues for the design variables x, the penalty parameter R, the constant y, and

the convergence criteria si. An additional convergence criteria was aiso added to the

anaiysis. It was stipulated that the maximum constraint violation, Vk must not exceed a

predefined vaiue 82. This assures that design points with excessive constraint violations

are not allowed. A vaiue for this constant is aiso needed at this step. Since the goal of

this anaiysis is to optimize an existing spindie design the initial vaiues for the design

variables would simply be the parameters used in the existing design. The initial value

for the penalty parameter was defined as R=i . The constant y was defined as 0.5. Finaiiy

the vaiues for the convergence constants Si and 82 were both defined to be 0. 1 .
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The next step is to calculate vaiues for the cost and constraint functions as weii as

their gradients. It is important to note here that the design variables were normaiized for

this anaiysis. Since the magnitudes ofthe variables vary significantly it wouid be

inappropriate to use there gradients in obtaining a search directions and step size. The

gradient of the cost function was calculated by applying the forward difference method to

the static and dynamic modei previously developed.

dr, A,

where

\j =U.001XJ (^^)

The forward difference method was seiected because it oniy required two calculations of

the cost function. This helped to speed up the time to convergence. The central

difference method wouid have required three calculations for each design variable. Ail of

the constraints are linear so their gradients were easily obtainable analytically. The final

calculation at this step is the maximum constraint violation V\(see eqn. 4.21).

The third step is to use the information from the first two steps to define theQP

subprobiem (eqns. 4. i 5-4. 17). At this point the QP subprobiem can be used to soive for

the search direction, d and Lagrange multipliers, u. In order to obtain these vaiues the

cost function, f(x) in the Lagrange Equation must be replaced by the QP cost function

(eqn. 4. 1 5) and the system ofequations, 4. 1 1 - 4. 14, must be solved simultaneously.

The forth step is to check the convergence criteria to see that:

irn
- *i

82



and

T7 _, _

If these conditions are satisfied the aigorithm has converged and the anaiysis can stop.

Otherwise continue to step five of the aigorithm.

The next step of the analysis is to modify the penalty parameter, R. For the
kfe

iteration the new penalty parameter Rk+i becomes:

* =

maxfo,rj (4.29)

where Rk is the existing penalty parameter and rk is the sum of the Lagrange multipliers

calculated in third step of the aigorithm. By updating the penaity parameter the necessary

condition wiii always be satisfied.

Next the step size must be determined. The inexact iine search method previously

developed was used here to calculate the proper step size. Once the step size is

determined the design point can be indexed. Tnerefore:

The finai step to the aigorithm is to index the counter, k=k+i, and repeat ail but

the first step. Iterations wiii continue untii convergence is reached.

4.3 Matiab Solution:

The CSD aigorithm was implemented for the optimization of the spindie shaft

usingMatiab. The optimization applied to both the static and the dynamic models

developed in Chapters 3 and 4. The optimization program wiii return optimal vaiues for

the lateral stiffness and location of the spindie support bearings. As in previous chapters
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theMatiab program reads in a batch fiie. The batch fiie aiiows the user to define the

spindie parameters. The optimization constants used by the CSD aigorithm were hard

coded into the program. Therefore the user of the program does not have the flexibility

to change these. The programming code used to perform the optimization anaiysis can be

found in Appendix D.

The sample spindie analyzed staticaiiy and dynamically in Chapters 2 and 3 was

aiso optimized to demonstrate the Optimization program. Figure 4.2 illustrates the batch

file read in by the program. The optimum parameters returned by the program for the

static and dynamic anaiysis are listed in tables 4.2 and 4.3 respectively.

Table 4.2 Optimum Values for Static Analysis

i Design Variable Optimum Value i Original Value

a_2 (m.) ! 7.47 j 7.5 I

a_3 (in.) 16.09 13.5

K_f(rbFm.) i 1000000 500000

K_r (Ibffin.) 1000000 100000

Table 4.3 Optimum Vaiues for Dynamic Analysis

Design Variable i Optimum Value ! Original Value i

j a_2(in.) ! 7.3 7.5 ;

! a_3 Cm.) i 16.15 ! 13.5

!
K_f0b81n.) | 1000000 500000

K_r (Mln.) 1000000 100000

The static deflection of the existing spindie was approximateiy The

corresponding static deflection of the optimized spindie was approximateiy .00079". The

optimization reduced the deflection by a factor of 6. For the dynamic anaiysis the initial

deflection was about The corresponding deflection of the optimized spindle was

approximateiy .00025". Here the deflection improved by a factor of9. The optimization
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Batch File:

Geometry:

Number of Sections(#):
_6J

Secton

(#)

Leneth

(in)

OuterDiameter InnerDiameter

On)

Area

(in -21

Moment ot Inertia

fin-4-)

1

2

3

4

5

6
~t

1

8

9

10

11

12

13

14

15

3 2.25 2 0.83449 0 47265783

3 2.375 2 125 0.58357 0.560861726

3 2.5 2.25 0.93265 0.659419991

3 2.625 2.375 0.98175 0.76890787

3 2 75 2.5 1.03084 0.889900605

3 2875 2 625 107992 1.022973438

0
r\

0 0

0 0

0 0

0 0

0
n

0 0

0 0

0 0

Bearings:

Lat Stiffness of RearBeanng (lb/In):

Lat Stiffness of Front Bearing (lb/In ):

Tor. Stiffness of Front Bearing (in- lb):

Fraction of mom. on Front Bearing:

Locator! of Rear Bea-np** (i.n.)
Location of Front Bearing (in.)

Fuilev:

Location ot Pulley (in ~)
Mass of Pulley (lb-s"2/1n):

Static Belt Tension (lb):

h'armenie Drive Force (lb):

Drive Fnpnugnru f_H2\

Pulley Unbalance (Ib-s^):

Tool:

MaSS of Tool (ifrs'2/rn)'.

State Cutting Force (lb):

Harmonic Cutting Force (tb):

Cutting Frequency (Hz):

Tool Unbalance (Ib-s^):

Length of Tool (in)

Speed:

Spindle Shaft Speed (rpm):

flrlatefiai Properties:

Modulus of Elasticity (psi):

Density (lb/1n"3):

100000

500000

10000

7.5

13.5

4.5

0 007763975

50

50

13333

0.002279727

v.v^jo/aai/

300

300

133.33

0.004559453

I 16.66666667

30000000

0.289

Figure 4.2 Batch Fiie for Sample Spindle Problem
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improved the deflection ofthe spindie significantly for both the static and
dynamic

modeis.
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5.0 Conclusion:

The anaiysis of a machine tooi spindie began by developing a modei to soive for

the static lateral deflection. A program was developed usingMatlab that reads in the

geometry and ioad information for a spindie and reports piots ofthe iaterai deflection.

The user must simply enter the appropriate information into a spreadsheet, termed a

"batch
fiie"

and the program wiii suppiy a piot of the spindies deformed shape. A sample

spindle was analyzed using this program and the FEA programAnsys. Both analyses

yielded comparable results.

Next the anaiysis was extended to include the dynamic response of the spindie.

Again a program was developed that wouid read in a batch fiie containing the appropriate

geometry and ioad information for the spindle. The program wouid then report piots of

the first four mode shapes ofthe spindie as weii as a piot of its dynamic forced response.

A sample spindie was aiso analyzed using the dynamic program and the results compared

to an FEA analysis. The FEA anaiysis agreed very closely with the dynamic analysis

program for both the mode shapes and iaterai deflection.

Finaiiy a program was developed that wouid optimize the spindie by minimizing

the deflection at the interface between the cutting tooi and the spindie shaft. The program

performs an optimization for both the static and dynamic analyses. The program

optimizes the location and stiffness of the spindie support bearings. A sample spindie

was optimized both statically and dynamically using the program. One key result of

these analyses was that the optimum parameters for both the static and dynamic anaiysis

were approximateiy the same. This is very important because the complexity and time



required to analyze and optimize the spindie dynamically was significantly more than that

ofthe static anaiysis and optimization. Tnerefore if the goal of a spindie designer is to

optimize an existing spindie design, it couid be done statically with much iess effort and

time than it couid be done dynamically.

Although these programs are very powerful in designing a machine tooi spindie,

furtherwork couid make them ofmore vaiue to a spindle designer. Tne first

recommendation wouid be to equip these programs with a graphical user interface. This

would make the interface between the designer and the program much more user friendly.

The next recommendation wouid be to make the programming code more

efficient. Currently it takes a considerable amount of time to process the dynamic

anaiysis and optimization. There are several iterations in each ofthese analyses. The

dynamic optimization takes several hours to run.

Another recommendation for future work wouid be to enhance the dynamic ioads

applied to the spindie modei. Currently harmonic ioads are assumed for the cutting force

and drive force. The accuracy ofthe forced response couid be further refined by taking

measurements of the cutting force and drive force for an existing machine tool spindles.

This couid be taken one step further by creating a database ofthe cutting forces for

various cutting toois. If a spindie was to primarily use one type of cutting tooi the ioad

information couid be read into the dynamic program from the database.

One final suggestion for future workwould be to work with a bearing

manufacturer to create a database ofbearings and their stiffness vaiues. This wouid
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provide the stiffness for the static and dynamic analyses as weii as the maximum

aiiowabie stiffness vaiues for the optimization analyses.
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Appendix A

Template for Batch Fiie
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oaten r ne.

Geometry'.

Number of Sections(#):
_6J

Section

m

Length

(in)

Outer Diameter

On)

InnerDiameter

(in)

Area

(in"2)

Moment of Inertia

(irT4)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3 225 2 0.83449 0.47265783

3 2.375 2 125 0 88357 0 560861726

3 2.5 2.25 Q.S3255 0.659419991

3 2.625 2 375 0.88175 0 76890787

3 2 75 25 103084 0 889900605

3 2.875 2625 107992 1 022973438

0 0

0 0

0 0

n n

0 0

0 0

0 0

0 0

0 0

Bearings'

Let Stiffness of R ear Bearing (lb/in):

Lat. Stiffness of Front Bearing (Ib^n.):

Tor. Stiffness of Front Bearing (in-lb):

Fraction of mom. on Front Bearing:

Location of Rear Bearing (in.)
rst Bearing {

100000

500000

10000

0.1

Pulley:

Location of Pulley (in.)
Mass of Pulley (Ib-s^/ln):

Static Belt Tension (lb):

Harmonic Drive Force (lb):

Drive Frequency \Hzf.
D.rllp./ I InKalsnra /IK.S~?V

Tool:

Mass of Tooi (ifa-s'2/in):

Static Cutting Force (lb):

Harmonic Cutting Force (lb):

Cutting Frequency (Hz):

iGui unuaiafH.r \1u-3 .),

Length of TooJ (in)

Speed:

Spindle Shaft Speed (rpm'):

Material Properties:

Modulus of Elasticity (psf):

Density (lb/in~3):

4.5

0.007763975

50

50

133.33

0002279727

0.0258 /y91/

300

300

\3533

1 16.66666667 1

30000000 ;

0.289
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Appendix B

Matiab Programs for the Static Anaiysis
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% Filename : spindiec

% This fiie is the parent to ail other subroutines that wiii be employed

% to perform the static and dynamic analysis.

% Revision
*C*

dear

% Reads in geometry and loading information from "Batch!.
wki"

constantsc

% Calculates the static deformation.

deformationc

% Calculates the dynamic response.

dynamicc
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% Filename :
"Constantsc*

Vo This subroutine coilects the constants required to perform the static and dynamic

analysis.

% The subroutine requires a spreadsheet
"batch"

to be in the foider
"RevC"

%
"batch"

contains aii the inputs required to drive the anaiysis.

dear;

temp
=

0;

ct
=

wkIread(!Batehf);

metooi = ct(49,4);

mepuiiey
=

ct(4i,4);

speed
=

ct(53,4);

tlunbai = metool*(speed*2*pi)A2;

piunbai
=

mepuliey*(speed*2*pi)A2;

ftharm =

ct(47,4);

fpharm =

ct(39,4);

freqpuiiey
=

ct(40,4);

freqtooi = ct(48,4);

E =

ct(57,4);

density
=

ct(58,4);

N =

ct(5,4);

Mpuiley =ct(37,4);

Mtooi = ct(45,4);

Kr = ct(27,4);

Kf= ct(28,4);
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Ktf= ct(29,4);

xl = ct(30,4);

tl = ct(50,4);

fl=ct(38,4);

f2 = ct(46,4);

fora=l:N;

b(n) = ct(8+n,2)+temp;

temp
=

b(n);

Area(n) = ct(8+n,5);

Inertia(n) = ct(8+n,6);

R_out(n) = ct(S+nJ)/2;

R_in(n) = ct(8+n,4)/2;

end

Omsft = ct(53,4);

a(l)
=

ct(36,4);

a(2)
=

ct(31,4);

a(3)
=

et(32,4);

a(4)
=

b(N);

ifa(I)<=b(l)

XsecA(l) = Area(l);

XsecI(l)
=

Inertia(l);

XsecR(l) = R_out(l);
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end

for n= 1:N

ifb(n)<a(l)

ifb(n+l)>a(l)

XsecA(l) = Area(n+1);

Xsecl( 1 ) = Inertia(n+ 1 );

XsecR(l) = R_out(n+l);

end

end

ifb(n)<a(2)

ifb(n+l)>a(2)

XsecA(2)
=

Area(n+l);

Xsecl(2) = Inertia(n+1);

XsecR(2) = R_out(n+l);

end

end

ifb(n)<a(3)

ifb(n+l)>a(3)

XsecA(3) = Area(n+1);

Xsecl(3)
=

Inertia(n+1);

XsecR(3) = R_out(n+l);
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end

end

end

XsecA(4) = Area(N);

Xsecl(4) = Inertia(N);

XsecR(4) = R_out(N);

forn=l:(N-l);

r(n)
=

Inertia(n+1)/Inertia(n);

R(n)
=

(Area(n+l)/Inertia(n+l))A.25/(Area(n)/Inertia(n))A.25;

end

x(l)
=

0;

forn=l:N

z
=

2*n;

x(z)
=

b(n);

ifz<2*N;

x(z+l)
=

b(n);

end

end

forn= 1:N

z
=

2*n-l,

Outer<z)
=

R_out(n);

Outer(z+l) = R_out(n);
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Inner(z) = R_in(n);

Inner(z+1)=
R_in(n);

end

plot(x,Outer,x,Inner,a(l),XsecR(l),,s,,a(2),XsecR(2),,*,,a(3),XsecR(3),,*',a(4),XsecR(4),,p

);

xlabel('x,(in)')

ylabel('shaft radius, (in)')

titleCinput dimensions')

legend('OD','ID','Pulley7RearBearing'/Front BearingVTool',2)

axis([0,b(N),0,(b(N))/2])
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% Filename : deformationc

% This subroutine will calculate the static lateral deflection of the spindle

% Revision
"C"

% Contribution due to bearing deformation

deflbrgc

% Contribution due to shaft deformation

deflshftc

yt
=
yb + ys;

% Creates Plots of the shaft deformation

plotsc
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% Filename .
deflbrgc

% This subroutine will calcuate the deformation of the bearings

% Revision
"C"

x
= linspace(0,(a(4)),100);

mb = f2 * ((a(4)+tl)-a(3))*xl;

Rl = (fl*(a(3)-a(l))+mb-f2*((a(4)+tl)-a(3)))/(a(3)-a(2));

R2 = fl +f2-Rl;

deltal = -Rl/Kr;

delta2 = -R2/Kf;

m
= (delta2-deltal)/(a(3)-a(2));

for n= 1.100

yb(n)
=

m*(x(n)-a(2))
+ deltal;

end
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% Filename: deflshftc

% This subroutine will calculate the deformation of the elastic shaft

% in rigid supports

% This portion of the routine will scale the loads:

% Revision
"C"

for j= 1:3

n(j)
=

i;

for i = 2:N

ifa(j)>b(i -1)

ifa(j)<=
b(i)

n(j)
=

;

else

end

else

n(j)=n(j);

end

end

end

fle = Inertia(N)/Inertia(n(l))*fl ;

Rle = Inertia(N)/Inertia(n(2))*Rl;

mbe
=

Inertia(N)/Inertia(n(3))*mb;

R2e = Inertia(N)/Inertia(n(3))*R2;

for i=l:(N-l)
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voi
=

Rl*sing(b(i),a(2),0) + R2*sing(b(i),a(3),0) - fl*sing(b(i),a(l),0);

moi
= Rl * (b(i)-a(2))

*

sing(b(i),a(2),0) + R2*(b(i)-a(3))*sing(b(i),a<3),0).

- fl*(Ki)-a(D)*sing(b(i),a(l),0) -

mb*sing(b(i),a(3),0);

v(i)
=

Inertia(N)*(l/Inertia(i) - l/Inertia(i+l))*voi;

m(i)
=

Inertia(N)*(l/Inertia(i) - l/Inertia(i+l))*moi;

end

x= linspace(0,a(4),100);

tempi =0;

temp2 = 0;

forr=
1:(N-1)

tempi = tempi + v(r)/6*sing(a(3),b(r),3)
-

v(r)/6*sing(a(2),b(r),3)

+ m(r)/2*sing(a(3),b(r),2)
-

m(r)/2*sing(a(2),b(r),2);

temp2 = temp2 + v(r)/6*sing(a(2),b(r),3) +m(r)/2*sing(a(2),b(r),2);

end

ql
=

l/(a(2)-a(3))*(fle/6*sing(a(3),a(l),3) - Rle/6*sing(a(3),a(2),3) + tempi

fle/6*sing(a(2),a(l),3));

q2
=

-fle/6*sing(a(2),a(l),3)
- temp2 -

ql*a(2);

for r= 1:100

temp3 = 0;

for s=l:(N-l)

temp3 = temp3 + v(s)/6*sing(x(r),b(s),3) +m(s)/2*sing(x(r),b(s),2);

end

ys(r)
=

-l/(E*Inertia(N))*(fle/6*sing(x(r),a(l),3)
- Rle/6*sing(x(r),a(2),3).
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-R2e/6*sing(x(r)X3),3) +temp3 +
mbe/2*sing(x(r),a(3),2) + ql*x(r) + q2);

end
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% Filename plotsc

% This subroutine will create plots of the shaft deformation

% Revision
"C"

figure

plot(x,yb)

titleCDeflection Contribution ofBearings1)

figure

plot(x,ys)

title('Deflection Contribution ofElastic Shaft')

figure

plot(x,yt)

title('Combined Spindle Deflection')
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function sing
=

f(o,p,q)

% Function : Singularity

% This subroutine defines a new function to be used in subsequent calculations

if o<p

sing
=

0;

else

sing
=

(o-p)Aq;

end
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Appendix C

Matlab Programs for the Dynamic Analysis
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% Filename :
"dynamicc"

% Rev C

% This subroutine solves for the dynamic response of the spindle.

%Must read in the batch file prior to executing this subroutine.

% Solves for the eigenvalues.

frequencyc

% Solves for the eigenvectors.

modec

% Solves for the dynamic response.

forcedc
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% Filename :
"frequencyc"

% This subroutine is used to plot the frequency equation.
% There needs to be a matrix A that drives this subroutine.

Omega = linspace(1,2000,50);

for n=l:50;

w
=

Omega(n);

XI = (density*XsecA(l)*wA2/E/XsecI(l))A25*a(l);

X2 = (density*XsecA(2)*wA2/EyXsed(2))A.25*a(2),

X3 = (density*XsecA(3)*wA2/E/XsecI(3))A.25*a(3);

X4 = (density*XsecA(4)*wA2/E/XsecI(4))A.25*a(4);

Transferc

CI =Mpulley*Xl/(density*XsecA(l)*a(l));

C2 = Kr/(X2/a(2))A3/E/XsecI(2);

C3 =Ktf/(X3/a(3))A2/E/XsecI(3);

C4 = Kf/(X3/a(3))A3/E/XsecI(3);

C5 =Mtool*X4/(density*XsecA(4)*a(4));

templ(l,:)
= [10-1 Oj;

templ(2,:)
= [0 10-l];

Ql=templ*Tl;

temp2(l,:)
=

[-(sinh(Xl)-Cl*cosh(Xl)) -(cosh(Xl)-Cl*sinh(Xl))
-(sin(Xl)-

C 1*cos(Xl )) (cos(Xl )+C 1*sin(Xl ))];

temp2(2,:)
=

[-cosh(Xl) -sinh(Xl) -cos(Xl) -sin(Xl)];

temp2(3,:)
=

[-sinh(Xl) -cosh(Xl) sin(Xl) -cos(Xl)];
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temp2(4,:)
=

[-cosh(Xl) -sinh(Xl) cos(Xl) sin(Xl)];

Q2 = temp2*T2;

temp3(l,:)
=

[ sinh(X2) cosh(X2) sin(X2) -cos(X2)];

temp3(2,:)
= [-cosh(X2) -sinh(X2) -cos(X2) -sin(X2)];

temp3(3,:)
=

[-sinh(X2) -cosh(X2) sin(X2) -cos(X2)],

temp3(4,:)
=

[-cosh(X2) -sinh(X2) cos(X2) sin(X2)];

Q3=temp3*T3;

temp4(l,:)
=

[ sinh(X3) cosh(X3) sin(X3) -cos(X3)];

temp4(2,:)
=

[-cosh(X3) -sinh(X3) -cos(X3) -sin(X3)];

temp4(3,:)
=

[-sinh(X3) -cosh(X3) sin(X3) -cos(X3)];

temp4(4,:)
=

[cosh(X3) sinh(X3) -cos(X3) -sin(X3)];

Q4 = temp4*T4;

A(l,.)
=

[Ql(l,l) Ql(l,2) Ql(l,3) Ql(l,4) 00000000000 0];

A(2,:)
=

[Ql(2,l) Ql(2,2) Ql(2,3) Ql(2,4) 00000000000 0];

A(3,:)
=

[sinh(Xl) cosh(Xl) sin(Xl) -cos(Xl)Q2(l,l) Q2(l,2) Q2(l,3) Q2(l,4) 0 0 0 0

0 0 0 0];

A(4,:)
=

[cosh(Xl) sinh(Xl) cos(Xl) sin(Xl) Q2(2,l) Q2(2,2) Q2(2,3) Q2(2,4) 0 0 0 0

0 0 0 0];

A(5,:)
=

[sinh(Xl) cosh(Xl) -sin(Xl) cos(Xl) Q2(3,l) Q2(3,2) Q2(3,3) Q2(3,4) 0 0 0 0

0 0 0 0];

A(6,:)
=

[cosh(Xl) sinh(Xl) -cos(Xl) -sin(Xl) Q2(4,l) Q2(4,2) Q2(4,3) Q2(4,4) 0 0 0

0 0 0 0 0];

A(7,:)
= [0000 (C2*cosh(X2)-sinh(X2)) (C2*sinh(X2)-cosh(X2)) (C2*cos(X2)-

sin(X2)) (C2*sin{X2)+cos(X2)) Q3(l,l) Q3(l,2) Q3(l,3) Q3(l,4) 0 0 0 0];

A(8,:)
= [0000 cosh(X2) sinh(X2) cos(X2) sin(X2) Q3(2,l) Q3(2,2) Q3(2,3) Q3(2,4)
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0 0 00];

A(9,:)
= [0000 sinh(X2) cosh(X2) -sin(X2) cos(X2) Q3(3,l) Q3(3,2) Q3(3,3) Q3(3,4)

0 0 0 0];

A(10,:)
= [0000 cosh(X2) sinh(X2) -cos(X2) -sin(X2) Q3(4,l) Q3(4,2) Q3(4,3)

Q3(4,4) 0 0 0 0];

A(l 1,;)
= [0 0000000 (C4*cosh(X3)-sinh(X3)) (C4*sinh(X3)-cosh(X3))

(C4*cos(X3)-sin(X3)) (C4*sin(X3)+cos(X3)) Q4(l,l) Q4(l,2) Q4(l,3) Q4(l,4)];

A(12,:)
= [0 0000000 cosh(X3) sinh(X3) cos(X3) sin(X3) Q4{2,1) Q4(2,2) Q4(2,3)

Q4(2,4)];

A(13,:)
= [0 0000000 sinh(X3) cosh(X3) -sin(X3) cos(X3) Q4(3,l) Q4(3,2) Q4(3,3)

Q4(3,4)];

A(14,:)
= [0 0 0 0 0 0 0 0 (C3*sinh(X3)-cosh(X3)) (C3*cosh(X3)-sinh(X3)) (-

C3*sin(X3)+cos(X3)) (C3*cos(X3)+sin(X3)) Q4(4,l) Q4(4,2) Q4(4,3) Q4{4,4)];

A{1 5,:)
= [0 00000000000 cosh(X4) sinh(X4) -cos(X4) -sin(X4)];

A(16,:)
= [0 00000000000 (sinh(X4)+C5*cosh(X4)) (cosh(X4)+C5*sinh(X4))

(sin(X4)+C5*cos(X4)) (-cos(X4)+C5*sin(X4))];

fork =1:15

A(k,:)=A(k,:)/A(k,k);

for p
= k+l:16

A(p,:)
=

A(p,:)-A(k,:)*A(p,k);

end

end

freq(n)
=

A(16,16);

end

n=l;

for s = 2:50;

ill



sign = freq(s)*freq(s-l);

if sign < 0

if abs((freq(s)-freq(s-l ))/(Omega(s)-Omega(s- 1 )))<25

bisectc

end

end

end
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% Filename :
"transferj"

% This subroutine creates the matrices to transform the constants.

Tl=eye(4);

T2=eye(4);

T3=eye(4);

T4=eye(4);

for counter = 1:(N-1)

betal = (Area(counter)*density*wA2/(E*Inertia(counter)))A25,

beta2 = (Area(counter+l)*density*wA2/(E*Inertia(counter+l)))A.25;

rl
=

r(counter);

Rl = R(counter);

11 = b(counter);

flag
=

0;

T =

zeros(4,4);

T(l,l)
= ((rl*RlA2+l)/2*(cosh(betal*ll)*cosh(beta2*ll)-

Rl*sinh(betal*ll)*sinh(beta2*ll)));

T(U)
=

((rl*RlA2+l)/2*(cosh(betal*ll)*sinh(beta2*ll) -

Rl *sinh(betal *ll)*cosh(beta2*ll)));

T(l,3)
=
-((rl*RlA2-l)/2*(cosh(betal*ll)*cos(beta2*ll)+

Rl *sinh(betal *ll)*sin(beta2*ll)));

T(l,4)
=

-((rl*RlA2-l)/2*(cosh(betal*ll)*sin(beta2*ll)
-

Rl *sinh(betal *ll)*cos(beta2*ll)));

T(2,l)
= ((rl*RlA2+l)/2*(Rl*cosh(betal*ll)*sinh(beta2*ll)-

sinh(betal *ll)*cosh(beta2*ll)));

T(2,2)
= ((rl*RlA2+l)/2*(Rl*cosh(betal*ll)*cosh(beta2*ll) -

sinh(betal*ll)*sinh(beta2*ll)));
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T(2,3)
= ((rl *R1A2-1)/2*(R1 *cosh(betal *11 )*sin(beta2*ll)+

sinh(betal*ll)*cos(beta2*ll)));

T(2,4)
= ((rl*RlA2-l)/2*(sinh(betal*ll)*sin(beta2*ll>

Rl *cosh(betal *ll)*cos(beta2*ll)));

T(3,l)
= ((rl*RlA2-l)/2*(Rl*sin(betal*ll)*sinh(beta2*ll) -

cos(betal *ll)*cosh(beta2*ll)));

T(3,2)
= ((rl*RlA2-l)/2*(Rl*sin(betal*ll)*cosh(beta2*ll) -

cos(betal *11 )*sinh(beta2*ll )));

T(3,3)
= ((rl*RlA2+l)/2*(cos(betal*ll)*cos(beta2*ll)+

Rl*sin(betal*ll)*sin(beta2*ll)));

T(3,4)
= ((rl*RlA2+l)/2*(cos(betal*ll)*sin(beta2*ll) -

Rl*sin(betal*ll)*cos(beta2*ll)));

T(4,l)
= -((rl*RlA2-l)/2*(Rl*cos(betal*ll)*sinh(beta2*ll)+

sin(betal *1 1 )*cosh(beta2*l 1 )));

T(4,2)
=
-((rl*RlA2-l)/2*(Rl*cos(betal*ll)*cosh(beta2*ll)+

sin(betal *ll)*sinh(beta2*ll)));

T(4^)
= ((rl *R1A2+l)/2*(sin(betal *ll)*cos(beta2*ll)-

Rl *cos(betal *ll)*sin(beta2*ll)));

T(4,4)
= ((rl*RlA2+l)/2*(sin(betal*ll)*sin(beta2*ll)+

Rl *cos(betal *ll)*cos(beta2*ll)));

if a(3)< b(counter)

T4 = T4*T;

flag
=

l;

end

if a(2)< b(counter)

if flag <1;

T3 = T3*T;
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flag=l;

end

end

if a(l)<b(counter)

if flag <1;

T2 = T2*T;

flag=l;

end

end

if flag < 1;

T1 = T1*T;

flag=0;

end

end
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% Filename :
"bisectc"

% This subroutine refines the incremental root finding search

% using the bisection method.

Xlow = Omega(s-l);

Xhigh = Omega(s);

freq_ref= freq(s-l);

ffeq_new = freq(s-l);

while abs(Xhigh-Xlow)>le-12;

Xnew =

.5*(Xlow+Xhigh);

w
=

Xnew;

XI = (density*XsecA(l)*wA2/E/XsecI(l))A.25*a(l);

X2 = (density*XsecA(2)*wA2/E/Xsed(2))A.25*a(2);

X3 = (density*XsecA(3)*wA2/E/XsecI(3))A.25*a(3);

X4 = (density*XsecA(4)*wA2/E/Xsed(4))A.25*a(4);

Transferc

CI =Mpulley*Xl/(density*XsecA(l)*a(l));

C2 =Kr/(X2/a(2))A3/E/XsecI(2);

C3 = Ktf/(X3/a(3))A2/E/XsecI(3);

C4 = Kf/(X3/a(3))A3/E/XsecI(3);

C5 =Mtool*X4/(density*XsecA(4)*a(4));

templ(l,:)
= [10-10];

templ(2,:)
= [0 10-l];

Ql= tempi *T1;
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temp2(l,:)
=

[-(sinh(Xl)-Cl*cosh(Xl)) -(cosh(Xl)-Cl*sinh(Xl))
-(sin(Xl)-

Cl*cos(Xl)) (cos(Xl)+Cl*sin(Xl))];

temp2(2,:)
=

[-cosh(Xl) -sinh(Xl) -cos(Xl) -sin(Xl)];

temp2(3,:)
=

[-sinh(Xl) -cosh(Xl) sin(Xl) -cos(Xl)];

temp2(4,:)
=

[-cosh(Xl) -sinh(Xl) cos(Xl) sin(Xl)];

Q2 = temp2*T2;

temp3(l,:)
= [ sinh(X2) cosh(X2) sin(X2) -cos(X2)];

temp3(2,:)
=

[-cosh(X2) -sinh(X2) -cos(X2) -sin(X2)];

temp3(3,:)
=

[-sinh(X2) -cosh(X2) sin(X2) -cos(X2)];

temp3(4,:)
=

f-cosh(X2) -sinh(X2) cos(X2) sin(X2)];

Q3=temp3*T3;

temp4(l,:)
=

[ sinh(X3) cosh(X3) sin(X3) -cos(X3)];

temp4(2,:)
=

[-cosh(X3) -sinh(X3) -cos(X3) -sin(X3)];

temp4(3,:)
=

[-sinh(X3) -cosh(X3) sin(X3) -cos(X3)];

temp4(4,:)
=

[cosh(X3) sinh(X3) -cos(X3) -sin(X3)];

Q4 = temp4*T4;

A(l,:)
=

[Ql(l,l)Ql(l,2) Ql(l,3) Ql(l,4) 00000000000 0];

A(2,:)
=

[Ql(2,l) Ql(2,2) Ql(2,3) Ql(2,4) 00000000000 0];

A(3,:)
=

[sinh(Xl) cosh(Xl) sin(Xl) -cos(Xl) Q2(l,l) Q2(l,2) Q2(l,3) Q2(l,4) 0 0 0 0

0 0 0 0];

A(4,:)
=

[cosh(Xl) sinh(Xl) cos(Xl) sin(Xl) Q2(2,l) Q2(2,2) Q2(2,3) Q2(2,4) 0 0 0 0

0 0 0 0];

A(5,:)
=

[sinh(Xl) cosh(Xl) -sin(Xl) cos(Xl) Q2(3,l) Q2(3,2) Q2(3,3) Q2(3,4) 0 0 0 0

0 0 0 0];
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A(6,:)
=

[cosh(Xl) sinh(Xl) -cos(Xl) -sin(Xl) Q2(4,l) Q2(4,2) Q2(4,3) Q2(4,4) 0 0 0

0 0 0 0 0];

A(7,:)
= [0000 (C2*cosh(X2)-sinh(X2)) (C2*sinh(X2)-cosh(X2)) (C2*cos(X2)-

sin(X2)) (C2*sin(X2)+cos(X2)) Q3(l,l) Q3(l,2) Q3(l,3) Q3(l,4) 0 0 0 0];

A(8,:) = [0000 cosh(X2) sinh(X2) cos(X2) sin(X2) Q3(2,l) Q3(2,2) Q3(2,3) Q3(2,4)
0 0 0 0];

A(9,:)
= [0000 sinh(X2) cosh(X2) -sin(X2) cos(X2) Q3(3,l) Q3(3,2) Q3(3,3) Q3(3,4)

0 0 0 0];

A(10,:)
= [0000 cosh(X2) sinh(X2) -cos(X2) -sin(X2) Q3(4,l) Q3(4,2) Q3(4,3)

Q3(4,4) 0 0 0 0];

A(l 1,:)
= [0 0000000 (C4*cosh(X3)-sinh(X3)) (C4*sinh(X3)-cosh(X3))

(C4*cos(X3)-sin(X3)) (C4*sin(X3)+cos(X3)) 04(1,1) Q4(l,2) Q4(l,3) 04(1,4)];

A(12,:)
= [0 0000000 cosh(X3) sinh(X3) cos(X3) sin(X3) Q4(2,l) Q4(2,2) Q4(2,3)

04(2,4)];

A(13,:)
= [0 0000000 sinh(X3) cosh(X3) -sin(X3) cos(X3) Q4(3,l) Q4(3,2) Q4(3,3)

Q4(3,4)];

A(14,:)
= [0 0000000 (C3*sinh(X3)-cosh(X3)) (C3*cosh(X3)-sinh(X3)) (-

C3*sin(X3)+cos(X3)) (C3*cos(X3)+sin(X3)) Q4(4,l) Q4(4,2) Q4(4,3) Q4(4,4)];

A(15,:) =[0 00000000000 cosh(X4) sinh(X4) -cos(X4) -sin(X4)];

A(16,:)
= [0 00000000000 (sinh(X4)+C5*cosh(X4)) (cosh(X4)+C5*sinh(X4))

(sin(X4)+C5*cos(X4)) (-cos(X4)+C5*sin(X4))];

fork =1:15

A(k,:)=A(k,:)/A(k,k);

for p
= k+l:16

A(p,:)
=

A(p,:)-A(k,:)*A(p,k);

end

end
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freq_new =

A( 16, 16);

if (freq_new*freq_ref)< 0

Xhigh = Xnew;

else

Xlow =

Xnew;

freq_ref= freq_new;

end

end

Root(n) = Xnew;% This will be in rad/s

Frequency(n) = Xnew/2/pi;

n
=

n+l;
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% Filename :
"modec"

% This subroutine calculates the first (4) mode shapes.

globai c

for m = 1 :4

w
=

Root(m);

XI = (density*XsecA(l)*wA2/E/Xsed(l))A.25*a(l);

X2 = (density*XsecA(2)*wA2/E/Xsed(2))A.25*a(2);

X3 = (density*XsecA(3)*wA2/E/XsecI(3))A.25*a(3);

X4 = (density*XsecA(4)*wA2/E/XsecI(4))A.25*a(4);

Transferc

CI =Mpulley*Xl/(density*XsecA(l)*a(l));

C2 = Kr/(X2/a(2))A3/E/XsecI(2);

C3 = Ktf/(X3/a(3))A2/E/XsecI(3);

C4 = Kf/(X3/a(3))A3/E/XsecI(3);

C5 =Mtool*X4/(density*XsecA(4)*a(4));

templ(l,:)
=

[10-10];

templ(2,:)
= [010 -1];

Ql = templ*Tl;

temp2(l,:)
=

[-(sinh(Xl)-Cl*cosh(Xl)) -(cosh(Xl)-Cl*sinh(Xl)) -(sin(Xl>

Cl*cos(Xl)) (cos(Xl)+Cl*sin(Xl))];

temp2(2,:)
=

[-cosh(Xl) -sinh(Xl) -cos(Xl) -sin(Xl)];

temp2(3,:)
=

[-sinh(Xl) -cosh(Xl) sin(Xl) -cos(Xl)],

temp2(4,:)
=

[-cosh(Xl) -sinh(Xl) cos(Xl) sin(Xl)];
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Q2 = temp2*T2;

temP3(l,:)
=

[ sinh(X2) cosh(X2) sin(X2) -cos(X2)];

temp3(2,:)
=

[-cosh(X2) -sinh(X2) -cos(X2) -sin(X2)];

temp3(3,:)
= [-sinh(X2) -cosh(X2) sin(X2) -cos(X2)];

temp3(4,:)
=

[-cosh(X2) -sinh(X2) cos(X2) sin(X2)];

Q3=temp3*T3;

temp4(l,:)
=

[ sinh(X3) cosh(X3) sin(X3) -cos(X3)];

temp4(2,:)
=

[-cosh(X3) -sinh(X3) -cos(X3) -sin(X3)];

temp4(3,:)
=

[-sinh(X3) -cosh(X3) sin(X3) -cos(X3)];

temp4(4,:)
=

[cosh(X3) sinh(X3) -cos(X3) -sin(X3)];

Q4=temp4*T4;

A(l,:)
=

[Ql(l,l) Ql(l,2) Ql(l,3) Ql(l,4) 00000000000 0];

A(2,:)
=

[Ql(2,l) Ql(2,2) Ql(2,3) Ql(2,4) 00000000000 0];

A(3,:)
=

[sinh(Xl) cosh(Xl) sin(Xl) -cos(Xl) Q2(l,l) Q2(l,2) Q2(l,3) Q2(l,4) 0 0 0 0

0 0 0 0];

A(4,:)
=

[cosh(Xl) sinh(Xl) cos(Xl) sin(Xl) Q2(2,l) Q2(2,2) Q2(2,3) Q2(2,4) 0 0 0 0

0 0 0 0];

A(5,:)
=

[sinh(Xl) cosh(Xl) -sin(Xl) cos(Xl) Q2(3,l) Q2(3,2) Q2(3,3) Q2(3,4) 0 0 0 0

0 0 0 0];

A(6,:)
=

[cosh(Xl) sinh(Xl) -cos(Xl) -sin(Xl) Q2(4,l) Q2(4,2) Q2(4,3) Q2(4,4) 0 0 0
0 0 0 0 0];

A(7,:)
= [0000 (C2*cosh(X2)-sinh(X2)) (C2*sinh(X2)-cosh(X2)) (C2*cos(X2>-

sin(X2)) (C2*sin(X2)+cos(X2)) Q3(l,l) Q3(l,2) Q3(l,3) Q3(l,4) 0 0 0 0];

A(8,:)
= [0000 cosh(X2) sinh(X2) cos(X2) sin(X2) Q3(2,l) Q3(2,2) Q3(2,3) Q3(2,4)

0 0 0 0];
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A(9,:)
= [0000 sinh(X2) cosh(X2) -sin(X2) cos(X2) Q3(3,l) Q3(3,2) Q3(3,3) Q3(3,4)

0 0 0 0];

A(10,:)
= [0000 cosh(X2) sinh(X2) -cos(X2) -sin(X2) Q3(4,l) Q3(4^) Q3(4,3)

Q3(4,4) 0 0 0 0];

A(l 1,:)
= [0 0 0 0 0 0 0 0 (C4*cosh(X3)-sinh(X3)) (C4*sinh(X3)-cosh(X3))

(C4*cos(X3)-sin(X3)) (C4*sin(X3)+cos(X3)) Q4(l,l) Q4(l,2) Q4(l,3) Q4(l,4)];

A(12,:)
= [0 0000000 cosh(X3) sinh(X3) cos(X3) sin(X3) Q4(2,l) Q4(2,2) Q4(2,3)

Q4(2,4)];

A(13,:)
= [0 0000000 sinh(X3) cosh(X3) -sin(X3) cos(X3) Q4(3,l) Q4(3,2) Q4(3,3)

Q4(3,4)];

A(14,:)
= [0 0000000 (C3*sinh(X3)-cosh(X3)) (C3*cosh(X3)-sinh(X3)) (-

C3*sin(X3)+cos(X3)) (C3*cos(X3)+sin(X3)) Q4(4,l) Q4(4,2) Q4(4,3) Q4(4,4)];

A(15,:)
= [0 00000000000 cosh(X4) sinh(X4) -cos(X4) -sin(X4)];

A(16,.)
= [0 00000000000 (sinh(X4)+C5*cosh(X4)) (cosh(X4)+C5*sinh(X4))

(sin(X4)+C5*cos(X4))(-cos(X4)+C5*sin(X4))];

fork =1:15

A(k,:)=A(k,:)/A(k,k);

forp=k+l:16

A(p,:)
=

A(p,:)-A(k,:)*A(p,k);

end

end

c(16^n)=l;

fork =1:15;

g=16-k;

temp
=

0;

for p
=

g+l:16;
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temp
=

temp + A(g,p)*c(p,m);

end

c(g,m)
=

-temp;

end

xl =linspace(0,a(4),31);

for n= 1:31

x
=

xl(n);

delta = 12;

if xl(n)<a(3)

delta = 8;

if xl(n)<a(2)

delta = 4;

ifxl(n)<a(l),

delta = 0;

end

end

end

z=l;

fori=l:N

ifx>=b(i);

z
= i;

end
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end

ydyn(n,m)
=

c((delta+l),m)*cosh(x*(density*Area(z)*wA2/E/Inertia(z))A.25)+c((delta+2)^n)*sinh(x*(
density*Area(z)*wA2/E/Inertia(z))A.25)+c((delta+3),m)*cos(x*(density*Area(z)*wA2/E/I

neitia(z))A.25)+c((deltii+4),m)*sin(x*(density*Area(z)*wA2/E/Inertia(z))A.25);

end

figure

plouxl^dynCm),'*')

L =
sprintf('mode%0.5g',m);

title(L)

end
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% Filename :
"modec"

% This subroutine calculates the first (4) mode shapes.

global c

for m = 1 :4

w
=

Root(m);

XI = (density*XsecA(l)*wA2/E/XsecI(l))A25*a(l);

X2 = (density*XsecA(2)*wA2/E/Xsed(2))A.25*a(2);

X3 = (density*XsecA(3)*wA2/E/XsecI(3))A.25*a(3),

X4 = (density*XsecA(4)*wA2/E/XsecI(4))A.25*a(4);

Transferc

CI =Mpulley*Xl/(density*XsecA(l)*a(l));

C2 = Kr/(X2/a(2))A3/E/XsecI(2);

C3 = Ktf7(X3/a(3))A2/E/XsecI(3);

C4 = Kf7(X3/a(3))A3/E/XsecI(3);

C5 =Mtool*X4/(density*XsecA(4)*a(4));

templ(l,:)
=

[10-10];

templ(2,:)
= [0 10-l];

Ql= tempi *T1;

temp2(l,:)
=

[-(sinh(Xl)-Cl*cosh(Xl)) -(cosh(Xl)-Cl*sinh(Xl)) -(sin(Xl>

Cl*cos(Xl)) (cos(Xl)-rCl*sin(Xl))];

temp2(2,:)
= [-cosh(Xl) -sinh(Xl) -cos(Xl) -sin(Xl)];

temp2(3,:)
=

[-sinh(Xl) -cosh(Xl) sin(Xl) -cos(Xl)];

temp2(4,:)
=

[-cosh(Xl) -sinh(Xl) cos(Xl) sin(Xl)];
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Q2 = temp2*T2;

temp3(l,:)
=

[ sinh(X2) cosh(X2) sin(X2) -cos(X2)];

temp3(2,:)
=

[-cosh(X2) -sinh(X2) -cos(X2) -sin(X2)];

temp3(3,:)
= [-sinh(X2) -cosh(X2) sin(X2) -cos(X2)];

temp3(4,:)
=

[-cosh(X2) -sinh(X2) cos(X2) sin(X2)];

Q3=temp3*T3;

temp4(l,:)
=

[ sinh(X3) cosh(X3) sin(X3) -cos(X3)];

temp4(2,:)
=

[-cosh(X3) -sinh(X3) -cos(X3) -sin(X3)];

temp4(3,:)
=

[-sinh(X3) -cosh(X3) sin(X3) -cos(X3)];

temp4(4,:)
=

[cosh(X3) sinh(X3) -cos(X3) -sin(X3)];

Q4 = temp4*T4;

A(l,:)
=

[Ql(l,l)Ql(l,2) Ql(l,3) Ql(l,4) 00000000000 0];

A(2,:)
=

[Ql(2,l) Ql(2,2) Ql(2,3) Ql(2,4) 00000000000 0];

A(3,:)
=

[sinh(Xl) cosh(Xl) sin(Xl) -cos(Xl) Q2(l,l) Q2(l,2) Q2(l,3) Q2(l,4) 0 0 0 0

0 0 0 0];

A(4,:)
=

[cosh(Xl) sinh(Xl) cos(Xl) sin(Xl) Q2(2,l) Q2(2,2) Q2(2,3) Q2(2,4) 0 0 0 0

0 0 0 0];

A(5,:)
=

[sinh(Xl) cosh(Xl) -sin(Xl) cos(Xl) Q2(3,l) Q2(3,2) Q2(3,3) Q2(3,4) 0 0 0 0

0 0 0 0];

A(6,;)
=

[cosh(Xl) sinh(Xl) -cos(Xl) -sin(Xl) Q2(4,l) Q2(4,2) Q2(4,3) Q2(4,4) 0 0 0
0 0 0 0 0];

A(7,:)
= [0000 (C2*cosh(X2)-sinh(X2)) (C2*sinh(X2)-cosh(X2)) (C2*cos(X2)-

sin(X2)) (C2*sin(X2)+cos(X2)) Q3(l,l) Q3(l,2) Q3(l,3) Q3(l,4) 0 0 0 0];

A(8,:)
= [0000 cosh(X2) sinh(X2) cos(X2) sin(X2) Q3(2,l) Q3(2,2) Q3(2,3) Q3(2,4)

0 0 0 0];
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A(9,:)
= [0000 sinh(X2) cosh(X2) -sin(X2) cos(X2) Q3(3,l) Q3(3,2) Q3(3,3) Q3(3,4)

0 0 00];

A(10,:)
= [0000 cosh(X2) sinh(X2) -cos(X2) -sin(X2) Q3(4,l) Q3(4,2) Q3(4,3)

Q3(4,4) 0 0 0 0];

A(l 1,:) = [0 0 0 0 0 0 0 0 (C4*cosh(X3)-sinh(X3)) (C4*sinh(X3)-cosh(X3))

(C4*cos(X3)-sin(X3)) (C4*sin(X3)+cos(X3)) Q4(l,l) Q4(l,2) Q4(l,3) Q4(l,4)];

A(12,:) = [0 0000000 cosh(X3) sinh(X3) cos(X3) sin(X3) Q4(2,l) Q4(2,2) Q4(2,3)

Q4(2,4)];

A(13,:)
= [0 0000000 sinh(X3) cosh(X3) -sin(X3) cos(X3) Q4(3,l) Q4(3,2) Q4(3,3)

Q4(3,4)];

A(14,:)
= [0 0000000 (C3*sinh(X3)-cosh(X3)) (C3*cosh(X3)-sinh(X3)) (-

C3*sin(X3)+cos(X3)) (C3*cos(X3)+sin(X3)) Q4(4,l) Q4(4,2) Q4(4,3) Q4(4,4)];

A(15,:)
= [0 00000000000 cosh(X4) sinh(X4) -cos(X4) -sin(X4)];

A(l6,:)
= [0 00000000000 (sinh(X4)+C5*cosh(X4)) (cosh(X4)+C5*sinh(X4))

(sin(X4)+C5*cos(X4)) (-cos(X4)+C5*sin(X4))];

for k= 1:15

A(k,:)=A(k,:)/A(k,k);

for p
= k+1.16

A(p,:)
=

A(p,:)-A(k,:)*A(p,k);

end

end

c(16,m)=l;

fork =1:15;

g=16-k;

temp
=

0;

for p
=

g+l:16;
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temp
=

temp + A(g,p)*c(p,m);
end

c(g,m)
=

-temp;

end

x 1 = linspace(0,a(4),3 1 );

for n= 1:31

x
=

xl(n);

delta = 12;

if xl(n)<a(3)

delta = 8;

ifxl(n)<a(2)

delta = 4;

if xl(n)<a(l);

delta = 0;

end

end

end

z=l;

for i = 1 :N

ifx>=b(i);

z
= i;

end
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end

ydyn(n,m)
=

c((delta+l),m)*cosh(x*(density*Area(z)*wA2/E/Inertia(z))A.25)+c((delta+2),m)*sinh(x*(
density*Area(z)*wA2/E/Inertia(z))A.25)+c((delta+3),m)*cos(x*(density*Area(z)*wA2/E/I

nertia(z))A.25)+c((delta+4),m)*sin(x*(density*Area(z)*wA2/E/Inertia(z))A.25);

end

figure

plot(xl,ydyn(:,m),'*')

L =
sprintf^'mode%0.5g',m);

title(L)

end
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function integ
= f(XH,XL,md,sec,beta)

% Function : integral ofphiA2 from Xlow to Xhigh

% This subroutine defines a new function to be used in subsequent calculations

global c

integ
=

l^ete*(c<sec,md)A2/2*(cosh(beta*XH)*sinh(beta*XH)+oeta*XH) ...

+ c(sec+l ,md)A2/2*(cosh(beta*XH)*sinh(beta*XH)-beta*XH).. .

+ c(sec+2,md)A2/2*(cos(beta*XH)*sin(beta*XH)+beta*XH) . .

+ c(sec+3,md)A2/2*(-cos(beta*XH)*sin(beta*XH)+beta*XH). .

+ c(sec,md)*c(sec+l,md)*(sinh(beta*XH))A2 +

c(sec,md)*c<sec+2,nid)*(cosh(bete*XH)*sin(beta*XH)^inh(beta*XH)*cos(beta*XH)) .

+ c(sec,md)*c(sec+3,md)*(sinh(beta*XH)*sin(beta*XH)-

cosh(beta*XH)*cos(beta*XH)). .

+

c<sec+l,nid)*c(sec+2,md)*(sinh(beta*XH)*sin(beta*XH)+cosh(beta*XH)*cos(beta*XH)

)...

+ c(sec+l,md)*c(sec+3,md)*(cosh(beta*XH)*sin(beta*XH)-

sinh(beta*XH)*cos(beta*XH))..

+ c(sec+2,md)*c(sec+3,md)*(sin(beta*XH))A2)
- l/^eta*(c(sec,md)A2/2*(cosh(beta*XL)*sinh(beta*XL)+oeta*XL)
+ c(sec+l,md)A2/2*(cosh(beta*XL)*sinh(beta*XL)-beta*XL).

+ c(sec+2,md)A2/2*(cos(beta*XL)*sin(beta*XL)+beta*XL). .

+ c(sec+3,md)A2/2*(-cos(beta*XL)*sin(beta*XL)4beta*XL). . .

+ c(sec,md)*c(sec+l,md)*(sinh(beta*XL))A2 +

c(sec,md)*c(sec+2,md)*(cosh(beta*XL)*sin(beta*XL)+sinh(beta*XL)*cos(beta*XL))..

+ c(sec,md)*c(sec+3,md)*(sinh(beta*XL)*sin(beta*XL)-

cosh(beta*XL)*cos(beta*XL)). .

+

o(sec+l,md)*c(sec+2,md)*(sinh(beta*XL)*sin(beta*XL)+cosh(beta*XL)*cos(beta*XL))

+ c(sec+l4nd)*c(sec+3^nd)*(cosh(beta*XL)*sin(beta*XL)-

sinh(beta*XL)*cos(beta*XL)). . .

+ c(sec+2,md)*c(sec+3,md)*(sin(beta*XL))A2);
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Appendix D

Matlab Programs for the Optimization
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% filename :
"optimize"

% this file launches the optimization subroutines

constantso

stop
=

0;

for nn= 1:1000;

if stop
<= 0;

%Step 1;

kk=l;

R(l)=l;

gamma =
.5;

epsl =.01;

eps2
=

.01;

Hess = eye(4);

Krmax = le6;

Kf_max=
le6;

DELTA=5;

OH =

2;

xn(l)
=

a(2)/(a(l)+DELTA);

xn(2)
=

a(3)/(a(4)-OH);

xn(3)
=

Kf/Kfmax;

xn(4)
=

Kr/Kr_max;

% Step 2
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deformationo

yt(100)

constraint

temp
=

max(G);

if temp <0

V = 0;

else

V =

temp;

end

gradient

dytn(l) = dyt(l)*(a(l)+DELTA)

dytn(2) = dyt(2)*(a(4)-OH)

dytn(3)
= dyt(3)*Kf_max

dytn(4) = dyt(4)*Kr_max

% Step 3

multiplier

% Step 4

if abs_dd<epsl

stop= 1;

if V > eps2

stop
=

0;
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end

end

% Step 5

rr = uu(l) + uu(2) + uu(3) + uu(4);

R((kk+1)) =max(rT,R(kk));

% Step 6

step_size

% Step 7

kk = kk+l;

end

end

134



% filename
"gradient"

% this subroutine calculates the gradient ofyt with respect to the design variables

% the design variables are Kf, Kr, a(l), a(2), a(3)

deformationo

yt_k
=

yt(100);

% the gradient ofyt w.r.t. a(2):

Deltal = a(2)*001;

a(2)
=

a(2)+Deltal;

deformationo

yt_kp
=

yt(100);

dyt(l)
=

(yt_kp-yt_k)/Deltal;

% the gradient ofyt w.r.t. a(3):

Delta2 = a(3)*01;

a(3)
=

a(3)+Delta2;

deformationo

yt_kp
=

yt(100);

dyt(2)
=

(yt_kp-yt_k)/Delta2;

% the gradient ofyt w.r.t. Kf:

Delta3=Kf*01;

Kf=Kf+Delta3;

deformationo

yt_kp
=

yt(100);

dyt(3)
=

(yt_kp-yt_k)/Delta3;
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% the gradient ofyt w.r.t. Kr:

Delta4=Kr*.01;

Kr = Kr+Delta4;

deformationo

yt_kp
=

yt(100);

dyt(4) = (yt_kp-yt_k)/Delta4;

136



% Filename :
"constraint"

% This subroutine calculates the constraint violations and their derivatives.

G =

[(-xn(l)+l) (xn(2>l) (xn(3)-l) (xn(4)-l)];

dGl = [-10 0 0];

dG2 = [0 10 0];

dG3 = [001 0];

dG4 = [0 0 0 1];
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% Filename .

"multiplier"

% This file calculates the LagrangeMultipliers

clearAACC

if xn(l)>=l

uu(l)
=

0;

ss(l)
=

sqrt(xn(l)-l);

swl = 0;

else

ss(l)
=

0;

swl = 1;

end

if xn(2)
<= 1

uu(2)
=

0;

ss(2)
=

sqrt(xn(2)-l);

sw2 = 0;

else

ss(2)
=

0;

sw2=

1;

end

if xn(3)
<= 1

uu(3)
=

0;

ss(3)
=

sqrt(xn(3)-l);

sw3 = 0;
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else

ss(3)
=

0;

sw3 = 1;

end

if xn(4)
<= 1

uu(4)
=

0;

sw4 = 0;

ss(4)
=

sqrt(xn(4)-l);

else

ss(4)
=

0;

sw4 = 1 ;

end

binary
=
swl *2A3+sw2*2A2+sw3*2Al+sw4*2A0

if binary= 0

multO

end

if binary= 1

multl

end

if binary
= 2

mult2

end
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if binary= 2

mult2

end

if binary= 3

mult3

end

if binary
== 4

mult4

end

if binary= 5

mult5

end

if binary= 6

muh6

end

if binary= 7

mult7

end

if binary= 8

mult8

end

if binary= 9
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mult9

end

if binary == 10

mult10

end

if binary= 11

mult 11

end

if binary
= 12

mult12

end

if binary
= 13

mult13

end

if binary= 14

mult14

end

if binary
= 15

mult 15

end

abs_dd
=

sqrt(dd(l)A2+dd(2)A2+dd(3)A2+dd(4)A2)

%ifswl=0
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% ss(l)
=

sqrt(dd(l)-dd(2)-DELTA/a(4));

%end

%ifsw2= 0

% ss(2)
=

sqrt(dd(3)-l);

%end

%ifsw3= 0

% ss(3)
=

sqrt(dd(4)-l);

%end

%ifsw4= 0

% ss(4)
=

sqrt(dd(5)-l);

%end
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% Filename .

"multiplier"

% This file calculates the LagrangeMultipliers

clear AA CC

ifxn(l)>=l

uu(l)
=

0;

ss(l)
=

sqrt(xn(l)-l);

swl=0;

else

ss(l)
=

0;

swl
=

1;

end

if xn(2)
<= 1

uu(2)
=

0;

ss(2)
=

sqrt(xn(2)-l);

sw2 = 0;

else

ss(2)
=

0;

sw2 = 1 ;

end

if xn(3)
<= 1

uu(3)
=

0;

ss(3)
=

sqrt(xn(3)-l);

sw3 = 0;
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else

ss(3)
=

0;

sw3 = 1;

end

ifxn(4)<=l

uu(4)
=

0;

sw4 = 0;

ss(4)
=

sqrt(xn(4)-l);

else

ss(4)
=

0;

sw4=

1;

end

binary
=

swl*2A3+sw2*2A2+sw3*2Al+sw4*2A0

if binary
= 0

multO

end

if binary
= 1

multl

end

if binary
= 2

mult2

end
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if binary= 2

mult2

end

if binary= 3

mult3

end

if binary == 4

mult4

end

if binary
= 5

mult5

end

if binary
= 6

muh6

end

if binary
= 7

mult7

end

if binary
= 8

mult8

end

if binary= 9
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mult9

end

if binary= 10

mult10

end

if binary=11

mult 11

end

if binary
= 12

mult12

end

if binary=13

mult 13

end

if binary
= 14

mult14

end

if binary
= 15

mult15

end

abs_dd
=

sqrt(dd(l)A2+dd(2)A2+dd(3)A2+dd(4)A2)

%ifswl=0
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% ss(l)
=

sqrt(dd(l)-dd(2)-DELTA/a(4));

%end

%ifsw2= 0

% ss(2)
=

sqrt(dd(3)-l);

%end

%ifsw3= 0

% ss(3)
=

sqrt(dd(4)-l);

%end

%ifsw4= 0

% ss(4)
=

sqrt(dd(5)-l);

%end
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% Filname :
"multO"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l))];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2))];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3))];

AA(4,:) = [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4))];

CC(l,:)
= [-dytn(l)];

CC(2,:)
=

[-dytn(2)];

CC(3,:)
=

[-dytn(3)];

CC(4,:)
= [-dytn(4)];

dd = inv(AA)*CC
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% Filname :
"multO"

AA(1,:) = [(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))
(Hess(l,4)+Hess(4,l))];

AA(2,:) = [(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2))];

AA(3,:) = [(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3))];

AA(4,:) = [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4))];

CC(l,:) = [-dytn(l)];

CC(2,:) = [-dytn(2)];

CC(3,:) = [-dytn(3)];

CC(4,:)
=

[-dytn(4)];

dd = inv(AA)*CC
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% Filname :
"mult2"

dd(4)
=

-G(3);

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,4)+Hess(4,l)) 0];

AA(2,:) = [(Hess(2,l)+Hess(l,2)) (Hess<2,2)) (Hess(2,4)+Hess(4,2)) 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,4)+Hess(4,3)) 1];

AA(4,:)
=

[(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4))Hess(4,4) 0];

CC(1,.)
= [-dytn(l)-(Hess(l,3)+Hess(3,l))*dd(3)];

CC(2,:)
= [-dytn(2)-(Hess(2,3)+Hess(3,2))*dd(3)];

CC<3,:)
= [-dytn(3)-Hess(3,3)*dd(3)];

CC(4,:)
= [-dytn(4)-(Hess(3,4)+Hess(4,3))*dd(3)];

tempmult = inv(AA)*CC;

dd( 1 , 1 )
=

temp_muh( 1 , 1 );

dd(2, 1 )
=

temp_mult(2, 1 );

dd(4,l)
=

temp_mult(3,l);

u(3)
=

temp_mult(4, 1);
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%Filname:
"mult3"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) 0 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) 0 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 1 0];

AA(4,:)
= [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4))0 1];

AA(5,:)
=

[001000];

AA(6,:)
= [000100];

CC(l,:)
= [-dytn(l)];

CC(2,:)
= [-dytn(2)];

CC(3,.)
= [-dytn(3)];

CC(4,:)
= [-dytn(4)];

CC(5,:)
= [-G(3)];

CC(6,:)
= [-G(4)];

temp_mult
= inv(AA)*CC

dd(l,l)
=

temp_mult(l,l)

dd(2,l)
=

temp_mult(2,l)

dd(3,l)
=

temp_mult(3,l)

dd(4, 1 )
= temp_mult(4, 1 )

u(3)
=

temp_mult(5,l);

u(4)
=

temp_mull(6,l);
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% Filname :
"mult4"

dd(2,l)
=

-G(2);

AA(1,:)
=

[(Hess(l,l)) (Hess(l,3)+Hess(3,l)) (Hess(l,4)+Hess(4,l)) 0];

AA(2,:)
= [(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,4)+Hess(4,3)) 1];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,3)) (Hess(4,3)+Hess(3,4)) 0];

AA(4,:)
=

[(Hess(4,l)+Hess(l,4)) (Hess(4,3)+Hess(3,4)) (Hess(4,4)) 0];

CC(1,:)
= [-dytn(l)-(Hess(l,2)+Hess(2,l))*dd(2)];

CC(2,:)
= [-dytn(2)-(Hess(2,2))*dd(2)];

CC(3,:)
= [-dytn(3HHess(3,2)+Hess(2,3))*dd(2)];

CC(4,:)
= [-dytn(4)-(Hess(4,2)+Hess(2,4))*dd(2)];

tempmult = inv(AA)*CC;

dd( 1 , 1 )
=

temp_muh( 1 , 1 );

dd(3
,
1 )
=

temp_mult(2, 1 );

dd(4,l)
=

temp_mult(3,l);

u(2)
=

temp_mult(4, 1 );
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% Filname :
"multi"

AA(1,.)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) 0 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) 1 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 0 0];

AA(4,:) = [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4))0 1];

AA(5,:)
=

[010000];

AA(6,:)
=

[000100];

CC(1,:)
= [-dytn(l)];

CC(2,:)
=

[-dytn(2)];

CC(3,:)
=

[-dytn(3)];

CC(4,:)
= [-dytn(4)];

CC(5,:)
=

[-G(2)];

CC(6,:)
= [-G(4)];

tempmult = inv(AA)*CC;

dd( 1 , 1 )
=

temp_mult( 1 , 1 );

dd(2,l)
=

temp_mult(2,l);

dd(3,l)
=

temp_mult(3,l);

dd(4,l)
=

temp_mult(4,l);

u(2)
=

temp_mult(5, 1);

u(4)
=

temp_mult(6,l);
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% Filname :
"mult6"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) 0 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 1 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 0 1];

AA(4,:)
= [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4)) 0 0];

AA(5,:)
=

[010000];

AA(6,:)
=

[001000];

CC(l,:)
= [-dytn(l)];

CC(2,:)
= [-dytn(2)];

CC(3,:)
= [-dytn(3)];

CC(4,:)
=

[-dytn(4)];

CC(5,:)
=

[-G(2)];

CC(6,:)
=

[-G(3)];

tempmult = inv(AA)*CC;

dd( 1 , 1 )
=

temp_mult( 1 , 1 );

dd(2,l)
=

temp_mult(2,l);

dd(3
,
1 )
= temp_mult(3

,
1 );

dd(4,l)
=

temp_mult(4,l);

u(2) =temp_mult(5,l);

u(3) =temp_mult(6,l);
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% Filname
"mult7"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) 0 0 0],

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) 1 0 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 0 1 0];

AA(4,:)
= [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4)) 0 0 1];

AA(5,:)
= [0100000];

AA(6,:)
=

[0010000];

AA(7,:)
= [0001000];

CC(l,:)
=

[-dytn(l)];

CC(2,.)
= [-dytn(2)];

CC(3,:)
=

[-dytn(3)];

CC(4,:)
=

[-dytn(4)];

CC(5,:)
=

[-G(2)];

CC(6,:)
=

[-G(3)];

CC(7,:)
=

[-G(4)];

tempmult = inv(AA)*CC;

dd(l,l)
=

temp_mult(l,l);

dd(2,l)
=

temp_mult(2,l);

dd(3,l)
=

temp_mult(3,l);

dd(4,l)
=

temp_mult(4,l);
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u(2)
=

temp_mult(6, 1 );

u(3) =temp_mult(7,l);

u(4)
=

temp_mult(8, 1);
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% Filname :
"mult8"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) 1];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 0];

AA(4,:) = [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4))0];

AA(5,:)
=

[10000];

CC(l,:)
=

[-dytn(l)];

CC(2,:)
= [-dytn(2)];

CC(3,:)
=

[-dytn(3)];

CC(4,:)
= [-dytn(4)];

CC(6,:)
=

[-G(1)];

tempmult = inv(AA)*CC;

dd( 1 , 1 )
=

temp_mult( 1,1);

dd(2,l)
=

temp_mult(2,l);

dd(3,l)
=

temp_mult(3,l);

dd(4,l)
=

temp_mult(4,l);

u( 1 )
=

temp_mult(5, 1 );

157



% Filname :
"mult9"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) -1 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) 0 0];

AA(3,:)
= [(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 0 0];

AA(4,:)
= [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4))0 1];

AA(6,:)
= [-10000 0];

AA(7,:)
=

[000100];

CC(l,:)
= [-dytn(l)];

CC(2,:)
= [-dytn(2)];

CC(3,:)
= [-dytn(3)];

CC(4,:)
= [-dytn(4)];

CC(5,:)
= [-G(1)];

CC(6,:)
= [-G(4)];

temp_mult = inv(AA)*CC;

dd(l,l)=temp_mult(l,l);

dd(2,l)
=

temp_mult(2,l);

dd(3,l)
=

temp_mult(3,l);

dd(4,l)
= temp_mult(4,l);

u( 1 )
=

temp_mult(5, 1 );

u(4)
=

temp_mult(6,l);
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%Filname: "mult
10"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) -1 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) 0 0];

AA(3,:)
= [(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 0 1];

AA(4,:)
= [(Hess<4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4)) 0 0];

AA(5,:)
= [-1 100 000];

AA(6,:)
= [0001000];

CC(l,:)
= [-dytn(l)];

CC(2,.)
= [-dytn(2)];

CC(3,.)
= [-dytn(3)];

CC(4,:)
= [-dytn(4)];

CC(5,:)
= [-G(1)];

CC(6,:)
= [-G(3)];

tempmult
= inv(AA)*CC;

dd( 1 , 1 )
=

temp_mult(1,1);

dd(2,l)
=

temp_mult(2,l)

dd(3, 1)
=

temp_mult(3,l)

dd(4,l)
=

temp_mult(4,l)

u(l) =temp_mult(5,l);

u(3)
= temp_mult(6,l);
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%Filname:
"multll"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) -10 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) 0 0 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 0 1 0];

AA(4,:)
=

[(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4)) 0 0 1];

AA(5,:)
=

[-1000000];

AA(6,:)
=

[0010000];

AA(7,:)
= [00 0 100 0];

CC(l,:)
=

[-dytn(l)];

CC(2,:)
= [-dytn(2)];

CC(3,:)
= [-dytn(3)];

CC(4,:)
= [-dytn(4)];

CC(5,.)
= [-G(1)];

CC(6,:)
= [-G(3)];

CC(7,:)
=

[-G(4)];

tempmult = inv(AA)*CC;

dd( 1 , 1 )
=

temp_mult(1,1);

dd(2,l) = temp_mult(2,l);

dd(3,l)
=

temp_mult(3,l);

dd(4, 1 )
=

temp_mult(4, 1 );
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u(l)=temp_mult(5,l);

u(3)
=

temp_mult(6,l);

u(4)
=

temp_mult(7, 1);
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% Filname :
"multl2"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) -1 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)4-Hess(4,2)) 1 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 0 0];

AA(4,:)
= [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4)) 0 0];

AA(5,:)
= [-10000 0];

AA(6,:)
= [010000];

CC(l,:)
= [-dytn(l)];

CC(2,:)
= [-dytn(2)];

CC(3,.)
= [-dytn(3)];

CC(4,:)
= [-dytn(4)];

CC(5,:)
= [-G(1)];

CC(6,:)
= [-G(2)];

tempmult = inv(AA)*CC;

dd(l,l)
= temp_mult(l,l);

dd(2,l)
=

temp_mult(2,l);

dd(3,l)
=

temp_mult(3,l);

dd(4, 1 )
=

temp_mult(4, 1 );

u(l)=temp_mult(5,l);

u(2)
=

temp_mult(6,l);
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% Filname : "mult
13"

AA(1,:) = [(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) (Hess(l,5)+Hess(5,l)) -1 0 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) (Hess(2,5)+Hess(5,2)) 0 1 0];

AA(3,:) = [(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) (Hess(3,5)+Hess(5,3)) 0 0 0];

AA(4,:) = [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4)) (Hess(4,5)+Hess(5,4)) 0 0 1],

AA(5,:)
= [-1 0000 00];

AA(6,:)
= [0100000];

AA(7,:)
=

[0001000];

CC(l,:)
=

[-dytn(l)];

CC(2,:)
= [-dytn(2)];

CC(3,:)
= [-dytn(3)];

CC(4,:)
=

[-dytn(4)],

CC(5,:)
= [-G(1)];

CC(6,.)
= [-G(2)],

CC(7,:)
=

[-G(4)];

tempmult = inv(AA)*CC;

dd(l,l)
=

temp_mult(l,l);

dd(2,l)
=

temp_mult(2,l);

dd(3,l)
=

temp_mult(3,l);

dd(4,l)
=

temp_mult(4,l);
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u(l)=temp_mult(5,l);

u(2)
=

temp_mult(6,l);

u(4)
=

temp_mult(7, 1 );
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%Filname: "mult
14"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) -10 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) 0 1 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) 0 0 1];

AA(4,:) = [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4)) 0 0 0];

AA(6,:)
=

[-1000000];

AA(7,:)
= [0100000];

AA(8,:)
= [00 10 00 0];

CC(l,:)
= [-dytn(l)];

CC(2,:)
= [-dytn(2)];

CC(3,:)
= [-dytn(3)];

CC(4,:)
= [-dytn(4)];

CC(5,:)
= [-G(1)];

CC(6,:)
= [-G(2)];

CC(7,:)
=

[-G(3)];

tempmult = inv(AA)*CC;

dd(l,l)
=

temp_mult(l,l);

dd(2,l)
= temp_mult(2,l);

dd(3,l)
= temp_mult(3,l);

dd(4, 1 )
=

temp_mult(4, 1 );
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u(l)=temp_mult(5,l);

u(2)
=

temp_mult(6,l);

u(3)=temp_mult(7,l);

166



% Filname :
"multl5"

AA(1,:)
=

[(Hess(l,l)) (Hess(l,2)+Hess(2,l)) (Hess(l,3)+Hess(3,l))

(Hess(l,4)+Hess(4,l)) (Hess(l,5)+Hess(5,l)) -10 0 0];

AA(2,:)
=

[(Hess(2,l)+Hess(l,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))

(Hess(2,4)+Hess(4,2)) (Hess(2,5)+Hess<5,2)) 0 10 0];

AA(3,:)
=

[(Hess(3,l)+Hess(l,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))

(Hess(3,4)+Hess(4,3)) (Hess(3,5)+Hess(5,3)) 0 0 10];

AA(4,:) = [(Hess(4,l)+Hess(4,l)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))

(Hess(4,4)) (Hess(4,5)+Hess(5,4)) 0 0 0 1];

AA(5,:)
=

[-10000000];

AA(6,:)
= [01000000];

AA(7,:)
=

[00010000];

AA(8,:)
= [00001000];

CC(l,:)
=

[-dytn(l)];

CC(2,:)
=

[-dytn(2)];

CC(3,:)
= [-dytn(3)];

CC(4,:)
= [-dytn(4)];

CC(5,;)
=

[-G(1)];

CC(6,:)
= [-G(2)];

CC(7,:)
=

[-G(3)];

CC(8,:)
=

[-G(4)];

tempmult = inv(AA)*CC;

dd(l,l)
=

temp_mult(l,l);

dd(2, 1 )
=

temp_mult(2, 1 );
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dd(3,l) = temp_mult(3,l);

dd(4, 1 ) = temp_mult(4,1);

u(l)=temp_mult(5,l);

u(2)
=

temp_mult(6,l);

u(3)=temp_mult(7,l);

u(4)
=

temp_mult(8,l);
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% filename :
"stepsize"

% This subroutine determines the proper step size for the optimization procedure

flag
=

0;

Beta =
gamma*

(abs_dd)A2;

PHI_o = Y + R(kk+l)*V;

mm
=

0;

for flag = 0;

t = (l/2)Amm

X =

[xn(l) xn(2) xn(3) xn(4)] + t*rranspose(dd)

a(2)
= X(l)*(a(l)+DELTA);

a(3)
= X(2)*(a(4)-OH);

Kf= X(3)*Kf_max;

Kr = X(4)*Kr_max;

deformationo

PHI_1 = Y+R(kk+l)*V;

if PHI_1 >= PHI_o - t*Beta

mm
=

mm+l;

flag
=

0;

else

flag=l;

a(2)
= X(l);

a(3)
= X(2);

Kf= X(3);

3*9



Kr = X(4);

end
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