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Abstract

in modern machine tooi appiications the performance of a machine tooi is judged
by its abiiity to produce work-pieces accurately and efficiently. The siiffness of the
machine tooi spindie has a profound impact on the overaii machine performance. The
work presented here provides a tooi for machine tooi spindle designers to deveiop
spindies that are sufficientiy stiff to meet their needs. The anaiysis presented here is
divided into three main sections.

The first portion is a static analysis. The static anaiysis caicuiates the iaterai
defiection of the spindie-bearing system. A Matiab program was deveioped that ailows
the user to enter the spindie parameters into a batch fiie and obtain the piots of the
deformed shape of the spindie.

The next poriion is a dynamic anaiysis of the spindie. This portion includes both
the modes of vibration and the forced response. The modal analysis treats the spindie as a
continuous Euier-Bernoulii beam. A numericai method for handiing the steps in the shaft
and appiied boundary conditions was developed that could be extended to many other
appiications in rotor dynamics. A Matlab program was deveioped for the dynamic
anaiysts. This program provides a designer with plots of the mode shapes and forced
response given the spindie design parameters.

The final section is an optimization of the spindie design. Given constraints on
the location and stiffness of the support bearings, a Matlab program wiii return vaiues for
these parameters resuiting in the spindie configuration that presents the minimum

defiection at the spindie’s gauge line.
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Nomenciature
Symboi

A Cross sectional area of beam [in®]

A Gradient vector of inequaiity constraint {dependent on constraint]
a; Location of drive puliey {in]

a, Location of rear bearing {inj

a Location of front bearing {in]

as Location of gauge line {in]j

bk Location of kth joint in spindie shaft {in]

c Gradient vector {in/in]

d Vector of design changes {unitiess]

gi(x) Ithinequality constraint {dependent on contraintj
D Distance between support bearings {in]

E Young’s modulus {psi]

f Quadratic subprobiem {unitiess]

F. Cutting force {ibf]

Far  Unbalance force due to cutting tool {ibf]

Fq Drive force {1bf]

Fge  Equivaient drive force [ibf]

Fsu  Unbalance force due to unbalance of drive puiiey {ibfj
f{x) Cost function {in]

I, Moment of inertia of nth beam segment [in‘]



K¢
Kfmax
Ks

7

K
K,
Kfmax

M(x)

Laterai stiffness of front bearing {1bf/in]
Maximum laterai stiffness of front bearing {ibf/inj
Torsional stiffness of front bearing {in-ibf]
Generaiized stiffness {ibf/inj

Lateral stiffness of rear bearing {ibf/in]

Maximum iaterai stiffness of rear bearing {ibf/inj

Bending moment in spindie shaft {in-1bf]

Mappiied Externally applied moments {in-ibfj

OH

S

Reaction moment at front bearing {in-lof]

Equivalent reaction moment at front bearing {ibfj
Generalized mass [Ibf-s*/in]

Moment induced at kth joint in spindie shaft {in-ibfj

Moment at guage line due to cutting force and tool iength {in-ibf]
Cantilever, distance between front bearing and gauge line {in]j
Generalized coordinate {in]

Generalized force {ibf]

Penaity parameter {unitiess]

Reaction force at front bearing {ibf]

Equivalent reaction force at front bearing {ibf]

Reaction force at rear bearing {ibf]

Equivalent reaction force at rear bearing {ibf]

Siack variable for ith constraint {unitiess]



T Kinetic energy {in-iofj

tj Step size {dependent on design variabie]

[Tiy;j Transformation matrix beiween ith and jih beam segmenis [unitless]
ti Length of cutting tooi {inj

u Strain energy {in-1bf]

Potential energy {in-ibfj

Ui Lagrange multiplier {unitiess]

v Maximum consiraint vioiation {dependent on constraint]
V(x) Shear force in spindie shaft {ibf]

Vi Shear force induced at kth joint in spindie shait {1bfj

X Axial position along shaft {in]j

X Vector of design variabies

Xo Fraction of moment exerted by front bearing {unitless]
Vb Eiastic deflection of spindie shaft {in.]

Vs Elastic deflection of spindie shaft {in.]

Or Deflection at front bearing {in]

0qi  Virtual dispiacement {in]

Or Deflection at rear bearing {inj

dw;  Virtual work {in-bf]

€1 Convergence criteria {unitiess]
€ Maximum allowable constraint violation {unitlessj
oi ith normal mode {unitiessj



®

p

®

Descent function {inj
Mass density [Ibf-s%/in"]

Circuiar frequency frad/sec]
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1.0 introduction:

Great demands are piaced on the capabilities of today’s modern machine toois to
produce parts that are dimensionaily correct with increasing accuracy and throughput.
Some of the machine tooi components that impact the accuracy and throughput of the
machine are the drive systems, way systems, control and feedback systems, and finaily
the machine tooi spindie. The machine tooi spindie is the element of the machine that
either supporis the work-piece or the cuiting tool. in addition to being a support
structure, the spindie aiso rotates at high rates of speed to provide relative motion
between the work-piece and the cutting tool. Therefore the spindle has a direct impact on
both the throughput (materiai removai rate), and the accuracy of the finished part.

According to Lewinschai (1985), the most common requirements of a machine
tooi spindie are:

e High running accuracy
e High speed capability

e Qreai stifiness

Low and even running temperature

Minimum need of maintenance

Ofien in machine tool spindies these parameters wili conflict with each other. in order to
achieve a higher speed capability the designer must trade off spindle stiffness for speed or
visa-versa. The spindie designer must carefuily weigh the requirements of the user to

determine the best possible balance of these parameters.
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The goal of this research is to provide a tool for a spindie designer to aid in the
evaluation of the spindie stiffness. High running accuracy, high operating speed
capabiiity, iow and even running temperature, and minimum need of maintenance are
typicaliy functions of the bearing’s geometry, manufacturing, iubrication, and method of
mounting. if the spindle designer is able to quantify the stiffness requirements for the
bearing he can then work with the bearing manufacturer 1o seiect the proper bearings for
the application.

Ai-Shareef et al. (1990) deveioped a quasi-static method of analyzing machine
tool spindies. Their analysis takes the amplitude of the dynamic forces and applies them
to a static modei of the spindie-bearing system. For the static anaiysis the deflection
contribution of the spindie shaft and the defiection contribution of the spindie support
bearings are superimposed to obtain the totai deflection of the system.

The static anaiysis of the spindle shaft assumes that a stepped flexible shaft is
pinned in the iocation of the support bearings. The analysis of this fiexibie shaft consists
of a transformation from a stepped shaft to a uniform shaft. This transformation yieided
additional shear and bending moments at each of the joinis in the shaft. The resulting
uniform shaft was analyzed using classical mechanics.

The defiection contribution of the spindie support bearings assumes a rigid shaft
supported by linear springs. The reaction forces yielded the deflection at each of the
springs. Essentiaily, the deflection coniribution of the bearings is a straight iine fit

between the resulting deformed positions of the springs.
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in addition to the static anaiysis an optimization of the defiection at the end of the
spindie was presented. The optimization analysis consisted primariiy of varying the
spindie design parameters and iooking at the effect on the resuiting deflection at the
spindie gauge iine. Plots were presented iiiustrating the effect of the variation of these
parameters. The following conclusions were drawn from these plots.

¢ Inthe design of a spindie there exist an optimum ratio of the bearing spacing
to the overhang of the spindie. As the flexurai stiffness increases and the ratio
of front to rear bearing stiffness decreases the optimum bearing-overhang
decreases.

e A dimensionless flexural stiffness (K{OH)*/EI) of greater than 5 results in
minimum defiection at the cutting tooi. The deflection at the end, or gauge
line, of the spindie is very sensitive to the flexural stiffness for magnitudes
less than 5.

¢ Having more than 3 steps in the shaft is desirabie for obtaining minimai
deflection values.

o The magnitude, position, and direction of the driving force greatly effects the
defiection at the gauge iine. For each scenario there exists an optimum
location of the drive puiley.

In Lewinchai (1983) a similar study on the variation of spindie design parameters

was presented. Plots were generated that illustrated the effect of the bearing spacing-
overhang ratio on the spindie stiffness for support bearings of varying stiffness. From

these plots it couid be concluded that for very stiff support bearings the optimum spacing
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between the bearings becomes shorter. it couid also be conciuded that if the spindie has a
long overhang the stiffness of the bearings has a lesser impact on the stiffness of the
spindie.

Other work in the optimum design of machine ool spindies was also done in
Montusiewicz et al. {(1997). in this work a model of a machine tool spindie supporied by
hydrostatic bearings was presented. The study consisted of appiying a four-siage
muliicriterion optimization strategy to a static modei of a spindie. The objective of the
anaiysis was to reduce the radiai and axiai defiection of a spindie, the iotai mass of the
spindie, the totai power ioss of the bearings, and finaliy the size of the bearings. The
analysis divides the spindie sysiem into four subsystems. Each of these systems are
optimized iocaily, and finally integrated to provide a giobai optimization. The outcome
of this anaiysis was a computer aided optimum design package. This package ailows
spindie designers to interactively design an optimum spindie, inputting required design
variabies throughout the optimization process.

A quaiitative dynamic analysis of a machine tool spindie was presented in Al-
Shareef et ai. (1991). Traditionally in the dynamic anaiysis of machine tooi spindies the
first mode is thought to be responsibie for poor cutting quality. The purpose of this work
was to assess this assumption. There was concern that this would not be the case since
the range of operating frequencies for a given spindie often excite the higher modes. The
first four modes for an exampie spindie were soived for analyticaiiy and compared to
experimentai resuits. The modai analysis presented ignores damping and rotationai

affects. The authors site an experimentai study that proved there to be iittie difference



between the non-rotationai naturai frequencies and the rotational criticai speeds. By
looking ai the individuai mode shapes they found thai the first mode coniributed the most
to the defiection at the tooi to work-piece interface. Aii other modes in the operating
frequency range exhibited nodal characteristics at this interface. Since the excitation
force wouid be exerted here they conciuded that the first mode would indeed be most
accountable for poor cutting quality. However they also noted that ai the higher modes
there was significant defiection at the iocation of the support bearings. This couid resuit
in the degradation of these bearing and an eventual loss of spindie stiffness.

Some other works, pertaining more generaliy to the fieid of rotor dynamics, were
aiso researched. Two of these works deal primarily with the extension of the conventional
transformation matrix (CTM) technique. in the work done by Curii et ai. (1593) an
expression for an 8 x 8 dynamic stiffness matrix of a rotating Timoshenko beam is
derived and related to the conventionai 4 x 4 dynamic stiffness matrix. This provides for
the inclusion of anisotropic supports.

In work done by Murphy (1993) a poiynomial transfer matrix was developed to
replace the conventional transfer matrix for modai and forced response analyses. The
advantage of the polynomial transfer matrix is an increase in computationai speed of 3.5
to 100 times over the conventional transfer matrix. Example problems were analyzed
using both the CTM and PTM methods as welii as a finite element analysis. The resuits

for ail three cases were identical and the speed of the PTM method was considerably

faster.
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2.0 Static Analysis:

The static anaiysis caicuiates the lateral defiection of the spindie. Figure Z.i

illustrates the model under scrutiny. The following assumptions were necessary to

perform the analysis:

o

The spindie shaft is assumed to be an Euler-Bernoulii Beam.

The spindie is subjected to a cutting force, a drive force, and the reaction forces at the
bearings. The drive force must be applied behind the rear bearing.

The torsional and axial deflections of the spindie shaft are neglected.

The centeriine of the spindie shaft is exactly iniine with the centeriine of the bearing
bores. There is no contribution to the lateral deflection due to manufacturing
misaiignment.

The spindie housing and the cutting tool are both assumed to have an infinite
stiffness.

it is assumed that the spindie is supported by only two bearings. This is common for
most machine tool spindies. Manufacturability precludes the use of more than two
bearings in most spindies.

The contribution of transverse shear deformation to the overail iateral defiection is
assumed to be negligibie. It was observed in a study conducted by Ai-Shareef and
Brandon, that the contribution of shear deformation is dependent on the ratio between
the iength of the spindie and the spindie nose overhang. The shear defiection for

short spindies with small overhangs contributes more to the overali

15
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defiection than ionger, more slender spindies. A variety of spindies were anaiyzed in this
study and a maximum contribution of 12 per cent was found (Ai-Shareef et ai., 1990)
Superposition was empioyed to caicuiate the iaterai defiection of the spindie. The
elastic deformation of the spindie shaft, y, and the defiection of the spindie bearings, y»
were superimposed to caicuiate the overaii defiection of the spindie (see figs. 2.2a and

2.2b). Equation 2.1 gives the overali deflection of the spindie.

e
NI
[y

'~

V. =Y, + Y,
2.1 Deformation of Elastic Shaft:

For the elastic contribution of the spindie shaft Ai-Shareef and Brandon propose a

e

method to transform the stepped spindie shaft to a uniform shaft (Al-Shareef et. ai, 1550).
This approach will be employed in this analysis. When the shaft is transformed there is a
moment, My and shear force, Vi induced at each step in the shaft (fig. 2.3). In addition
the applied forces and reactions must be transformed into equivaient forces applied to
beam segments with iarger bending moments of inertia. These equivalent forces are
noted using the subcript “e” (i.e. Fy 2 Fyo).

The defiection of the uniform beam can be easily analyzed using conventional
beam theory and singuiarity functions. The singularity functions will be represented by
expressions in <>. If the vaiue of the expression within these brackets is iess than zero
the function becomes zero (i.e. <2-4>* = (). If the value of the expression is greater than
zero, the function simply becomes the expression within the brackets (i.e. <4-2>° =
(4-2)).

The shear force, V{x) of the uniform beam can be found to be:

17
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V(x)=F,,<x—al>D +F£<x—04 —tl}!J —R”(x—az}D

" (2.2)
—1?,fe<x—as.)~ +2Vk(x—bk>"
k=l
The moment of the beam, M(x) becomes:
M(x) = [P ()dc+ M @23)
M(x)= J,E‘Ik{x—a,')l +F£<x—a4 - tl'}: - R,,_,{x— a2>" - Rﬁ_,{x—a;)l
n 1 n o o (24)
+> V(x—b,) +2 M (x-b) +M, (x-a,)
k=i k=1
The siope of the beam, 6(x) becomes:
. i L
O(x) = " j M(x)dx (2.5)
[ F R 3
l—‘*’ (x—a,) +£<x a, )’ —R—"’(x—a2>2— fe(x—ag)zl
1] 2 2 2 2 | n
H(I)ZFI ] (46)
L+Z (x b )+ZA{ (x b ) +M, (x- a,) +q, |
k=1 k=l }
integrating the siope of the beam yieids the eiastic deflection, y(x):
(F, F, R s )
“&lx-a) +==(x-a e (x—a,)
() e frma, -ty B fea)
1 R, LV, 3 =M, 2
x)= - LY + -5,y +> —L(x-b 27
5= g e S Y Sy | e
M,, 2
+—>=(x—a,) +g,x+q,
\ 2 ( ~> ql q- J

The integration constants, q; & q; can be found by appiying the foliowing boundary

condiiions:

.Vs(x:a?_):G
y:(x:a3) :0

20



Soiving for the integration constants yieids:

»n Y n A F

q, = _ e (a, _a]>3 _Z%<az _bk>3 -3 (a, _bk>2 -4,

6 k= o 2
n .
_6;‘%’(‘13_(11> (@, -a,) )_ 6"; (@, —a,)
1 + n Ik(<a3_bk>3_<az _bk>3) \

4= (az _as)\ k=l?

(2.8)

(2.9)

The derivation for the moments and shear forces induced, and the equivalent

applied forces when the stepped shaft is transformed into a uniform shaft wili now be

presented. The derivation begins by looking at the internal shear and bending moments

for an arbitrary segment in the stepped beam (Fig 2.4). An iilustration of the shear and

bending moment diagrams is aiso offered (Fig. 2.5).

From the shear and bending moment diagrams it was found that:
Viy=V, =V,

and
M{x)=M,-V,x

From Castigiiano’s Second Theorem:

_,
ov

and
oU _g
oM

21
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The strain energy, U for one-dimensionai bending is known to be:
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Figure 2.4 Transformation of a Beam Segment



Figure 2.5 Shear and Bending Moment Diagrams for a Beam Segment
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M*?

U=13m

k=4 ‘-_l. .

dx (2.14)

it shouid be noted that this expression for the strain energy does not inciude any
contribution due to transverse shear deformation. Substituiing equation (2.14) into
equations (2.12) and (2.13), with eqns. (2.10) and (2.11) for the originai beam segment

(prior to the transformation to the uniform shaft), yieids the following y and 6:

“1{M1* VP
Mt B

=— 2.15

y B\ 2 3 | (2.15)
{ 7 72

9= M,l—l’l 4 (2.16)
EI 2 |

Similarly, when the analysis is repeated for the segment after its transformation the

defiection and siope, y* and 6* are found to be:

1M vel
y*= l.aiw'l B (2.17)
EI"| 2 3 |
{ 7 72
o* = UM,I—U b (2.18)
EI" | 2 )

The differences in y and 6 must be compensated for with the induced shear force and

bending moment.

f y{ 3]

Ayz—li— I,L ML VI (2.19)
\EI EI'}| 2 3 |
f 1{ 7 72 ]

Aezli—%LlMl—I'l L (2.20)
\EI EI'}| 2 |

Therefore:
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[ Ml e T [ M Yl
= ' 2 e &1 2 6 |
RN R S
\Er ErJT 2 ) lEr)T™ 2

(2.21)

(2.22)

(2.23)

(2.24)

This analysis can be repeated to find an induced shear and bending moment at

each step in the shaft. The induced force and moment now become applied forces io a

beam segment with a moment of inertia of I’ This analysis can be extended to show that
aii applied forces must be scaled by a factor of in/i. Where Iy is the moment of inertia of
the uniform beam (iargest moment of ineriia in the stepped shaft), and I is the moment of

inertia of the segment that the force is applied to. Therefore the induced forces and

moments become:
't 11
Vi=1|--=V, (2.25)
* ']LI I J]
1 1 ‘
M,=1|-——— i (2.26)
* ']LI I }M '
where:
V,=R{x-a,) +R{x~a,)’ ~flx-a) - fix—a,~d) (2.27)

25



A'{r =R (b be 2/ +R b —G3Xb —a%> 0 (228)
—fb,—a,Xb,—a,) — f.b,—a,—tIXb, —a,— 1)’ — mb{b, -
The cutting, driving, and reaction forces from the stepped spindie shaft must aiso

be scaied to provide equivalent applied forces on the uniform shaft. The scaling of these

forces yieids:

F,=—F, (2.29)
fe
R,=—R (2.30)
IRr
1'
R, = 7 R, (2.31)
Rf
I X
M,, =——M, (2.32)
Mb

2.2 Defiection of Bearings:

The deflection contribution of the spindie bearings was caicuiated by assuming
that the spindie is a rigid shaft supported by two flexible bearings (Figure 2.2b). The
cutting force F., and the driving force F4were used to solve for the reactions at the
bearing. The two reaction forces were used to calculate 3, and 6, the defiections at
the two bearings. The defiection contribution of the bearings is a straight iine through
o, and &s.

(5 -0 Xx a,)+d (a, -

7= @ -a,)

(2.33)
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Where

5 = (fc(a4 "Lﬂ_as)_”’b_fd(az _az)) (2.34)

(a3 ) )'Kr

5. = fd(a3 _az)+mb_fc(a4 "Lﬂ_as)_(fc +deas-az)
d (as _az)Kf (2.35)

m, = f.la, +tl-a)x, (2.36)

2.3 Matlab Solution:

A program was developed using Maiiab to automate the static anaiysis of the
spindie shaft. The user must simply enter the geometry, ioads, and support parameters
into a spreadsheet calied a “batch file” A copy of the batch file tempiate is presented in
Appendix A. The Matiab programming code used to automate the static anaiysis can be
found in Appendix B.

An exampie of the analysis for a simpie spindie is presented here. Figure 2.6
illustrates the batch fiie for the static analysis. Upon the compietion of the batch fiie the
program wili read the fiie and report a geometric representation of the spindie. The piot
illustrates the geometry of the shaft as well as the locations of the bearings, cutting force,
and drive force (see figure 2.7). This feedback aliows the user to easiiy check for
mistakes in the batch file. With ali the information correct the program caicuiates and
reports piots of the defiection contribution of the eiastic shaft (figure 2.8a) and the
defiection contribution of the bearings (figure 2.8b). Finally the program reports a piot of

the total deformation of the spindie (see figure 2.9).
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Batch File:

Geometry:
Number of Sections(#): %]
Section Length Outer Diameter Inner Diameter Area Moment of Inertial
# (D) (n) (in (in"2) (in"4)
1 3 225 2| 0.83449 0.47265783
2 3 2.375 2125 ] 0.88357 0.560861726
3 3 25 2251 0.93266 0.652419991
a4 3 2.625 2375} 0.98175 0 76890787
5 3 275 251 103084 0.889900605
© 3 2.875 2625 1.07992 1.022973438
7 0 0
8 0 0]
9 [0] 0
10 0 0
11 [o] Q
12 0 0
13 0 0
14 0 0
15 0 0
Bearings:

Lat Stiffness of Rear Bearing (IbAn):
Lat Stiffness of Front Bean IbAn.):
i S = R,

racﬁon of mom. on Front Bearing: 0.1
Location of Rear Bearing (in.) 7.5
Location of Front Bearing (in.) 135
Pulley:

ocaﬁon of Pulley (in.)

Length of Tool (in)
Speed:.

Material Properties:

,odulus of Elastici

%

Figure 2.6 Batch File for Matlab Solution
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shatt radius, (in)
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Figure 2.7 Matlab Representation of Geometry
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Deflection Contribution of Elastic Shaft
2

L Y

"

y (in.)

' 1

o
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x (in.)

Figure 2.8a Deflection Contribution of Elastic Shaft

¥ Deflection Contribution of Bearings
8

T

18

y (in)

6 8 10 12 14
x (in.)

Figure 2.8b Deflection Contribution of Support Bearings
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x 10 Combined Spindle Defiection
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y (In.)
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x (in.)

Figure 2.9 Total Deflection of Spindle
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In order to confirm the results offered by the program, a finite element analysis of
the sample spindle was performed using Ansys. The spindle was modeled using one-
dimensional linearly elastic beam elements. The bearings were modeled using linear
spring elements. The cutting force was transformed into a force moment couple and
applied at the end of the spindle shaft in order to account for the tool length. Figure 2.10
compares the deflections of the shaft using both methods. It is clear from the plot that

there is an excellent correlation between the two analyses.
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Static Deflection Comparison
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Figure 2.10 Comparison of Total Spindle Deflection (FEA vs. Matlab)
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3.0 Dynamic Analysis:

The dynamic anaiysis for the spindie shaft consisis of iwo portions. The first part
of the analysis is the modal analysis. The beam is treated as a continuous system for this
portion of the anaiysis. The second part of the anaiysis soives for the defiection of the
spindie by means of modal superposition. The following assumptions were made in
order to perform the anaiysis:

1. The spindie shaft is assumed to be an Euler-Bernouiii Beam.

)

The spindie is subjected to a cutting force (F.Sin(a.t)), a drive force (FsSin(wqt)),
unbalance forces (FapSin(ot) & (FabSin(ot)), and the reaction forces at the bearings.
The drive force must be appiied behind the rear bearing. The cutiing force and drive

force are assumed to be harmonic.

(5]

The masses of the puiiey and cutiing tool are assumed to be concentraied. The mass
of the puiley is assumed to be concentrated at the cenieriine of the puliey. The mass
of the tool is assumed to be concentrated at the end of the spindie shaft. This point is

often referred to as the gauge iine.

-Dn

There is no unbalance excitation introduced by the spindie shafi.
5. The rotationai affects of the spindie shafi are neglected.

6. The torsionai and axiai deflections of the spindie shaft are negiected.

=~

The centeriine of the spindie shaft is exacily inline with the centeriine of the bearing
bores. There is no contribution to the iateral defiection due to manufacturing

misalignment.
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8. The spindie housing and the cutting tooi are both assumed to have an infinite
stiffness.

9. Iiis assumed that the spindie is supporied by oniy two bearings. This is common for
most machine tool spindies. Manufacturability typicaily preciudes the use of more
than two bearings in most spindies.

10. The contribution of transverse shear deformation to the overall lateral deflection is
assumed to be negiigibie.

11. Damping is negiecied in the dynamic analysis.

The modei scrutinized in the dynamic analysis is very simiiar to the modei used in the
static anaiysis. One major difference is the use of a torsional spring to represent the
torsional stifiness of the front support bearings. In addition the masses of the puiiey and
cutting tooi are included. See figure 3.1 for the dynamic modei under scrutiny.

3.1 Modai Analysis:

The foundation for the modal analysis is the derivation of the wave equation for
the laterai vibration of a continuous Euler-Bernoulli beam. Figure 3.2 represents the free

body diagram of an differentiai element of an E-B beam. Appiying Newton’s second iaw

to the beam eiement it can be shown that:

ov 2%y
— =—pA— 3.1
ox P ot” @1
and
oM
V= 32
> (3.2)



FdubSin(wt)

Figure 3.1 Dynamic Spindie Model
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Figure 3.2 Differentiai Element of an E-B Beam
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it can also be shown from Strengihs of Matenais that:

M=£22 (3.3)
Py
Substituting eq. 3.3 into 3.2 yields:
V=<2 (.4)
P

Finally, substituting eq. 3.4 into 3.1 and rearranging yields:

&y EIg'y
o pda @3

The following harmonic solution to eq. 3.5 was assumed:

y{x,t) = y{x)sin wt {3.6)
Substituting the assumed solution (eq. 3.6), into the differential equation (3.5) yields the
foliowing forth-order differentiai equation:

'y

P ﬂ“y =0 3.7
where:
gL )

it can be shown that the general solution to the preceding forth-order differentiai equation
is:

¥(x) = Acosh fx + Bsinh fx + C cos fix + Dsin fix

~
W
O
N’
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Equation 3.9 represents the wave equation for an E-B beam. The mode shapes for a
beam can be found by substituting vaiues for §§ that correspond to the resonant
frequencies. The constants A,B,C, and D can be soived for by appiying the boundary
condition for the beam.

A systematic method involving numerical methods was deveioped to soive for the
resonant frequencies and their corresponding mode shapes. This method is not exciusive
to the spindie probiem at hand. it can be extended to the iaterai vibration of many Euier-
Bemoulii probiems. Listed beiow are the steps to this method:

i. Estabiish the boundary conditions for the system.
2. Coilect the sysiem of equations into mairix form.
3. Using Gaussian Eiimination numericaily reduce the mairix.
4. Using the Bisection Method or a comparabie root finding method soive for the
resonant frequency, 3.
5. Back substitute to find the constants A,B,C and D for the beam segment.
Figure 3.3 represents a simpie beam used to iliustrate this approach. The beam under
scrutiny here is a uniform E-B beam fixed at both ends. The first step is to find the
boundary conditions. Since the beam is fixed-fixed, the displacement and rotation at x =

0,1 are both equai to zero. Expressed mathematicaliy:

¥(0)=0 (3.10)
y(©)=0 (3.11)
(=0 (3.12)
¥ (@) =0 (3.13)
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Substituting Eq. 3.9 into Eqgs. 3.10-3.13 yieids:

y(0)=4A+C=0 (3.14)
y{0=B+D=0 (3.15)
y(I) = Acosh(fl)+ Bsinh{ f) + C cos(B) + Dsin(5) =6 (3.16)
V' (1) = Asin( ) + B eosh( ) — C sin{ i) + D cos{(fl) =0 (3.i7)

The next siep is to coilect this system of four equations into matrix form. This yieids Eq.

3.18:
IS N
| O 1 1 {1B| o .
% cosh(Bl) sinh(f) cos(ﬂl) sin( A1) ﬁ C IT 4] 0% (3.18)
Lsinh(Sl) cosh(Bl) —sin(Bl) cos(B)]|D] 0]

Step (3) reduces the matrix in eqn. 3.18 using Guass-jordan elimination. The reduced

system is iiiustrated in eqn. 3.19;

S (I

o100 1 Bl ol

o o 1 Sn(A)-smh(A) | t=4 (3.19)
cos(l)—cosh(A) ||| | |

0 0 0 cos(f)cosh(fl)—1; \p] o]

The reduced system can be used 1o soive for ihe resonani frequencies, ;.
{cos(Br) cosh(Bl) -1)D = 0 (3.20)
if D was equai to zero, then A,B, and C wouid aiso equai zero. This wouid not be a

meaningfui resuit. Therefore it can be conciuded that:

{cos(Bl)cosk(pl)-1)=0 (.21)



This is where the root finding method suggested in step {(4) comes into piace. The
roots of eq. 3.21 iead to the resonant frequencies of the system. Solving for the roots
yieids:

BB, p,i=4778.11.0

Afier solving for the roots the final siep is to back substitute to obtain the
constants A,B,C and D. Begin the substitution by assuming that D=i. Working
backward from D it can be shown that the remaining constants are:

C= sinh( 8 — sin{ 5I)
cos( ) — cosh{ f)

B=-1

Ao sin{ ) — sinh( 1)
cos( 1) — cosh{ )

Substituting these constants inio eq. 3.9 yields the mode shape for the sampie beam. The

equation for the mode shapes becomes:

sin(3,1) —sinh( B, 1)
cos(B,1) —cosh(B,I)
| sink(B,1) —sin(B,1)
" cos(B,1) — cosh(B,])

y(x) = cosh(f3,x) + sinh( 8, x)

=12,.. (3.22)

cos(f,x) + sin( B, x)

Figure 3.4 iijustrates the first three mode shapes for the sampie beam.
The method described here can be applied to find the mode shapes for ali uniform
E-B beam probiems. However if the beam is stepped, as is the case with the spindie

shaft, there needs to be a set of boundary conditions for each beam segment. This ieads
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Figure 3.4 Mode Shapes for Sampie Beam
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to a very large system of equations. Aside from the probiem of having a very iarge
system, the number of steps wouid change for different spindies. This wouid make
automation very difficuit. A transformation matrix was developed to handie the steps in
the shaft. The transformation matrix relates the constants on one side of a step to the
constants on the other side of the step. This makes the number of equations in the system
independent of the number of steps in the shaft.

The deveiopment of this transformation matrix begins by looking at an arbitrary
step in an Euier-Bernouiii beam (see figure 3.5). in order for continuity to exist the

defiection, slope, moment, and shear force at the joint must be the same for both beam

segments.
»() =y, (3.23)
y' () =y,"{) (3.24)
(EX), d;;,(l) (&), 2 ;;U) (3.25)
(), 229 a yl(l) - (E1), dﬁfz(i) (3.26)
Substituting eq. 3.8 yields:
4, cosh(B,1) + B, sinh{ B,1) + C, cos(B,]) + D, sin(ﬁ;t') = (3.27)
4, cosh(B,1) + B, sinh( B,1) + C, cos(B,I) + D, sin( B,1)
B{4, sinh( B,1) + B, cosh(B,1) - C, sin( B,]) + D, cos(B,1)) = (3.28)
B,(4, sinh( B,1) + B, cosh(B,1) — C, sin( B,1) + D, cos(B,1))
.2 (4, cosh(B,7) + B, sinh( B,1) - C, cos(B,1) - D, sin( B,1)) = (3.29)

ﬂzZ(Az cosh(,/) + B, sinh( 8,1) - C, cos(B,!) - D, Sin(ﬂzl))
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Figure 3.5 Step in E-B Beam



B, (4, sinh( B,1) + B, cosh(B,]) + C, sin( B,1) - D, cos(B,1)) =

3.30
B’ (4, sinh( B,1) + B, cosh(B,]) + C, sin( 8,]) - D, cos(B,1)) )

The system of four equations and eight unknowns can be coiiecied into matrix form.

Tcosif) smb(fi) cos(Bi) sin(B) ~coshi B,1) — sinia( 5,) o8 Byl) — sin( 5,1)
]sinh(ﬁ:l) cosh( Bil) —sm(f)) cos(B,]) —sinh(£.1) — cosh( £.1) sin( f.1) — cos( .1}
) N o g (EDGBY o (EDGBY o (EDWB . (EDBY
cosh{ B,7) sinh{Bi) —ocos{(Bi) —sim(fi) ——=—=-cosa{f,i) ——="3-sinh{f,i 2= i ==
(B B ) ) (ET B2 5 Ty B (8,1} B cos{ B,1) A
PN e o e (EDBY oo (EDWBY o (EDB o (ED.BY
s i) oosh(Bi) s iy - i) ——="Z—sinh(p,i) ———="2-cosh — == _sinh ) —=
lmm (A sl ad (EI). B’ o (ET).B;° P} (ET). B, il (ET) B

4, o
B, 0
C, 0
D, 0
* Ay
2110l (3.31)
B, 0
C, 0
D, 0

Using Gauss-jordan eiimination foliowed by back substitution a relationship can be

found between A,-D, and A,-D,. Two ratios, R) and r,, were defined to simplify the

reiationship.
g =ED: (3.32)
(ED),
B, :
ro=12 (3.33)
ey
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4, = ER oo cos(pt) - B snb 5 sin D},

+[’1R1; “. {cosh(B,1)sinh( B,1) — R, sinh( B,1) cosh( B,1)}B, 334)
_Jiz_—_l {cosh(B,1) cos(B,1) + R, sink( B,1)sin B,D)C,

_ xR:; ~Utcosh(,1ysin( ,1) - R, sink( B, cos(B,D)D,

B, = k@j{& cosh(B, 1) sinh( f,1) — sinh( B,1) cosh( B,1)}4,
+M211]{R,cosh(ﬂ,z)coswzz)-sinh(/f,l)smh(ﬂzl)}Bz 6535
. R2 YR, cosh(g,1ysin( B,1) + sinh( B,1)cos(B,D)C, |

N r ,R,; ol {sinh( B,1)sin( B,1) — R, cosh(B,I)cos(B,1)}D,

C, = @{R, sin( B,0) sinh( B,1) — cos(B,1) cosh(B,))}4,

+M§;l. {R, sin( B,1) cosh( f,]) — sinh( B,1) cos(B,)}B, 536
+B1% feos(B,1)cos(B,1) + R, sind B,1)sin( B,1)C,

‘ 'RI; +1 feos(B,1)sin B,1) - R, cos(B,sin( B,1)}D,
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. R _1.
D, = —lr]_]z__]{Rl cos(ﬂll)smh(ﬂzl)+Sin(ﬂ11)305h(ﬂ21)}‘42

~ {R, cos(B,1) cosh(B,1) + sin( B,1)sink( B,1)}B,
2 (3.37)

‘R’ +1 . , ,
MR, cos(B Dy sin( B,1) — sin( 1) sin( 5, D]C,
BR2ep conp ycon(p )+ sin s 1D,

The coefTicients from eqns. 3.34-3.37 can be coiiected into a transformation matrix {17,

such that:
5 s
1]C’ ]r=[Tn]1]C2 ]r (3.38)
D) 2

The use of the transformation matrix can be illustrated by expanding the sampie
beam problem to include steps in the beam (see figure 3.6). Applying the boundary

conditions would resuit in the following system of equations:

(‘41\ rO\
B/ | |0
]F 1 010 0 0 0 0 7]C1 0
|01 0 1 0 0 0 0 ||D, 0 ,
]O 00 o b ) ) K L =7 1 (3.39)
| cos(ﬁale.) smh(ﬁ3l3) COS(ﬂ3l3) sm(ﬂ3l3)] A3 0
[0 0 0 0 sinh(B,,) cosh(B,,) —sin(B,L,) cos(B,1,) || B, 0
0
OJ

S

r
s

N
Ve

If transformation matrices were not used, the only way to solve the system of equations
would be to reiate Aj-D; to A3-Dj; by including the continuity equations. This wouid

increase the size of the system to 12 equations and 12 unknowns. It would also make the
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Figure 3.6 Sample Stepped Euler-Bernoulli Beam
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size of the system dependent on the number of steps in the shaft. This in-turn wouid
make automation more difficuit. if the transformation matrices were used the system of
equations wouid be reduced to 4 equations and 4 unknowns, regardiess of the number of

steps in the shaft. The firsi two equations in the sysiem become:

(4,7 {0]
oo pinl o .
!_0 10 1_} 32 21}ilc3lf—lolf (3.40)
\2;] (o]

The last two equations wiii be the same as represented in eqn. 3.39. Once the system of
equations is deveioped steps 3-5 of the pre-described method can be used to soive for the
resonant frequencies and their corresponding mode shapes.

The five-step process and transformation matrix can now be combined and
appiied to find the frequencies and modes shapes of the spindie depicted in Figure 3.1.
In order to encompass ali of the externaily applied boundary conditions the beam must be
divided into four sections. Figures 3.7a-3.7d depict the four subdivisions. The first
section is between the rear free end and the drive puiley. The second section is between
the puiley and the rear support bearing. The third section is between the rear and front
support bearings. The forth and final section is between the front support bearing and the
cutting tooi. There will be four consiants for each of the four sections for a totai of
sixteen constants.

Beginning with the free end of section one, the shear force and bending moment
at x = 0 are both equai to zero.

Expressed mathematically:
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H(0)=EI=2 =0 (3.41)
and
d*y
M,(0) = EI dxy; -0 (3.42)

Substituting eqn. 3.9 into equations 3.10 and 3.11 and setting x equai to zero yieids:
B, -D =0 (3.43)
and

4 e
A -D

=0 (3.44)
At the junction between sections 1 and 2 there are four boundary conditions. The
first three conditions involve the defiection, siope and bending moment at the joint
between sections 1 and 2. Since there are no exiernaliy appiied moments, and the
structure is continuous, the defiection, siope, and bending moment at the joint must be

equai for both sections. Therefore:

@) =y,ia) (3.45)
»'ia)=y,'(a) (3.46)
EIy,"(a,) = EI,"(a,) (3.47)
Substituting equation 3.9 into equations 3.45-3 47 yields:
A, cosh(fa,)+ B, sinh( fa, ) + C, cos{fa,) + D sin{ f4’1’«1i ) (3.48)
— 4, cosh(fia,) -~ B, sinh( fa,) — C, cos(fia,) - D, sin( fa,) = 0
A, sinh( fa, ) + B, cosh{ fa,) — C, sin{ fa;) + D, cos{fa, ) (3.49)

— 4, sinh( fia, ) — B, cosh(fa,) + C, sin( fia, ) — D, cos(fa,) = 0
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Figure 3.7d Boundary Conditions for Section 4
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Al cosh(ﬁa{)—i- Bx Sinh( ﬁal) - C; cos(ﬁa;) - D{ Sin(ﬁai) (3.50)
~ 4, cosh(Ba, )~ B, sinh( Ba, ) +C, cos(Ba,) + D, sin(Ba,) = 0

The forth boundary condition at this joint is affected by the mass of the puiley. The mass
of the puliey introduces an externai shear force. Figure 3.8 iliustrates the free body

diagram at the joini. The shear force introduced by the mass is equal to the D’ Aiembert

force associated with the puiiey mass.

Therefore:
V,=m,p=—m,m"y,(a) (3.51)
For equilibrium at the joint:
Viia)-vV,(a) =V, (3.52)
E,"'(a,)~ EIF, " (a,) = -m ,0°%,(a,) (3.53)

Substituting equation 3.9 into equation 3.53:
A, sinh( fa,) + B, cosh(ﬁai) +C, sin{ fa,)— D, cos(ﬁai )

— A,[sinh( fa,)— cosh( (fa,)]— B,[cosh(fa,) - ﬁ’ smh( fa,)] (3.54)

EI

c:os(,b’al )+ D, [cos(ﬂa,)— 3EIS in( fa, )] =0

C, -
+C, [sin( B, ) ﬁ

The first three boundary conditions for the joint between the second and third
section are the same as the boundary conditions between the first and second joint.

Therefore:
4, cosh(B(a, —a,)) + B, sinh( B(a, —a,)) +C, cos(B(a, - a,))
+D, sin{ f(a, — a,))— 4, cosh{ B(a, —a,)) - B; sinh( f(a, —a,)) {3.55)
—C;cos(fla, —a,))— D, sin(fla, —a,))=0
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o

i
+ D, cos(f{a, —a

1
+C; sin{ fla, —a,))-

4, cosh{f{a, —a,))+ B, sinh{ B{a, —a,)) - C, cos{fi{a, —a,))
— D, sin{ f(a, —a,)) — 4; cosh{f(a, —a,)) - B, sinh{ f{a, - a,))

oY s Ds Y Y s D RN n
TL; 008\ pla, —q,))~ U Si{ pla, —a,)) =Y

o~
17>
()]
~)
St

For the forth boundary condition at this joint the shear force iniroduced by the rear
support bearing must be accounted. Figure 3.9 iilustrates the free body diagram at the
joint. The shear force introduced by the bearing is proportionai.to the shafi’s

dispiacement at the joint.

Ve =K. ¥5(a,) (3.58)
For equiiibrium at the joint:
Vy(a,)-Vi{a,)=V, (3.59)
Ely,"{(a,) - EIy;""(a,) = K, y,(a,) (3.60)
Substituting equation 3.5 into equation 3.60:
A, sinh{ B(a, —a,)) + B, cosh{B{a, — a,)) + C, sin{ f{a, —a,))
— D, cos(B(a, —a,))— 4,[sinh( f(a, —a,)) + ,BI':II"II cosh(fB(a, —a,))]
K, . . {3.61)

— By[cosh(B(a, —a,)) + ﬂSIr':I sinh( B(a, —a, )]+ C;[sm(B(a, —a,))

24 11

A . 3
+ 3EI cos(ﬂ(a2 —a,))]+D3[cos(ﬂ(a2 al))_ ﬂ

Sm(ﬁ(az —a,))]=0

The first two boundary conditions for the joint between the third and fourth

section are comprised of the continuity conditions (y3=ys and y3'=y4").
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Therefore:

Az cosh(ﬁ(az - »+ Bz Siﬂi‘l( ﬁ(az -aq » +C2 cos(ﬁ(az -4q »
+D, sin(#(a, - a,)) - 4; cosh{B{a, —a,)) - B, sinh( f(a, —a,)) (3.62)
~C, cos(B(a, ~a,))- D, sin( f(a, —a,)) = 0

A, sinh{ f(a, —a,))+ B, cosh(f(a, —a,))—C, sin{ B(a, —a,))
+ D, cos(B{a, - a,))- A sin( (a, - a,))~ B, cosh(B(a, —a,)) (3.63)
+C; sin{ fla, —a,))— D, cos(f(a, —a,)) =0

The third and forth boundary conditions are infiuenced by the bending moment and
shear force associated with the torsionai and iaterai stiffness of the front support bearing.
Figure 3.10 iiiustrates the free body diagram ai joint 3.

For equiiibrium at the joint:

o
1Y

o
w
A

Vila;)-V,(a;) =V,

ey
w
AN
)
A Td

Ely;™(a;)— Ely,""(a;) = K ;y,(a;)

and
My(a;)—M,(a;) = M (3.66)
Ely;"(as) - Ely,"(a;) = Ky, (a;) (3.67)

Substituting eq. 3.9 into egs. 3.65 and 3.67 yieids:

A sinh{ B{a; —a,)) + B, cosh{B(a, —a,))+ C, sin{ f(a, —a,))

~ D, cos(B(a, —a,))— 4,[sinh( f(a, —a, ))+ ﬂAE[ cosh(B(a, —a,))]

’e

K,
— B,[cosh(B(a, —a,))+—— 7 sinh( A(a, —a,))}+ C,[sin( B(a, —a,))

=
W
[*N)
o
e

> rr

5 C0(B(@; —a, )]+ D, eos(B(a; ~a,)) -

+

sm( Pa,—a,)]=0



V3(a3)

M4(a3)

Mkt

Y Vagas)

N

v Vkf

Figure 3.10 Free Body Diagram of Joint 3
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\_,4
1’-}
.

560 S(.B( —a,))
— D, sin( f(a, —a,))— A,fcosh(B(a, —a, ))+ ﬂ smh( B(a, —a,))]

4, cosh(B(a, —a,))+ B, sinh{ f(a, — a,)) -

K (3.69)

- B [sinh( B(a, —a,))+ ﬂ El COSh(ﬂ (a, —a)}+C,[cos(B(a, —a,))

>

cos( Bla,—a,))}=0

+ 7 21 sin( B(a, — a,))}+ D,[sin(B(a, —a,))— ﬂ

The finai two boundary conditions are reiated to the cutiing end of the spindie.
The first of these conditions reiates to the bending momeni. Since the rotary inertia of

the cuiting tool is negiected the moment ai ihe end of the spindie is equal o zero.

Therefore:
da‘y
M,(0) = EI )2’1 -0 (3.70)
dx
A, coshif(a, —a;))+ B, sinh{ f{a, - a,)) (3.71)

—-C, cos(B(a, —a,))- D, sin(B(a, —a;))=0
The last boundary condition invoives the shear force at the end of the shaft. The shear
force is equai to the D" Aiembert force associated with the mass of the tooi.

Therfore:

-
(V%]
‘\:|
IN)

News’

V(a4 )= myla,)=-mo 2?(04 )

Substituting equation 3.9:



A,[sinh(B(a, - a,)) + ’;Z_I cosh(B(a, - a,))]+ B, [cosh(B(a, - a,))

T b B(a, ~a )]+ fsinBla, ~a)+

’;IfE); cos(f(a, —a,))] (3.73)

+

PO sin(Bla, - a,))] =0

—D,[cos(B(a, —a,))- BE

in order to soive the set of simuitaneous equations, the set of sixteen equations and

sixteen unknowns were collected into a matrix.

]
)
4
]
-

A program was deveioped using Maiiab to auiomatie the modai anaiysis of the
spindie shaft. Data is coliected and entered into a spreadsheet. This sheet acts as the
batch file for the modai analysis. Much like the static analysis, the user must enter the
geometry, mass information, and support parameters into the batch fiie. A copy of the
baich fiie tempiate is presented in Appendix A. The Mariab programming code used to
automate the modai analysis can be found in Appendix C.

An example of the analysis for a simpie spindie is presented here. Figure 3.11
iliustrates the batch fiie for the modai analysis. The “grayed out™ information does not
pertain to the modal analysis. Upon the completion of the baich file the program wiii
read the file and report a geometric representation of the information. With aii the
information correct the program calculaties and reporis the resonant frequencies for the
sampie spindie. The sampie spindie was also modeied using Ansys. A comparison
between the FEA and anaiytical resulis for the first three modes is presented in Figures

4

3.i2 through 3.14.

61



Batch File:

Geometry:
Number of Sections(#): [ %]
Section Length  Outer Diameter Inner Diameter Area Moment of Inertia
(€:2) (in} (in) (in) {in"2) (in~4)
1 3 2.25 2] 0.83449 0.47265783
2 3 2.375 2.125 | 0.88357 0.560861726
3 3 2.5 2.25 1 0.93266 0.659419991
4 3 2.625 2.375] 098175 0.76890787
5 3 2.75 251103084 0.889900605
[3) 3 2.875 2.625 1 107992 1.022973438
7 0 0
8 [o] 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0 0
14 [o] 0
15 0 0
Bearings:
Lat Stiffness of Rear Bearing (ib/An): 100000
Lat Stifiness of Front Bearing (Ib/An.): 500000
Tor. Stiffness of Front Bearin in‘- Ib): 10000
Location of Rear Bearing (in.) 7.5
Location of Front Bearing (in.) 135
Pulley:
Location of Pulley (in.) 45

Length of Tool (in)
Speed:

Material Properties:

Modulus of Elasticity (psi): 30000000
Density (IbAn"3): 0.289

Figure 3.11 Batch File for Sample Spindle
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The resonant frequencies for the first three modes are compared in table 3.1. It is

clear from the table that the two methods correlate very closely for the two methods.

Table 3.1 Comparison of Resonant Frequencies (FEA vs. Analytical)

Mode | FEA | Analytical Difference
(Hz) (Hz) %)

1 19.26 19.17  10.4672897
2 1 61.28 61.72 10.7180157
3 | 9557 100.33  14.9806425

3.3 Forced Response:

The forced response of the spindle is calculated using a numeric modal
summation procedure. The development of the forced response begins with the equation

of motion for a beam, Dahleh et. al, (1989).

[E5" (0] +mx)3(x,0) = £(x,0) (3.73)
The normal modes for the beam, ¢i(x), must satisfy the following equation:
(Elg, ) -0 m(x)¢, =0 (3.74)
In addition to eqn. 3.74, since the normal modes are orthogonal they must also satisfy the
following equation:

!
j¢i¢jdx =0 fori#j (3.75)
0

The solution to the forced response can be represented in terms ¢;(x) as:

x)= Y 4.0q, ) (3.76)



Where qi(t) is the generalized coordinate. The generalized coordinate can be realized

using the Lagrange Equation. Looking first at the kinetic energy yields:
l 1
T= 3 e tym(xde
(1]
Substituting eqn. 3.76 for y(x,t) yields:
1 1
T= '2'2 Zqiqjj¢i¢jm(x)dx
L 0

1 L
T=="%Myj. 3.77
22,-: 4, (3.77)

Where the generalized mass, M; is defined as:
]
M, = (8 (x)m(x)dx (3.78)
(1]
The potential energy, U can be defined as:

11 n2
U:E_!Ely (x, )dx

U= 3548, E18 8,

1

U=-%YKgqg’ 3.79
ZZ 4; (3.79)

Where the generalized stiffness, K; equals:
I ”
K, = [EIlg, ()P dx (3.80)
(1]

If eqn. 3.74 is substituted into eqn. 3.79 it can be shown that:
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U= —%Zw,2M,.q,.2 (3.81)

A generalized force, Q; can be defined by looking at the work done by a virtual

displacement, 3q;.
1
ow, = [ f(x,0)4,09,dx
P i
rearranging:
&, =Y.84,0, (3.82)
where:
1
0, = [ f(x.0),(x)dx (3.83)
0
From the Lagrange Equation:

i(aT]_aT+aU_Qi (3.84)

di\o4,) o4, oq,

Substituting for the kinetic energy, potential energy, and the generalized force yields the

following differential equation:

[ £ 8, (o
g +oq,=5 (3.85)
(8. Cym(x)ax
where:
:_ K,
o' =3 (3.86)



The model of the spindle assumes four simple harmonic loads. The harmonic
loads include the drive force, cutting force, unbalance of the pulley and unbalance of the
cutting tool (see fig. 3.1). All four of the forces are assumed to be in phase with each
other and of the form:

f(x,t) = F(x)sin(wt) (3.87)
Each of the forces are applied to a single point. Assuming the force is applied at x = x,, it
can be described using the delta dirac function as:
f(x,t)=Fsin(@at)d(x—x,) (3.88)
By definition the delta dirac function is equal to zero for all x not equal to x,. Further it

can be shown that:

TF(x)a(x —x,)dx=F(x,) (3.89)

Substituting this relationship into eqn. 3.85 yields:

G0 = ¢f,- (x,)F sin(ax) (3.90)

|8, xym(xyx

Assuming the following solution to eqn. 3.90:
q;(t) = g, sin(ot) (3.91)
yields:

¢, (x,)F
(a),.2 —w2)J¢i2mdx

g, = (3.92)
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The denominator of eqn. 3.92 must be broken down for the four sections of the spindle

and each of the segments (steps) in the shaft described in the modal analysis.

¢ = — #:)F (3.93)
(w,-z —mz)Zm,,Z J(Ak cosh(B;x)+ B, sinh(8,x)+C, cos(B,x)+D, sin(B;x))* dx
n=1 k=1 ¢

For this analysis only the summation of the first four modes were utilized. After
the first four modes the difference between the resonant frequencies and the drive
frequencies become large and q; approaches zero. Therefore the steady state response

becomes:

Y= ¢1q1 +¢2q2 +¢3q3 +¢4q4 (3-94)

The deflections, Y were calculated for each of the four excitation forces and superposed
to yield the total forced response:

Y, =Y, +Y  + Y, + ¥, (3.95)

3.4 Matlab Solution for Forced Response:

A program was developed using Matlab to automate the calculation of the forced
response for the spindle shaft. The magnitude and frequency of the excitation forces is
entered into a batch file. In addition to the load information the program reads the first
four modes calculated in the modal analysis program. The Matlab programming code
used to automate the forced response can be found in Appendix C.

An example of the analysis for a simple spindle is presented here. Figure 3.15
illustrates the batch file used for this example problem. The “grayed out” information

does not pertain to this analysis. It should be noted that the program will not function
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Batch File:

Geometry:
Number of Sections(#). E
Section Length  Outer Diameter Inner Diameter Area Moment of Inertia|
#H @in) (n) (in) (in"2) "4
1 3 225 2] 0.834486 0.47265783
2 3 2.375 2.125! 0.883573 0.560861726)
3 3 25 225! 0.93266 0.659419991
4 3 2625 2.375 0.981748 0.76890787.
5 3] 275 2.5} 1030835 0.889900605!
6 3 2875 2625} 1079922 1.022973438)
7 0 0
8 0 0
9 0 0
10 0 0
11 0 O
12 0 0]
13 0 0
14 0 0
15 0 0
Bearings:
Lat Stiffness of Rear Beanng (ib/n): 1000008
Lat Stffness of Front Beanng (IbAn ): 500000
Location of Rear Beanng (in) 75
Location of Front Bearing (in.) 13.59
Pulley:
Location of Pulley (in.)
Drive Frequency (Hz): 133.33
Pulley Unbalance (ib-s"2): 0.002279727,
Jool:

arrnonic Cutting Force (tb): ] 300

Cutting F requency (Hz): 133.33
Tool Unbalance (lb-s"2): 0.004559453
Length of Tool (in) 2
Speed:

Spindle Shaft Speed (Hz): 16.66666667
Material Properties:

Moduius of Elasticity (psi): 30000000
Density (IbAn"3): 0.289

Figure 3.15 Batch File for Sample Spindle Forced Response
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properly if the modal analysis from section 3.2 is not completed first. The sample spindle
was also modeled using Ansys. A comparison between the FEA and analytical results for
the forced response is presented in Figure 3.16. The comparison between the FEA and

analytical responses shows a close correlation between the two methods. There is a 6.5%

difference in the deflection at the tool for the two methods.
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4.0 Opiimizaiion Anaiysis:
The optimization analysis consists of minimizing the defiection of the spindie
shaft at the gauge line (see figure 4.1). This analysis buiids upon the static as weii as the

dynamic analysis. Optimal parameters are offered for both cases. The foilowing

assumptions apply o the optimization anaiysis:

[—ry

The design variabies for this analysis are the iateral stifiness and the position of the

two bearings. All other parameters are assumed to be constani.

S

Each design iteration is approximated using the Taylor series expansion. This
approximation is required to define a quadratic programming subprobiem.
3. The optimization point may or may not be the giobal minimum. However the vaiues
assure a local minimum.
4.1 Optimization Modei:
The deveiopment of the optimization probiem rests in minimizing a cost function,
f{x), where x is the design variable vector. For the opiimization of the machine tool

spindie the cost function, f'is defined as the defiection at the spindie’s gauge iine.

sy

f(x)=ya,) 4.1)
Given vaiues for the design parameters, a vaiue for yi{as) can be obtained numericaiiy
using the AMatlab routines deveioped in Chapters 2& 3. The design variabies, x are iisted
in table 4.1. The remainder of the spindie design parameters are assumed io be fixed.
This is a fairly accurate assessment since for an existing spindle design the other

parameters wouid significantiy influence the supporting components {(i.e. gearbox and

spindie housing).
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Tabie 4.1 Tai

Design Variable Vector Parameter
x(1) a(2), postion of rear brg
x(2) a(3), position of front brg ;
x(3) Kf, lateral stiffness of front brg |
x(4) Kr, lateral stifiness of rearbrg |

General constrained optimum design defines the following equality and inequaiity

constraints respectiveiy:

hj {x)=0 {4.2)
g,(x)<0 {4.3)

For this optimization probiem there exists no equality constraints. The foilowing

equations define the inequaiity constraints.

x,za,+D 4.4)
x,<a,-OH {4.5)
X, SK e (4.6)
x, <K _. 4.7

To summarize these constraints, the first constraint (eqn. 4.4) stipulates that the location
of the rear bearing must be beyond the iocation of the puliey by a distance, D. This is
required to ensure that the pulley is “outboard” of the support bearings and there is
sufficient spacing to accommodate the width of the puliey and the width of the bearing.
The second constraint (eqn. 4.5) requires that there exist a sufficient overhang to
accommodate features in the spindie shaft to accept and support the tool. The third and

forth constraints (eqns. 4.6-4.7) ensure that the bearings’ stiffness values are physicaily
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obtainable. Without these constraints the optimization couid potentiaily specify a bearing
with an infinite iateral stiffness.

Prior to developing the process used for this optimization anaiysis it is important
to first introduce the Lagrange function and the Lagrange Multipiier Theorem, Arora,

(1989). For generai constrained optimization the form of the Lagrange equation is:

2
g0+ (43)

m
A 2
v _— v 2 v A 0\
Lz,u)= f(x)+ > 4 (g {x)+5") {4.9)

2

From eqn 4.9, f{x) is the cost function, m is the number of constraint equations, u s the
lagrange mulitplier for the i constraint equation, g;is the i* constraint equation, and s; the
slack variable for the i* constraint equation. The slack variable is a constant that

converts the inequaiity constraint to an equaiity constraint.

g (x)+s7 =0 (4.10)
if the design point, x is a locai minimum the Lagrange Muiitpiier Theorem stipulates the
foiliowing Kuhn-Tucker Conditions:

0 fory=1ton 411
P i (4.11)

;

=0 fori=1tom (4.12)

¥l

3

=0 fori=1tom (4.13)

a)
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If the i* constraint is inactive s;is equal to zero. If the i¥ constraint is active u;is equal to
zero. Therefore:

us, =0 (4.14)
The Lagrange muitipliers and the slack variabies can be found by solving this system of
equations (eqns 4.11-4.14).

In order to apply numericai methods to soive for the design change an
approximate quadratic programming subprobiem (QP subproblem) was defined. The QP
subprobiem can be obtained from a Taylor series expansion of the cost function. it has a
quadratic cost function and iinear constraints. The probiem is defined as the

minimization of:

711

f=c'd® +05d'a)" (4.15)

where:

f=fa® +d®)- fx¥) (4.16)

subject o the foilowing constraints:
Ad® <p (417
where d® is a vector of changes in the design variables for the k™ design point, cis a
vector containing the gradient of the cost function f(x®’), and A is the gradient of the
inequaiity constrainis.
in order to soive the QP probiem a search direction and a step size must be

determined. The constrained sieepesi descent method was used to soive for these two

b3 4]

entities. When no constraints exist the search direction is simpiy in the direction of the
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negative of the gradient vector {(d=-¢). In the case of the spindie optimization consraints
exist and they must be inciuded in the development of a search direction.

in order to accommodate the constraints in solving for a search direction a descent
function must be defined for the constrained probiem. A descent function must possess
two properties. First, it must be equai to the cost function at the optimum point. Next it
must aiiow for a unit step size near the optimum point. This is important because a unit
step size wiil yield a high rate of convergence. The Pshenichny’s descent function @ was
chosen since it obeys these two ruies.

®(x) = f(x)+ RV (x) {4.18)

in eqn 4.18, R is the penaity parameter and V is the maximum constraint violation. The
user specifies the initiai vaiue of R. A subsequent value for R is caiculated at the end
each iteration in the optimization process. In order to satisfy the necessary condition the
penalty parameter must be greater than or equai to the sum of Lagrange muitipiiers at the

k® iteration.

n -
KZ2r

-
)
N
i
0
A

For the m constraint equations, ri is defined as:

m
- k
r, =Zui (

i=i

>
N
(=]
e

where u;" is the Lagrange multiplier for the i constraint at the k™ design point. The
Lagrange muitipiiers can be found by soiving the sysiem of equations previously
mentioned (eqns. 4.11-4.14).

The maximum constraint violation at the k™ iteration, Vi is defined as:



V, =max{02,,2,,..2,,} @.2n
The next step in soiving the optimization probiem is to define a step size
determination procedure. The decent function will yieid the search direction, the step
size determination wiii dictate how far to adjust the design variabies in that direction. For
this analysis an inexact line search method was used. For this method a sequence of triai

siep sizes, 1; was defined.

1Y .
t :1(—\ for =0.1,2.....

' 2)

yo—
£
N
N
—

Each iteration begins with the trial step size t;=1. if a defined descent condition is not
satisfied the siep size is cut in half (t;=1/2). For a step size iteration, j and a descent

iteration, k the new design variabie vector is defined as:

/- {s

x) =x® 4 ¢ g 4.23)

The acceptabie step size wiii be the smaliest integer j that satisfies the descent condition.

D,

n.-rLf

<@, 1,8, (4.24)

where @y, is the desceni function defined in eqn. 4,11 evaluated at the tnial step size.
The constant P is found using the search direction, d®

B =7jaf (4.25)
The constant v is specified by the user and has a vaiue between 0 and 1. The value of y

affects the aliowabie siep size. Larger vaiues of y will result in smalier values for the step

size. The end resulit is a slower rate of convergence. Alternatively very smaii vaiues for



¥ can lead to instabiiities in the optimization process. Typicaily experimentation takes
piace to find a suitabie vaiue for the engineering probiem being soived.

Iterations of search direction and step size are continued untii the method
converges on a locai minimum for the cost function. Convergence is defined as the

design point were

<g (4.26)

%d

==

where €, is a specified small positive number.
4.2 The Consirained Steepest Descent Aigoriithm:

A CSD aigorithm was used to optimize the design variabies in a spindie shaft.
This section describes the steps to this aigorithm.

The first step to the CSD aigorithm is to set the counter, k equal to zero. At this
step initial vaiues for the design variabies x, the penaity parameter R, the constant y, and
the convergence criteria €;. An addiiionai convergence criteria was aiso added to the
anaiysis. It was stipuiated that the maximum constraint violation, Vi must not exceed a
predefined vaiue €;. This assures that design points with excessive constraint vioiations
are not allowed. A vaiue for this constant is aiso needed at this step. Since the goai of
this analysis is to optimize an existing spindie design the initiai vaiues for the design
variabies wouid simpiy be the parameters used in the existing design. The initial vaiue
for the penaity parameter was defined as R=1. The constant y was defined as 0.5. Finaiiy

the vaiues for the convergence constants &; and €2 were both defined to be 0.1.
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The next step is to caicuiate vaiues for the cost and constraint functions as weii as
their gradients. it is important to note here that the design variabies were normaiized for
this analysis. Since the magnitudes of the variables vary significantly it wouid be
inappropriate to use there gradients in obtaining a search directions and siep size. The
gradient of the cost function was caiculated by applying the forward difference method to

the static and dynamic model previousiy developed.

-~ Ix«'i“.\_‘ r/x'\
fy _SOy v T (4.27)
ox, A,
where
A, =0.00ix. (4.28)

J J
The forward difference method was selecied because it only required two calcuiations of
the cost function. This heiped to speed up the time to convergence. The centrai
difference method wouid have required three caiculations for each design variabie. Ail of
the constraints are linear so their gradients were easily obtainabie anaiytically. The finai
calcuiation at this step is the maximum constraint violation Vi (see eqn. 4.21).

The third step is to use the information from the first two steps to define the QP
subproblem (eqns. 4.15-4.17). At this point the QP subprobiem can be used to soive for
the search direction, d and Lagrange muitipliers, u. In order to obtain these values the
cost function, f{x) in the Lagrange Equation must be replaced by the QF cost function

(eqn. 4.15) and the system of equations, 4.11 —4.14, must be soived simuitaneously.

The forth step is to check the convergence criteria io see that:

i < &
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and

if these conditions are satisfied the algorithm has converged and the anaiysis can stop.
Otherwise continue to step five of the aigorithm.

The next step of the analysis is to modify the penalty parameter, R. For the k™
iteration the new penaity parameter Ry.; becomes:

R=max{R,.7} (4.29)
where Ry is the existing penaity parameter and ry is the sum of the Lagrange muitipliers
caiculated in third step of the aigorithm. By updating the penaity parameter the necessary
condition wiii aiways be satisfied.

Next the step size must be determined. The inexact iine search method previousiy
developed was used here to caicuiate the proper step size. Once the step size is
determined the design point can be indexed. Therefore:

xE7) = ¢l#) tjd“‘)

The finai step to the aigorithm is to index the counter, k=k+1, and repeat aii but
the first step. Iterations wiii continue untii convergence is reached.

4.3 Matiab Seiution:

The CSD aigorithm was impiemented for the optimization of the spindie shaft
using Maiiab. The optimization appiied to both the static and the dynamic modeis
deveioped in Chapiers 3 and 4. The optimization program wiii return opiimai vaiues for

the iateral stiffness and iocation of the spindie support bearings. As in previous chapters
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the Matiab program reads in a batch fiie. The batch file aliows the user to define the
spindie parameters. The optimization constants used by the CSD aigorithm were hard
coded into the program. Therefore the user of the program does not have the flexibility
to change these. The programming code used to perform the optimization anaiysis can be
found in Appendix D.

The sampie spindie anaiyzed statically and dynamicaiily in Chapters 2 and 3 was
aiso optimized to demonstrate the Optimization program. Figure 4.2 illustrates the batch
file read in by the program. The optimum parameters returned by the program for the
static and dynamic anaiysis are iisied in tabies 4.2 and 4.3 respectively.

Table 4.2 Optimum Vaiues for Static Analysis

| Design Variable | Optimum Value | Original Value |
a_2(n) } 747 } 7.5 1
a_3 (n.) 1608 | 135 j

K_f (ibffin.) | 1006000 500000

K_r (ibfiin.) . 1000000 | 100000

Table 4.3 Optimum Values for Dynamic Analysis

| Design Varnabie | Optimum Value | Original Value |
; a 2(n) | 7.3 | 7.5 :
‘ a_3(in) | 16.15 I 135 1
! K_f (bfin.) 1000000 500000 !
1 K_r (ibfiin.) 1000000 ;| 100000

The static defiection of the existing spindle was approximateiy .0048” The
optimization reduced the defiection by a factor of 6. For the dynamic analysis the initiai
deflection was about .0023" The corresponding deflection of the optimized spindie was

3

approximateiy .00025”. Here the defiection improved by a factor of 9. The optimization
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Batch File:
Geometry:

Number of Sections(#):

L 6]

Section length OuterDiameter Inner Diameter Area Moment of Inertia]
[€0)) (in) (im) (n) (in"2) (in"4)
1 3 2.25 2] 0.83449 0 47265783
2 3 2.375 2125 0.88357 0.560861720
3 3 2.5 2251 D.93266 0.650419001
4 3 2.625 2.375 ] 0.98175 0.76890787
5 3 275 251 1.03084 0.889200605
6 3 2875 26251 107992 1.022973438
7 [¢] G
8 0 o]
9 0 0
10 0 0
i1 0 0
1 ) i¢)
13 0 9]
14 0 0
15 [0) 0]
Bearings:
Lat Stitness of Rear Beanng (ibAn): 100000
Lat Stiffiness of Front Bearing (Ib4n ): 500000
Tor. Stiffness of Front Bearing (in-1b): 10000
Fraction of mom. on 7 ront Beaning: O.1
Locahon of Rear Beanng (in) 7.5
Location of F ront Bearing (in.) 13.5
Putley:
Location of Pulley (in) 45
Mass of Pulley (Ib-s"24n). 0 007763975
Static Belt Tension (Ib): 50
Hafmofic Diive Force (ib). 56
Drive Frequency (H2): 133.33
Pulley Unbalance (Ib-s"2): 0.002279727
Tool:
Mass of Tool (o s"24nY. 0.025875517
Static Cutting Force (Ib): 300
Harmonic Cutting ¥ orce (ib): 300
Cutting Frequency {(Hz): 13333
Tool Unbalance (Ib-s"2): 0.004559453
Length of Tool (in) 2
Speed:
Spindle Shaft Speed (rom): l 16.66666667 |
Matefiai Properties:
Moduilus of Elasherty (psi: 30000000
Density (IbAn"3): 0.289

Figure 4.2 Baich File for Sampie Spindie Problem
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improved the deflection of the spindie significantly for both the static and dynamic

modeis.



5.0 Conclusion:

The anaiysis of a machine tooi spindie began by developing a modei to soive for
the static lateral deflection. A program was developed using Mailab that reads in the
geometry and ioad information for a spindie and reporis plots of the iaterai defiection.
The user must simply enter the appropriate information inio a spreadsheet, termed a
*batch file” and the program wili suppiy a plot of the spindies deformed shape. A sampie
spindie was analyzed using this program and the FEA program Ansys. Both analyses
yielded comparabie results.

Next the analysis was extended to inciude the dynamic response of ihe spindie.
Again a program was developed that would read in a batch file containing the appropriate
geometry and ioad information for the spindle. The program wouid then report piots of
the first four mode shapes of the spindle as welil as a plot of its dynamic forced response.
A sample spindie was aiso analyzed using the dynamic program and the resuiis compared
to an FEA analysis. The FEA analysis agreed very closely with the dynamic analysis
program for both the mode shapes and iaterai defiection.

Finally a program was developed that would optimize the spindie by minimizing
the defiection at the interface between the cutting tooi and the spindie shaft. The program
performs an optimization for both the static and dynamic analyses. The program
optimizes the location and stiffness of the spindie support bearings. A sample spindie
was optimized both statically and dynamicaliy using the program. One key result of
these anaiyses was that the optimum parameters for both the static and dynamic anaiysis

were approximately the same. This is very important because the complexity and time

~1
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required to analyze and optimize the spindie dynamically was significanily more than that
of the static analysis and optimization. Therefore if the goai of a spindie designer is to
optimize an existing spindie design, it couid be done staticaily with much iess effort and
time than it couid be done dynamicaliy.

Aithough these programs are very powerfui in designing a machine tooi spindie,
further work could make them of more vaiue io a spindle designer. The first
recommendation wouid be to equip these programs with a graphical user interface. This
would make the interface between the designer and the program much more user friendly.

The next recommendation wouid be to make the programming code more
efficient. Currently ii takes a considerabie amount of time to process the dynamic
anaiysis and optimization. There are severai iterations in each of these anaiyses. The
dynamic optimization takes several hours to run.

Another recommendation for future work would be to enhance the dynamic ioads
applied io the spindie model. Currently harmonic ioads are assumed for the cutting force
and drive force. The accuracy of the forced response couid be further refined by taking
measurements of the cutting force and drive force for an existing machine tooi spindies.
This couid be taken one step further by creating a database of the cutting forces for
various cutting tools. If a spindie was to primarily use one type of cutting tooi the ioad
information couid be read into the dynamic program from the database.

One final suggestion for future work would be to work with a bearing

manufacturer to create a database of bearings and their stiffness vaiues. This wouid
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provide the stiffness for the static and dynamic anaiyses as weli as the maximum

aliowable stiffness vaiues for the optimization analyses.
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Number of Sections(#):

| 61

Section Llength Outer Diameter Inner Diameter Area Moment of Inertia
@# (in) (in) (in) (in”2) (in™4)
1 3 2.25 2] 0.83449 0.47265783
2 3 2.375 21251 088357 0 560861726
3 3 2.5 225 1 0.93266 0.655415551
4 3 2625 23751 098175 0 76820787
5 3 275 251103084 0 889900605
6 3 2.875 26251 107992 1 022973438
7 0 0
8 0 0
5 0 O
10 [¢] 0
11 0 0
12 0 0
13 0 0
14 0 0
i5 0 O
Bearnngs:
Lat Stiffness of Rear Bearing (Ib/n): 100000
Lat. Stiftness of Front Bearing (Ib/n.): 500000
Tor. Stiffness of Front Bearing (in-1b): 10000
Fraction of mom. on Front Bearing: 0.1
Location of Rear Beanng (in.) 7.5
Location of Front Beaning (in) 13.5
Puiley:
Location of Pulley (in.) 45
Mass of Pulley (Ib-s"24n): 0.007763975
Static Belt Tension (Ib): 50
Harmmnonic Drive Force (Ib): 50
Drive T requency {(Hz) i33.33
Pulley Unbalance {{bs™2): £.002272727
Tooi:
Wass of Tool {ib-s"2/n): 0.025879917
Static Cutting Force (Ib): 300
Harmonic Cutting Force (Ib): 300
Cutting Frequency (Hz): 133.33
Tool Unbalance {(Ibs72): $.00455545
L ength of Topl {in) 2
Speed:
———————
Spindle Shaft Speed (rpmj): L__16.66666667 |
Materiai Properties:
Moduius of Elasticity (psi): 300000600
Density (IbAn"3): 0.289
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Appendix B
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atiab Programs for the Static Anaiysis
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%o Fiiename : spindiec

% This fiie is the parent to aii other subroutines that wiii be empioyed
%o to perform the static and dynamic analysis.

% Revision "C"

ciear

% Reads in geometry and ioading information from “Batchi.wki”
constantsc

% Calculates the static deformation.

deformationc

%o Caicuiates the dynamic response.

dynamicc



% Fiiename : *Constantsc”

% This subroutine collects the constants required to perform the static and dynamic
analysis.

% The subroutine requires a spreadsheet "baich” to be in the foider “RevC*
%o "batch® contains aii the inputs required to drive the analysis.
ciear;

temp = 0,

ct = wkiread{('Batchi"),

metool = ct{(49,4),

mepuiiey = ct(41,4);

speed = ct(53,4);

tlunbai = metool*(speed*Z*pi)"2;

piunbal = mepuliey*(speed*2*pi)"2,

ftharm = ct(47,4);

fpharm = ¢t(39,4),

freqpuiiey = ct{40,4),

freqtool = ct(48,4),

E =ci(57,4);

density = ct(58,4);

N =ci(5,4),

Mpuliey = ct(37,4),

Miooi = ct(45,4),

Kr = ct(27,4),

Kf = ct(28,4);
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Ktf = ct(29,4);

x1 = ct(30,4),

tl = ct(50,4);

f1 = ct(38,4);

2 = ct(46,4);

for n=1:N;
b(n) = ct(8+n,2)+temp;
temp = b(n),
Area(n) = ct(8+n,5);
Inertia(n) = ct(8+n,6);
R_out(n) = ct(8+n,3)/2;
R_in(n) = ct(8+n,4)/2,

end

Omsft = ct(53,4);

a(1) = ct(36,4);

a(2) = ct(31,4);

a(3) = ct(32,4)

a(4) = b(N);

if a(1) <=b(1)
XsecA(1) = Area(1);
Xsecl(1) = Inertia(1);

XsecR(1) =R _out(1);
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end

forn=1:N
if b(n)< a(1)
if b(n+1)>a(1)

XsecA(1) = Area(n+1);

Xsecl(1) = Inertia(n+1);

XsecR(1) =R _out(n+1);

end
end
if b(n)< a(2)
if b(n+1)>a(2)
XsecA(2) = Area(n+1),

Xsecl(2) = Inertia(n+1);

XsecR(2) = R_out(n+1);

end
end
if b(n)< a(3)
if b(n+1)>a(3)
XsecA(3) = Area(n+1);
XsecI(3) = Inertia(n+1);

XsecR(3) =R _out(n+1);
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end
end
end
XsecA(4) = Area(N);
Xsecl(4) = Inertia(N);
XsecR(4) =R_out(N);
for n=1:(N-1);
r(n) = Inertia(n+1)/Inertia(n);
R(n) = (Area(n+1)/Inertia(n+1))".25/(Area(n)/Inertia(n))*.25,
end
x(1)=0;
forn=1:N
z=2%n,
x(2) = b(n);
if Z<2*N;

x(z+1) = b(n),

end
end
forn=1:N
z=2%n-1;

Outer(z) =R _out(n);

Outer(z+1) =R _out(n);

98



Inner(z) = R_in(n),
Inner(z+1)=R_in(n),

end

plot(x,Outer,x, Inner,a(1),XsecR(1),'s',a(2),XsecR(2),*',a(3),XsecR(3),"*',a(4),XsecR(4),'p
";

xlabel('x,(in)")

ylabel('shaft radius, (in)")

title('input dimensions')

legend("OD','ID', Pulley’,'Rear Bearing','Front Bearing','Tool',2)

axis([0,b(N),0,(b(N))/2])
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% Filename : deformationc

% This subroutine will calculate the static lateral deflection of the spindle
% Revision "C"

% Contribution due to bearing deformation

deflbrgc

% Contribution due to shaft deformation

deflshfic

yt=yb+ys;
% Creates Plots of the shaft deformation

plotsc
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% Filename : deflbrgc
% This subroutine will calcuate the deformation of the bearings
% Revision "C"

x = linspace(0,(a(4)),100);
mb = £2 * ((a(d)+)-a(3))*x1,
R1 = (f1*(a(3)-a(1))+mb-£2*((a(4)*+t)-a(3)))(a(3)-a(2));
R2 =11 +f2-R1l;
deltal = -R1/Kr;
delta2 = -R2/Kf;
m = (delta2-deltal)/(a(3)-a(2));
for n=1:100
yb(n) = m*(x(n)-a(2)) + deltal,

end
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% Filename: deflshftc
% This subroutine will calculate the deformation of the elastic shaft

% in rigid supports
% This portion of the routine will scale the loads:
% Revision "C"
for j=1:3
nG) =1,
for i=2:N
if a(j) > b(i-1)
if a(j) <=b(i)
() =i;
else
end
else
n()=n();
end

end

end

fle = Inertia(N)/Inertia(n(1))*f1;
R1e = Inertia(N)/Inertia(n(2))*R1;
mbe = Inertia(N)/Inertia(n(3))*mb,

R2e = Inertia(N)/Inertia(n(3))*R2;

for i=1:(N-1)
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voi = R1*sing(b(i),a(2),0) + R2*sing(b(i),a(3),0) - f1*sing(b(i),a(1),0);

moi = R1 * (b(1)-a(2)) * sing(b(1),a(2),0) + R2*(b(i)-a(3))*sing(b(i),a(3),0)...
- f1*(b(1)-a(1))*sing(b(1),a(1),0) - mb*sing(b(i),a(3),0);

v(i) = Inertia(N)*(1/Inertia(i) - 1/Inertia(i+1))*voi,
m(i) = Inertia(N)*(1/Inertia(i) - 1/Inertia(i+1))*mot;
end
x = linspace(0,a(4),100);
templ =0,
temp2 = 0;
for r=1:(N-1)

templ = temp1 + v(r)/6*sing(a(3),b(r),3) - v(r)/6*sing(a(2),b(r),3)...
+ m(r)/2*sing(a(3),b(r),2) - m(r)/2*sing(a(2),b(r),2),

temp2 = temp2 + v(1)/6*sing(a(2),b(r),3) + m(r)/2*sing(a(2),b(r),2);
end
ql = 1/(a(2)-a(3))*(f1e/6*sing(a(3),a(1),3) - R1e/6*sing(a(3),a(2),3) + temp1 -
fle/6*sing(a(2),a(1),3));

q2 = -f1e/6*sing(a(2),a(1),3) - temp2 - q1*a(2),

for r=1:100
temp3 =0,
for s = 1:(N-1)
temp3 = temp3 + v(s)/6*sing(x(r),b(s),3) + m(s)/2*sing(x(r),b(s),2);
end

ys(r) = -1/(E*Inertia(N))*(fle/6*sing(x(r),a(1),3) - R1e/6*sing(x(r),a(2),3)...
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-R2e/6*sing(x(r),a(3),3) + temp3 + mbe/2*sing(x(r),a(3),2) + q1*x(r) + q2);
end
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% Filename plotsc

% This subroutine will create plots of the shaft deformation
% Revision "C"

figure

plot(x,yb)

title('Deflection Contribution of Bearings')
figure

plot(x,ys)

title('Deflection Contribution of Elastic Shaft')
figure

plot(x,yt)

title('Combined Spindle Deflection')
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funcrion sing = fo,p,q)
% Function : Singularity
% This subroutine defines a new function to be used in subsequent calculations
if o<p
sing =0,
else
sing = (0-p)"q;

end
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Appendix C

Matlab Programs for the Dynamic Analysis
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% Filename : "dynamicc"
% Rev C

% This subroutine solves for the dynamic response of the spindle.
% Must read in the batch file prior to executing this subroutine.
% Solves for the eigenvalues.

frequencyc

% Solves for the eigenvectors.

modec

% Solves for the dynamic response.

forcedc
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% Filename : "frequencyc"
% This subroutine is used to plot the frequency equation.
% There needs to be a matrix A that drives this subroutine.
Omega = linspace(1,2000,50);,
for n=1:50;
w = Omega(n),
X1 = (density*XsecA(1)*w"2/E/Xsecl(1))".25%a(1);,
X2 = (density*XsecA(2)*w"2/E/Xsecl(2))".25%a(2);
X3 = (density*XsecA(3)*w"2/E/Xsecl(3))*.25*a(3);
X4 = (density*XsecA(4)*w"2/E/Xsecl(4))".25*a(4),
Transferc
C1 = Mpulley*X1/(density*XsecA(1)*a(1));
C2 = Kr/(X2/a(2))"3/E/Xsecl(2);
C3 = Ktf/(X3/a(3)Y"2/E/XsecI(3);
C4 = Kf/(X3/a(3))"3/E/Xsecl(3);
C5 = Mtool*X4/(density*XsecA(4)*a(4));
templ(1,:))=[10-10];
templ1(2,:))=[010-1];
Q1 =templ1*Tl,

temp2(1,:) = [-(sinh(X1)-C1*cosh(X1)) (cosh(X1)-C1*sinh(X1)) -(sin(X1)-
C1*cos(X1)) (cos(X1)+C1*sin(X1))];

temp2(2,:) = [-cosh(X1) -sinh(X1) -cos(X1) -sin(X1)];

temp2(3,:) = [-sinh(X1) -cosh(X1) sin(X1) -cos(X1)];
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temp2(4,7) = [-cosh(X1) -sinh(X1) cos(X1) sin(X1)];

Q2 = temp2*T2;

temp3(1,:) = [ sinh(X2) cosh(X2) sin(X2) -cos(X2)];

temp3(2,:) = [-cosh(X2) -sinh(X2) -cos(X2) -sin(X2)];

temp3(3,:) = [-sinh(X2) -cosh(X2) sin(X2) -cos(X2)];

temp3(4,:) = [-cosh(X2) -sinh(X2) cos(X2) sin(X2)];

Q3 = temp3*T3;

temp4(1,:) = [ sinh(X3) cosh(X3) sin(X3) -cos(X3)];

temp4(2,) = [-cosh(X3) -sinh(X3) -cos(X3) -sin(X3)];

temp4(3,:) = [-sinh(X3) -cosh(X3) sin(X3) -cos(X3)];

temp4(4,:) = [cosh(X3) sinh(X3) -cos(X3) -sin(X3)];

Q4 = temp4*T4;

A(1,:) =[Q1(1,1) Q1(1,2) Q1(1,3) Q1(1,4) 00000000000 0J;
A(2,)=[Q1(2,1) Q1(2,2) Q1(2,3) Q1(2,4) 00000000000 0J;

A(3,7) = [sinh(X1) cosh(X1) sin(X1) -cos(X1) Q2(1,1) Q2(1,2) Q2(1,3) Q2(1,4) 000 0
0000];

A(4,) = [cosh(X1) sinh(X1) cos(X1) sin(X1) Q2(2,1) Q2(2,2) Q2(2,3) Q2(2,4)0 00 0
0000];

A(5,7) = [sinh(X1) cosh(X1) -sin(X1) cos(X1) Q2(3,1) Q2(3,2) Q2(3,3) Q2(3,4) 000 0
0000];

A(6,7) = [cosh(X1) sinh(X1) -cos(X1) -sin(X1) Q2(4,1) Q2(4,2) Q2(4,3) Q2(4,4) 00 0
00000];

A(7,)) =[0 0 0 0 (C2*cosh(X2)-sinh(X2)) (C2*sinh(X2)-cosh(X2)) (C2*cos(X2)-
sin(X2)) (C2*sin(X2)+cos(X2)) Q3(1,1) Q3(1,2) Q3(1,3) Q3(1,4) 00 0 0];

A(8,:) =[0 0 0 0 cosh(X2) sinh(X2) cos(X2) sin(X2) Q3(2,1) Q3(2,2) Q3(2,3) Q3(2,4)
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0000,

A(9,") =[0 0 0 0 sinh(X2) cosh(X2) -sin(X2) cos(X2) Q3(3,1) Q3(3,2) Q3(3,3) Q3(3,4)
0000];

A(10,:) = [0 0 0 0 cosh(X2) sinh(X2) -cos(X2) -sin(X2) Q3(4,1) Q3(4,2) Q3(4,3)
Q3(4,4)000 0];

A(11,))=[000 000 0 0 (C4*cosh(X3)-sinh(X3)) (C4*sinh(X3)-cosh(X3))
(C4*cos(X3)-sin(X3)) (C4*sin(X3)+cos(X3)) Q4(1,1) Q4(1,2) Q4(1,3) Q4(1,4)];

A(12,))=[0000000 0 cosh(X3) sinh(X3) cos(X3) sin(X3) Q4(2,1) Q4(2,2) Q4(2,3)
Q4(2,4)};

A(13,:)=[000 000 0 0 sinh(X3) cosh(X3) -sin(X3) cos(X3) Q4(3,1) Q4(3,2) Q4(3,3)
Q4(3,9)];

A(14,))=[00000 00 0 (C3*sinh(X3)-cosh(X3)) (C3*cosh(X3)-sinh(X3)) (-
C3*sin(X3)+cos(X3)) (C3*cos(X3)+sin(X3)) Q4(4,1) Q4(4,2) Q4(4,3) Q4(4,4)];

A(15,)=[0000000000 00 cosh(X4) sinh(X4) -cos(X4) -sin(X4)];

A(16,)=[0000000 00 00 0 (sinh(X4)+C5*cosh(X4)) (cosh(X4)+C5*sinh(X4))
(sin(X4)+C5*cos(X4)) (-cos(X4)+C5*sin(X4))];

for k=1:15
Ak, =AY/ A(kK),
for p=k+1:16
A(p,:) = A(p,:)-A(k,:)*A(p.k);
end
end
freq(n) = A(16,16);

end
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sign = freq(s)*freq(s-1);
if sign <0
if abs((freq(s)-freq(s-1 ))/(Omega(s)-Omega(s-1)))<.25
bisectc
end
end

end
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% Filename : "transferj"
% This subroutine creates the matrices to transform the constants.

Tl=eye(4),
T2=eye(4),
T3=eye(4),
T4=eye(4),
for counter = 1:(N-1)
betal = (Area(counter)*density*w”2/(E *Inertia(counter)))*.25;
beta2 = (Area(counter+1)*density*w”2/(E*Inertia(counter+1)))*.25;
r1 = r(counter);
R1 = R(counter),
11 = b(counter);
flag = 0;
T = zeros(4,4);

T(1,1) = ((r1*R172+1)/2*(cosh(betal *11)*cosh(beta2*11)-
R1*sinh(betal*11)*sinh(beta2*11)));

T(1,2) = ((r1*R172+1)/2*(cosh(betal *]11)*sinh(beta2*11) -
R1*sinh(betal*11)*cosh(beta2*11)));

T(1,3) = {(r1*R1°2-1)/2*(cosh(betal *11)*cos(beta2*11)+
R1*sinh(betal *11)*sin(beta2*11)));

T(1,4) = -((r1*R172-1)/2*(cosh(betal *11)*sin(beta2*11) -
R1*sinh(betal *11)*cos(beta2*11)));

T(2,1) = ((r1*R1°2+1)/2*(R1*cosh(betal *I1)*sinh(beta2*11)-
sinh(betal*11)*cosh(beta2*11)));

T(2,2) = ((r1*R1"2+1)/2*(R1*cosh(betal*11)*cosh(beta2*11) -
sinh(betal*11)*sinh(beta2*11))),
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T(2,3) = ((r1*R172-1)/2*(R1*cosh(betal *11)*sin(beta2*11)+
sinh(betal*11)*cos(beta2*11)));

T(2,4) = ((r1*R172-1)/2*(sinh(betal*11)*sin(beta2*11)-
R1*cosh(betal*11)*cos(beta2*11))),

T(3,1) = ((r1*R172-1)/2*(R1*sin(betal *11)*sinh(beta2*11) -
cos(betal*11)*cosh(beta2*11)));

T(3,2) = ((r1*R172-1)/2*(R1*sin(betal *I11)*cosh(beta2*11) -
cos(betal*11)*sinh(beta2*11)));

T(3,3) = ((r1*R172+1)/2*(cos(betal *11)*cos(beta2*11)+
R1*sin(betal *11)*sin(beta2*11)));

T(3,4) = ((r1*R17°2+1)/2*(cos(betal *11)*sin(beta2*11) -
R1*sin(betal *I1)*cos(beta2*11)));

T(4,1) = -((r1*R172-1)/2*(R1*cos(betal *11)*sinh(beta2 *11)+
sin(betal*11)*cosh(beta2*11)));

T(4,2) = ((r]*R1/2-1)/2*(R1*cos(betal *I1)*cosh(beta2 *11)+
sin(betal*11)*sinh(beta2*11)));

T(4,3) = ((r1*R1°2+1)/2*(sin(betal *11)*cos(beta2*11)-
R1*cos(betal *11)*sin(beta2*11)));

T(4,4) = ((r1*R1°2+1)/2*(sin(betal *11)*sin(beta2*11)+
R1*cos(betal*11)*cos(beta2*11))),

if a(3)< b(counter)
T4 = T4*T;
flag=1,

end

if a(2)< b(counter)
if flag <1;

T3 =T3*T,
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flag=1;
end

end

if a(1) <b(counter)
if flag <1;
T2 =T2*T,
flag=1;
end
end
if flag < 1;
T1=TI1*T,
flag=0;
end

end
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% Filename : "bisectc”
% This subroutine refines the incremental root finding search
% using the bisection method.
Xlow = Omega(s-1);
Xhigh = Omega(s);
freq ref = freq(s-1);
freq_new = freq(s-1),
while abs(Xhigh-Xlow)>1e-12;
Xnew = .5*(Xlow+Xhigh);
w = Xnew,
X1 = (density* XsecA(1)*w"2/E/XseclI(1))".25*a(1);
X2 = (density*XsecA(2)*w"2/E/Xsecl(2))".25%a(2);
X3 = (density*XsecA(3)*w"2/E/Xsecl(3))".25*a(3),
X4 = (density*XsecA(4)*w"2/E/Xsecl(4))".25*a(4);,
Transferc
C1 = Mpulley*X1/(density* XsecA(1)*a(1));
C2 =Kr/(X2/a(2))"3/E/Xsecl(2);
C3 =Ktf/(X3/a(3))"2/E/Xsecl(3),
C4 = Kf/(X3/a(3))"3/E/Xsecl(3);,
C5 = Mtool*X4/(density*XsecA(4)*a(4)),
temp1(1,:)=[10-10];
temp1(2,:)=[010-1];

Q1 =templ1*T1;
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temp2(1,:) = [<(sinh(X1)-C1*cosh(X1)) «(cosh(X1)-C1*sinh(X1)) -(sin(X1)-
Cl*cos(X1)) (cos(X1)*+C1*sin(X1))];

temp2(2,:) = [-cosh(X1) -sinh(X1) -cos(X1) -sin(X1)];

temp2(3,:) = [-sinh(X1) -cosh(X1) sin(X1) -cos(X1)];

temp2(4,:) = [-cosh(X1) -sinh(X1) cos(X1) sin(X1)];

Q2 = temp2*T2;

temp3(1,:) = [ sinh(X2) cosh(X2) sin(X2) -cos(X2)];

temp3(2,:) = [-cosh(X2) -sinh(X2) -cos(X2) -sin(X2)];

temp3(3,:) = [-sinh(X2) -cosh(X2) sin(X2) -cos(X2)];

temp3(4,:) = [-cosh(X2) -sinh(X2) cos(X2) sin(X2)];

Q3 = temp3*T3;

temp4(1,:) = [ sinh(X3) cosh(X3) sin(X3) -cos(X3)];

temp4(2,:) = [-cosh(X3) -sinh(X3) -cos(X3) -sin(X3)];

temp4(3,:) = [-sinh(X3) -cosh(X3) sin(X3) -cos(X3)];

temp4(4,:) = [cosh(X3) sinh(X3) -cos(X3) -sin(X3)];

Q4 = temp4*T4;

A(1,) =[Q1(1,1) Q1(1,2) Q1(1,3) Q1(1,4) 0000000000 0 0],
A(2,)=[Q1(2,1) Q1(2,2) Q1(2,3) Q1(2,4) 000000000000},

A(3,:) = [sinh(X1) cosh(X1) sin(X1) -cos(X1) Q2(1,1) Q2(1,2) Q2(1,3) Q2(1,4) 0000
0000},

A(4,") = [cosh(X1) sinh(X1) cos(X1) sin(X1) Q2(2,1) Q2(2,2) Q2(2,3) Q2(2,4)0000
0000];

A(5,;) = [sinh(X1) cosh(X1) -sin(X1) cos(X1) Q2(3,1) Q2(3,2) Q2(3,3) Q2(3,4) 0000
0000j;
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A(6,:) = [cosh(X1) sinh(X1) -cos(X1) -sin(X1) Q2(4,1) Q2(4,2) Q2(4,3) Q2(4,4)0 0 0
00000];

A(7,:) =[0 00 0 (C2*cosh(X2)-sinh(X2)) (C2*sinh(X2)-cosh(X2)) (C2*cos(X2)-
sin(X2)) (C2*sin(X2)+cos(X2)) Q3(1,1) Q3(1,2) Q3(1,3) Q3(1,4) 00 0 0];

A(8,) = [0 0 0 0 cosh(X2) sinh(X2) cos(X2) sin(X2) Q3(2,1) Q3(2,2) Q3(2,3) Q3(2,4)
0000];

A(9,) = [0 0 0 0 sinh(X2) cosh(X2) -sin(X2) cos(X2) Q3(3,1) Q3(3,2) Q3(3,3) Q3(3,4)
0000];

A(10,:) =[0 0 0 0 cosh(X2) sinh(X2) -cos(X2) -sin(X2) Q3(4,1) Q3(4,2) Q3(4,3)
Q3(4,4)0000];

A(11,:)=[00000 00 0 (C4*cosh(X3)-sinh(X3)) (C4*sinh(X3)-cosh(X3))
(C4*cos(X3)-sin(X3)) (C4*sin(X3)+cos(X3)) Q4(1,1) Q4(1,2) Q4(1,3) Q4(1,4)];

A(12,))=[0000 000 0 cosh(X3) sinh(X3) cos(X3) sin(X3) Q4(2,1) Q4(2,2) Q4(2,3)
Q4(2,4)];

A(13,))=[00 0000 0 0 sinh(X3) cosh(X3) -sin(X3) cos(X3) Q4(3,1) Q4(3,2) Q4(3,3)
Q4(3,4)];

A(14,:))=[0000 000 0 (C3*sinh(X3)-cosh(X3)) (C3*cosh(X3)-sinh(X3)) (-
C3*sin(X3)+cos(X3)) (C3*cos(X3)+sin(X3)) Q4(4,1) Q4(4,2) Q4(4,3) Q4(4,4)];

A(15,)=[0000000 00 00 0 cosh(X4) sinh(X4) -cos(X4) -sin(X4)],

A(16,:))=[0000000 0000 0 (sinh(X4)+C5*cosh(X4)) (cosh(X4)+C5*sinh(X4))
(sin(X4)+C5*cos(X4)) (-cos(X4)+C5*sin(X4))1;

for k=1:15
Ak, =AY Ak k),
for p=k+1:16
A(p,)) = A(p,))-Ak,))*A(p.k),
end

end
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freq_new = A(16,16),
if (freq_new*freq_ref)< 0
Xhigh = Xnew;
else
Xlow = Xnew;
freq ref= freq new;
end
end
Root(n) = Xnew; % This will be in rad/s
Frequency(n) = Xnew/2/pi;

n=n+tl,

119



% Filename : "modec"
% This subroutine calculates the first (4) mode shapes.

globai ¢

form=1:4
w = Root(m);
X1 = (density*XsecA(1)*w"2/E/XsecI(1))".25*a(1);
X2 = (density*XsecA(2)*w”2/E/Xsecl(2))".25*a(2);,
X3 = (density*XsecA(3)*w"2/E/Xsecl(3))".25*a(3),
X4 = (density*XsecA(4)*w"2/E/Xsecl(4)).25*a(4),
Transferc
C1 = Mpulley*X1/(density*XsecA(1)*a(1));
C2 = Kr/(X2/a(2))"3/E/Xsecl(2);
C3 = Ktf/(X3/a(3))"2/E/Xsecl(3);,
C4 = K1f/(X3/a(3))"3/E/Xsecl(3);
C5 = Mtool*X4/(density* XsecA(4)*a(4)),
templ(1,))=[10-10];
temp1(2,:)=[010-1],
Q1 =templ1*T1,;

temp2(1,:) = [-(sinh(X1)-C1*cosh(X1)) -(cosh(X1)-C1*sinh(X1)) -(sin(X1)-
C1*cos(X1)) (cos(X1)+C1*sin(X1))];

temp2(2,:) = [-cosh(X1) -sinh(X1) -cos(X1) -sin(X1)];
temp2(3,:) = [-sinh(X1) -cosh(X1) sin(X1) -cos(X1)];

temp2(4,:) = [-cosh(X1) -sinh(X1) cos(X1) sin(X1)];
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Q2 = temp2*T2;

temp3(1,:) = [ sinh(X2) cosh(X2) sin(X2) -cos(X2)];

temp3(2,:) = [-cosh(X2) -sinh(X2) -cos(X2) -sin(X2)];

temp3(3,:) = [-sinh(X2) -cosh(X2) sin(X2) ~cos(X2)];

temp3(4,:) = [-cosh(X2) -sinh(X2) cos(X2) sin(X2)];

Q3 = temp3*T3;

temp4(1,:) = [ sinh(X3) cosh(X3) sin(X3) -cos(X3)];

temp4(2,:) = [-cosh(X3) -sinh(X3) -cos(X3) -sin(X3)];

temp4(3,:) = [-sinh(X3) -cosh(X3) sin(X3) ~cos(X3)];

temp4(4,:) = [cosh(X3) sinh(X3) -cos(X3) -sin(X3)];

Q4 = temp4*T4,

A(1,7)=[Q1(1,1) Q1(1,2) Q1(1,3) Q1(1,4) 0000000000 0 0],
A(2,)=[Q1(2,1) Q1(2,2) Q1(2,3) Q1(2,4) 000000000 0 0 0],

AQ3,) = [sinh(X1) cosh(X1) sin(X1) -cos(X1) Q2(1,1) Q2(1,2) Q2(1,3) Q2(1,4) 00 0 0
0000];

A(4,:) = [cosh(X1) sinh(X1) cos(X1) sin(X1) Q2(2,1) Q2(2,2) Q2(2,3) Q2(2,4)0000
0000];

A(5,7) = [sinh(X1) cosh(X1) -sin(X1) cos(X1) Q2(3,1) Q2(3,2) Q2(3,3) Q2(3,4) 00 0 0
0000];

A(6,:) =[cosh(X1) sinh(X1) -cos(X1) -sin(X1) Q2(4,1) Q2(4,2) Q2(4,3) Q2(4,4) 000
00000];

A(7,:) = [0 0 0 0 (C2*cosh(X2)-sinh(X2)) (C2*sinh(X2)-cosh(X2)) (C2*cos(X2)-
sin(X2)) (C2*sin(X2)+cos(X2)) Q3(1,1) Q3(1,2) Q3(1,3) Q3(1,4) 00 0 0];

A(8,:) =[0 0 0 0 cosh(X2) sinh(X2) cos(X2) sin(X2) Q3(2,1) Q3(2,2) Q3(2,3) Q3(2,4)
0000];
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A(9,:) =0 0 0 0 sinh(X2) cosh(X2) -sin(X2) cos(X2) Q3(3,1) Q3(3,2) Q3(3,3) Q3(3,4)
0000];

A(10,:) =0 0 0 0 cosh(X2) sinh(X2) -cos(X2) -sin(X2) Q3(4,1) Q3(4,2) Q3(4,3)
Q3(4,4)0000];

A(11,7)=[0000 0 0 0 0 (C4*cosh(X3)-sinh(X3)) (C4*sinh(X3)-cosh(X3))
(C4*cos(X3)-sin(X3)) (C4*sin(X3)+cos(X3)) Q4(1,1) Q4(1,2) Q4(1,3) Q4(1,4)];

A(12,))=[000 00 00 0 cosh(X3) sinh(X3) cos(X3) sin(X3) Q4(2,1) Q4(2,2) Q4(2,3)
Q4(2,4)];

A(13,))=[0 0000 00 0 sinh(X3) cosh(X3) -sin(X3) cos(X3) Q4(3,1) Q4(3,2) Q4(3,3)
Q4(3,4)];

A(14,:))=[000 00 00 0 (C3*sinh(X3)-cosh(X3)) (C3*cosh(X3)-sinh(X3)) (-
C3*sin(X3)+cos(X3)) (C3*cos(X3)+sin(X3)) Q4(4,1) Q4(4,2) Q4(4,3) Q4(4,4)];

A(15,)=[0000000 000 00 cosh(X4) sinh(X4) -cos(X4) -sin(X4)];

A(16,)=[00000 000000 0 (sinh(X4)+C5*cosh(X4)) (cosh(X4)+C5*sinh(X4))
(sin(X4)+C5*cos(X4)) (-cos(X4)+C5*sin(X4))];

for k=1:15
Adk,.)=Ak, )/ Ak k),
for p=k+1:16
A(p,) = A(p,1)-Ak,:)*A(p.k);
end
end
c(16,m) = 1;
for k=1:15;
g = 16-k;
temp =0,

for p =g+1:16;
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temp = temp + A(g,p)*c(p,m),
end

c(g,m) = -temp;
end
x1 = linspace(0,a(4),31);
for n=1:31
x =x1(n);
delta=12;
if x1(n)<a(3)
delta = 8;
if x1(n)<a(2)
delta=4,
if x1(n)<a(1);
delta=0;
end
end
end
z=1,
fori=1LN

if x>=b(1);
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end

ydyn(n,m) =
c((delta+1),m)*cosh(x*(density* Area(z)*w”"2/E/Inertia(z))".2 5 y+c((delta+2),m)*sinh(x*(
density* Area(z)*w”2/E/Inertia(z))".25)+c((delta+3),m)*cos(x*(density* Area(z)*w"2/E/1
nertia(z))".25)+c((delta+4),m)*sin(x*(density* Area(z)*w”2/E/Inertia(z))*.25);

end

figure
plot(x1,ydyn(:,m),”*")
L = sprintf{'mode %0.5g',m);

title(L)

end
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% Filename : "modec"
% This subroutine calculates the first (4) mode shapes.

globai ¢

form=1:4
w = Root(m);
X1 = (density*XsecA(1)*w"2/E/Xsecl(1))*.25*a(1),
X2 = (density*XsecA(2)*w 2/E/Xsecl(2))*.25*a(2),
X3 = (density*XsecA(3)*w"2/E/Xsecl(3))".25*a(3);
X4 = (density*XsecA(4)*w"2/E/Xsecl(4))*.25*a(4);
Transferc
C1 = Mpulley*X1/(density*XsecA(1)*a(1));
C2 = Kr/(X2/a(2))"3/E/Xsecl(2);
C3 = Ktf/(X3/a(3))"2/E/Xsecl(3);
C4 = Kf/(X3/a(3))"3/E/Xsecl(3),
C5 = Mtool*X4/(density* XsecA(4)*a(4)),
templ(1,:)=[10-10};
temp1(2,))=[010-1};
Q1 =temp1*T1;

temp2(1,:) = [(sinh(X1)-C1*cosh(X1)) -(cosh(X1)-C1*sinh(X1)) -(sin(X1)-
Cl*cos(X1)) (cos(X1)+C1*sin(X1))];

temp2(2,:) = [-cosh(X1) -sinh(X1) -cos(X1) -sin(X1)};
temp2(3,:) = [-sinh(X1) -cosh(X1) sin(X1) -cos(X1)};

temp2(4,:) = [-cosh(X1) -sinh(X1) cos(X1) sin(X1)];
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Q2 = temp2*T2;

temp3(1,:) = [ sinh(X2) cosh(X2) sin(X2) -cos(X2)];

temp3(2,:) = [-cosh(X2) -sinh(X2) -cos(X2) -sin(X2)];

temp3(3,:) = [-sinh(X2) -cosh(X2) sin(X2) -cos(X2)];

temp3(4,:) = [-cosh(X2) -sinh(X2) cos(X2) sin(X2)];

Q3 = temp3*T3;

temp4(1,:) = [ sinh(X3) cosh(X3) sin(X3) -cos(X3)];

temp4(2,:) = [-cosh(X3) -sinh(X3) -cos(X3) -sin(X3)];

temp4(3,’) = [-sinh(X3) -cosh(X3) sin(X3) -cos(X3)];

temp4(4,:) = [cosh(X3) sinh(X3) -cos(X3) -sin(X3)];

Q4 = temp4*T4;

A(1,5) = [Q1(1,1) Q1(1,2) Q1(1,3) Q1(1,4) 0000000000 0 0};
A(2,)=[Q1(2,1) Q1(2,2) Q1(2,3) Q1(2,4) 0000000000 0 0];

AQ3,) = [sinh(X1) cosh(X1) sin(X1) -cos(X1) Q2(1,1) Q2(1,2) Q2(1,3) Q2(1,4) 0000
0000}

A(4,") = [cosh(X1) sinh(X1) cos(X1) sin(X1) Q2(2,1) Q2(2,2) Q2(2,3) Q2(2,4) 000 0
0000];

A(5,2) = [sinh(X1) cosh(X1) -sin(X1) cos(X1) Q2(3,1) Q2(3,2) Q2(3,3) Q2(3,4) 00 0 0
0000];

A(6,:) = [cosh(X1) sinh(X1) -cos(X1) -sin(X1) Q2(4,1) Q2(4,2) Q2(4,3) Q2(4,4) 000
00000];

A(7,)) =[0 0 0 0 (C2*cosh(X2)-sinh(X2)) (C2*sinh(X2)-cosh(X2)) (C2*cos(X2)-
sin(X2)) (C2*sin(X2)+cos(X2)) Q3(1,1) Q3(1,2) Q3(1,3) Q3(1,4) 00 0 0];

A(8,:) =[0 0 0 0 cosh(X2) sinh(X2) cos(X2) sin(X2) Q3(2,1) Q3(2,2) Q3(2,3) Q3(2,4)
0000];

126



A(9,:) =10 0 0 0 sinh(X2) cosh(X2) -sin(X2) cos(X2) Q3(3,1) Q3(3,2) Q3(3,3) Q3(3,4)
000 0];

A(10,:) =0 0 0 0 cosh(X2) sinh(X2) -cos(X2) -sin(X2) Q3(4,1) Q3(4,2) Q3(4,3)
Q3(4,4)0000};,

A(11,))=[0 0000 00 0 (C4*cosh(X3)-sinh(X3)) (C4*sinh(X3)}-cosh(X3))
(C4*cos(X3)-sin(X3)) (C4*sin(X3)+cos(X3)) Q4(1,1) Q4(1,2) Q4(1,3) Q4(1,4)];

A(12,:)=[000 0000 0 cosh(X3) sinh(X3) cos(X3) sin(X3) Q4(2,1) Q4(2,2) Q4(2,3)
Q4(2,4)1;

A(13,))=[000 0000 0 sinh(X3) cosh(X3) -sin(X3) cos(X3) Q4(3,1) Q4(3,2) Q4(3,3)
Q4(3,4)};

A(14,)=[000 0000 0 (C3*sinh(X3)-cosh(X3)) (C3*cosh(X3)-sinh(X3)) (-
C3*sin(X3)+cos(X3)) (C3*cos(X3)+sin(X3)) Q4(4,1) Q4(4,2) Q4(4,3) Q4(4,4)];

A(15,,)=[000000000 00 0 cosh(X4) sinh(X4) -cos(X4) -sin(X4)];

A(16,:))=[00000000000 0 (sinh(X4)+C5*cosh(X4)) (cosh(X4)+C5*sinh(X4))
(sin(X4)+C5*cos(X4)) (-cos(X4)+C5*sin(X4))];

for k=1:15
Alk,: )=Adk,:)/Adk k);
for p=k+1:16
A(p,) = A(p,)-A(k,))*A(p.k);
end
end
c(16,m) =1,
for k=1:15;
g=16-k;
temp = 0,

for p=g+1:16;
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temp = temp + A(g,p)*c(p,m),
end

c(g,m) = -temp;
end
x1 = linspace(0,a(4),31);
for n=1:31
x =x1(n);
delta = 12;
if x1(n)<a(3)
delta =8;
if x1(n)<a(2)
dehta = 4;
if x1(n)<a(1),
delta =0;
end
end
end
z=1;
fori=1:N

if x >=b(i);
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end

ydyn(n,m) =
c((delta+1),m)*cosh(x*(density* Area(z)*w”2/E/Inertia(z))".25 y+c((delta+2),m)*sinh(x*(
density* Area(z)*w”2/E/Inertia(z))".25)+c((delta+3),m)*cos(x*(density* Area(z) *w"2/E/I
nertia(z))*.25)+c((delta+4),m)*sin(x*(density* Area(z)*w”2/E/Inertia(z))*.25),

end

figure

plot(x1,ydyn(:,m),"*")

L = sprintf{'mode %0.5g',m);
title(L)

end
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function integ = f{XH,XL,md,sec,beta)
% Function : integral of phi”2 from Xlow to Xhigh
% This subroutine defines a new function to be used in subsequent calculations

global ¢

integ = 1/beta*(c(sec,md)"2/2*(cosh(beta* XH)*sinh(beta* XH)+beta* XH). .

+ c(sect1,md)"2/2*(cosh(beta* XH)*sinh(beta* XH)-beta* XH)...

+ c(sect2,md)"2/2*(cos(beta* XH)*sin(beta* XH)+beta*XH)...

+ c(sect3,md)"2/2*(-cos(beta* XH)*sin(beta* XH)+beta* XH). .

+ c(sec,md)*c(sect+1,md)*(sinh(beta*XH))"2 +
c(sec,md)*c(sec+2,md)*(cosh(beta* XH)*sin(beta* XH)+sinh(beta* XH)*cos(beta* XH))...

+ c(sec,md)*c(sec+3,md)*(sinh(beta* XH)*sin(beta* XH)-
cosh(beta* XH)*cos(beta*XH))...

+
o(sect1,md)*c(sec+2,md)*(sinh(beta* XH)*sin(beta* XH)+cosh(beta* XH)* cos(beta* XH)

)...
+ o(sect1,md)*c(sec+3,md)*(cosh(beta* XH)*sin(beta* XH)-
stnh(beta* XH)*cos(beta*XH))...
+ o(sec+2,md)*c(sec+3,md)*(sin(beta* XH))"2)...
-1/beta*(c(sec,md)”"2/2*(cosh(beta* XL)*sinh(beta* XL)+beta*XL)...
+ c(sect1,md)"2/2*(cosh(beta*XL)*sinh(beta* XL)-beta*XL)...
+ c(sec+2,md)"2/2*(cos(beta* XL)*sin(beta* XL)+beta*XL)...
+ c(sect+3,md)"2/2*(-cos(beta* XL )*sin(beta* XL)+beta*XL)...
+ c(sec,md)*c(sect1,md)*(sinh(beta*XL))"2 +
c(sec,md)*c(sect+2,md)*(cosh(beta*XL)*sin(beta* XL)+sinh(beta*XL)*cos(beta*XL))...
+ c(sec,md)*c(sec+3,md)*(sinh(beta*XL)*sin(beta*XL)-
cosh(beta*XL)*cos(beta*XL)). ..
+
o(sec+1,md)*c(sec+2,md)*(sinh(beta* XL)*sin(beta* XL)+cosh(beta* XL)*cos(beta*XL))

4 o(sect1,md)*c(sec+3 md)*(cosh(beta*XL)*sin(beta*XL)-

sinh(beta*XL)*cos(beta*XL))..
+ o(sec+2,md)*c(sec+3,md)*(sin(beta* XL)y'2);
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Appendix D

Matlab Programs for the Optimization
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% filename : "optimize"
% this file launches the optimization subroutines

constantso

stop =0;

for nn = 1:1000;

if stop <=0,

% Step 1,
kk=1;
R(1)=1;
gamma = .5;
epsl =.01;
eps2 = .01,
Hess = eye(4);
Kr_max = 1e6;
Kf max = le6,
DELTA =5,
OH=2;
xn(1) = a(2)/(a(1+DELTA);
xn(2) = a(3)/(a(4)-OH),
xn(3) = KFKf max;
xn(4) = Kr/Kr_max;

% Step 2
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deformationo
yt(100)
constraint
temp = max(G);
if temp <0
V=0
else
V =temp;
end

gradient

dytn(1) = dyt(1)*(a(1)+DELTA)
dytn(2) = dyt(2)*(a(4)-OH)
dytn(3) = dyt(3)*Kf max

dytn(4) = dyt(4)*Kr_max

% Step 3
multiplier

% Step 4

if abs_dd < epsl

stop = 1,
if V> eps2

stop =0,
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end
end
% Step 5
T =uu(l) +uu(2) +uu(3) + uu(4);
R((kk+1)) = max(rr,R(kk));
% Step 6
step_size
% Step 7
kk = kk+1;
end

end
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% filename - "gradient”
% this subroutine calculates the gradient of yt with respect to the design variables
% the design variables are Kf, Kr, a(1), a(2), a(3)

deformationo

yt_k = yt(100);

% the gradient of yt w.r.t. a(2):
Deltal = a(2)*.001;

a(2) = a(2)+Deltal;
deformationo

yt_kp = yt(100);

dyt(1) = (yt_kp-yt_k)/Deltal,
% the gradient of yt w.rt. a(3):
Delta2 = a(3)*.01;

a(3) = a(3)+Delta2;
deformationo

yt_kp = yt(100);

dyt(2) = (yt_kp-yt_k)/Delta2;
% the gradient of yt w.r.t. Kf:
Delta3 = Kf*.01;

Kf = Kf+Delta3;
deformationo

yt_kp = yt(100);

dyt(3) = (yt_kp-yt_k)/Delta3;
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% the gradient of yt w.r.t. Kr:
Deltad4 =Kr* 01,

Kr = Kr+Delta4;
deformationo

yt_kp = yt(100);

dyt(4) = (yt_kp-yt_k)/Delta4;
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% Filename : "constraint”

% This subroutine calculates the constraint violations and their derivatives.
G = [(-xn(1)*+1) (xn(2)-1) (xn(3)-1) (xn(4)-1)];

dG1=[-1000];

dG2=[0100},

dG3=[0010],

dG4=[0001];
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% Filename . "multiplier"
% This file calculates the Lagrange Multipliers

clear AA CC
if xn(1) >=1
uu(1) =0;

ss(1) = sqrt(xn(1)-1);

swl =0;
else
ss(1)=0;
swl=1;
end
if xn(2) <=1
uu(2) =0;

$8(2) = sqrt(xn(2)-1);

sw2=0;
else
ss(2)=0;
sw2 =1;
end
if xn(3) <=1
uu(3) =0;

s8(3) = sqrt(xn(3)-1);

sw3 =0;
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else
ss(3) =0;
sw3=1;

end

if xn(4) <=1
uu(4) =0,
sw4 =0;

$5(4) = sqri(xn(4)-1);

else
ss(4) =0,
swd =1,
end

binary = sw1*2/3+sw2*2/2+sw3*2 | +sw4*2°0
if binary == 0
mult0
end
if binary =1
multl
end
if binary =2
mult2

end
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if binary ==2
mujt2

end

if binary == 3
mult3

end

if binary ==
mult4

end

if binary =735
mult5

end

if binary == 6
mult6

end

if binary ==7
mult7

end

if binary =8
mult8

end

if binary == 9
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muit9

end

if binary = 10
mult10

end

if binary == 11
multll

end

if binary = 12
mult12

end

if binary = 13
multl3

end
if binary =— 14

multl4

end

if binary = 15
multl5

end

abs_dd = sqrt(dd(1)"2+dd(2)"2+dd(3)"2+dd(4)"2)

%if swl =0
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% ss(1) = sqrt(dd(1)-dd(2)-DELTA/a(4));
%end
%if sw2 =0

% ss(2) = sqrt(dd(3)-1);

%end
Yoif sw3 =0
% ss(3) = sqrt(dd(4)-1);
%end
%if sw4 =0
% ss(4) = sqrt(dd(5)-1);

%end
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% Filename . "multiplier"
% This file calculates the Lagrange Multipliers

clear AA CC
if xn(1)>=1
uu(1) =0;

ss(1) = sqrtxn(1)-1);

swl =0;
else
ss(1)=0;
swl =1;
end
if xn(2) <=1
uu(2) =0;

$8(2) = sqrt(xn(2)-1);

sw2 =0;
else
ss(2)=0;
sw2 =1;
end
if xn(3) <=1
uu(3)=0;

ss(3) = sqrt(xn(3)-1);

sw3 =0;
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else
ss(3) =0,
sw3 =1,

end

if xn(4) <=1
uu(4) = 0;
sw4 =0;

ss(4) = sqrt(xn(4)-1);

else
ss(4) =0;
sw4 =1;
end

binary = sw1*2/3+sw2*2/2+sw3*2" | +sw4*20
if binary == 0
mult0
end
if binary =1
multl
end
if binary =2
mult2

end
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if binary =2
mult2

end

if binary == 3
mult3

end

if binary ==
mult4

end

if binary =15
mult5

end

if binary == 6
mult6

end

if binary ==
mult7

end

if binary =8
mult8

end

if binary =9
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mult9

end

if binary = 10
muit10

end

if binary = 11
multll

end

if binary = 12
mult12

end

if binary = 13
mult13

end
if binary = 14

mult14

end

if binary =15
multl5

end

abs_dd = sqrt(dd(1)"2+dd(2)"2+dd(3)"2+dd(4)"2)

%if swl =20
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% ss(1) = sqrt(dd(1)-dd(2)-DELTA/a(4));

%end
%if sw2 =0

% ss(2) = sqrt(dd(3)-1);

%end
%if sw3 =0
% ss(3) = sqrt(dd(4)-1);
%end
%if sw4d =0
% ss(4) = sqrt(dd(5)-1),

%end
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% Filname : "mult0"

AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1))];

AA(2,) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2))];

AA(3,)) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3))];

AA(4,) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4))];

CC(1,)) = [-dytn(1)];
CC(2,) = [-dytn(2)];
CC(3,) = [-dytn(3)];
CC(4,:) = [-dytn(4)];

dd = inv(AA)*CC
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% Filname : "mult0"

AA(1,7) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1))];

AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2))];

AAQ3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3))];

AA(4,)) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4))];

CC(1,:) =[-dytn(1)];
CC(2,:) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,.) = [-dytn(4)];
dd = inv(AA)*CC
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% Filname : "mult2"

dd(4) =-GQ3),

AA(1,:) = [(Hess(1,1)) (Hess(1,2)*Hess(2,1)) (Hess(1,4)+Hess(4,1)) 0];
AA(2,) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,4)+Hess(4,2)) 0J;
AA(3,7) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,4)tHess(4,3)) 1],
AA(4,) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)tHess(2,4)) Hess(4,4) 0};
CC(1,:) = [-dytn(1)-(Hess(1,3)+Hess(3,1))*dd(3)];

CC(2,:) = [-dytn(2)-(Hess(2,3)tHess(3,2))*dd(3)];

CC(3,:) = [-dytn(3)-Hess(3,3)*dd(3)];

CC(4,) = [-dytn(4)-(Hess(3,4)+Hess(4,3))*dd(3)];

temp_mult = inv(AA)*CC;

dd(1,1) = temp_muk(1,1);

dd(2,1) = temp_mult(2,1);

dd(4,1) = temp_mult(3,1);

u(3) =temp_mult(4,1),
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% Filname : "mulit3"

AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) 0 0];

AA(2,)) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 0 0];

AAQ3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 1 0;

AA(4,)) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 1},

AA(5,))=[001000};
AA(6,))=[000100];
CCQ,5) = [-dytn(1)];
CC(2,7) = [-dytn(2)];
CCG,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,) =[-G3)};
CC(6,)) = [-GH];
temp_mult = inv(AA)*CC,
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
u(3) = temp_mult(5,1);

u(4) = temp_mult(6,1);
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% Filname : "mult4"

dd(2,1) = -G(2);

AA(1,7) = [(Hess(1,1)) (Hess(1,3)+Hess(3,1)) (Hess(1,4)+Hess(4,1)) 0];
AA(2,)) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,4)+Hess(4,3)) 1];
AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,3)) (Hess(4,3)+Hess(3,4)) 0];
AA(4,7) = [(Hess(4,1)+Hess(1,4)) (Hess(4,3)+Hess(3,4)) (Hess(4,4)) 0],
CC(1,:) = [-dytn(1)-(Hess(1,2)+Hess(2,1))*dd(2)];

CC(2,:) = [-dytn(2)-(Hess(2,2))*dd(2)];

CC(3,’) = [-dytn(3)-(Hess(3,2)+Hess(2,3))*dd(2)];

CC(4,:) = [-dytn(4)(Hess(4,2)+Hess(2,4))*dd(2)];

temp_mult = inv(AA)*CC,

dd(1,1) = temp_mukt(1,1);

dd(3,1) = temp_mult(2,1);

dd(4,1) =temp_mult(3,1);

u(2) =temp_ mult(4,1),
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% Filname : "mult5"

AA(1,)) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) 0 0],

AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 1 0];

AAQ3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0 0];

AA(4,)) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 17;

AA(5,)=[010000};
AA(6,)=[000100];
CC(1,:) = [-dytn(1)];
CC(2,)) = [-dytn(2)];
CCE3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,) =[-G(2)};

CC(s,)) =[-G(D};
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
u(2) = temp_mult(5,1);

u(4) = temp_mult(6,1);
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% Filname : "mult6"

AA(1,)) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) 0 0],

AA(2,)) = [(Hess(2,1)y+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 1 0];

AAQ3,)) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0 1];

AA(4,)) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 0];

AA(5,))=[010000];
AA(6,))=[001000];
CC(1,)) = [-dytn(D)];
CC(2,) = [-dytn(2)];
CCG,) = [-dytn(3)];
CC(4,)) = [-dytn(4)];
CCG5,) =[-G(2)];
CC(s,) =1-G(3)};
temp_mult = inv(AA)*CC,
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
uw(2) =temp_mult(5,1);

u(3) =temp mult(6,1);
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% Filname - "mult7”

AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) 0 0 0],

AA(2,)) = [(Hess(2,1)y+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 1 0 0];

AA(3,)) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 01 0];

AA(4,) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 00 1];

AA(5,)=[0100000];
AA(6,)=[0010000];
AA(7,)=[0001000];
CCQ1,:) = [-dytn(1)};
CC(2,:) = [-dytn(2)];
CC(@3,:) = [-dytn(3)};
CC(4,:) = [-dytn(4)];
CC(5,) = [-G(2));
CC(6,:) =[-G(3)L;
CC(7,) =[-G(4));
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);

dd(4,1) =temp_mult(4,1),
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u(2) =temp_mult(6,1);
u(3) =temp_mult(7,1);

u(4) =temp_mult(8,1);
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% Filname : "muit8"

AA(1,:) =[(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) 1];

AA(2,)) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 0];

AAQS,) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0];

AA(4,)) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0];

AA(5,))=[10000];
CC(1,7) = [-dytn(1)];
CC(2,)) = [-dytn(2)];
CCG,) = [-dytn(3)];
CC(4,) = [-dytn(4)];
CC(s,) = [-G()];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1),

u(1) =temp mult(5,1);
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% Filname : "muit9"

AA(1,)) =[(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) -1 0];

AA(2,)) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 0 0];

AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0 0];

AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 1],

AA(6,)=[-100000],
AA(7,)=[000100];
CC(1,:) = [-dytn(1)];
CC(2,:) = [-dytn(2)];
CC(@3,:) = [-dytn(3)];
CC(4,) = [-dytn(4)];
CC(5,) =[-G()}

CC(6,) = [-G(4)L;
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
u(1) =temp_mult(5,1);

u(4) =temp_muit(6,1);
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% Filname : "mult10"

AA(1,)) =[(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) -1 0],

AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 0 0];

AAQ3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0 11;

AA(4,)) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 0},

AA(5,)=[-1100000];
AA(6,)=[0001000];
CC(1,:) = [-dytn(1)];
CC@2,:) =[-dytn(2)};
CCG,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,) =[G}
CC(6,) =[-G(3));
temp_mult = inv(AA)*CC;
dd(1,1) = temp_muit(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1);
u(1) = temp_mult(5,1);

u(3) = temp_mult(6,1),
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% Filname : "mult11”

AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) -1 0 0];

AA(2,)) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 00 0];

AAQ3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0 1 0];

AA(4,:) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 00 1];

AA(5,)=[-1000000];
AA(6,)=[001000 0],
AA(7,)=[000100 0},
CC(1,:) = [-dytn(D)];
CC(2,)) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,) =[-G(D;
CC(6,) = [-G3)L
CC(7,) =[-G(4)};
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);

dd(4,1) =temp_muit(4,1),
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u(l) =temp_mult(5,1);
u(3) =temp_mult(6,1);

u(4) =temp_mult(7,1);
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% Filname : "mult12"

AA(1,)) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) -1 0],

AA(2,) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)*+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 1 0];

AA(3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 0 0];

AA(4,) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 0];

AA(5,))=[-100000];
AA(6,)=[010000];
CC(1,7) = [-dytn(1)];
CC2,:) = [-dytn(2)];
CC@3,:) = [-dytn(3)];
CC(4,’) = [-dytn(4)];
CCG,) =[-G(D};
CC6,) =[-G()};
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1),
u(1) = temp_mult(5,1);

u(2) = temp_mult(6,1);
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% Filname : "mult13"

AA(1,)) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) (Hess(1,5)+Hess(5,1)) -1 0 0],

AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) (Hess(2,5)+Hess(5,2)) 0 1 0];

AAQ3,)) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) (Hess(3,5)+Hess(5,3)) 0 0 0];

AA(4,)) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) (Hess(4,5)+Hess(5,4)) 00 1];

AA(5,)=[-1000000],
AA(6,)=[0100000];
AA(7,)=[0001000];
CC(1,:) = [-dytn(1)];
CC(2,) = [-dytn(2)];
CC@3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,) =[G,
CC(s,) =[-G(2)];
CC(7,) =[-G@);
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);

dd(4,1) = temp_mult(4,1),
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u(1) =temp_mult(5,1),
u(2) =temp_mult(6,1);

u(4) =temp_mult(7,1);
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% Filname : "mult14"

AA(1,)) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) -1 0 0];

AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) 01 0];

AAQ3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) 00 1];

AA(4,)) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) 0 0 0},

AA(6,)=[-1000000];
AA(7,)=[0100000];
AA(8,)=[0010000];
CC(1,:) = [-dytn(1)];
CC(2,) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,:) = [-dytn(4)];
CC(5,) =[-G()];
CC(s6,) =[-G(2)];
CC(7,) =[-GB));
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);
dd(2,1) = temp_mult(2,1);
dd(3,1) = temp_mult(3,1);

dd(4,1) = temp_mult(4,1);
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u(l) =temp_mult(5,1);
u(2) =temp_mult(6,1);

u(3) =temp_mult(7,1);
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% Filname : "mult15"

AA(1,:) = [(Hess(1,1)) (Hess(1,2)+Hess(2,1)) (Hess(1,3)+Hess(3,1))
(Hess(1,4)+Hess(4,1)) (Hess(1,5)+Hess(5,1)) -1 0 0 0];

AA(2,:) = [(Hess(2,1)+Hess(1,2)) (Hess(2,2)) (Hess(2,3)+Hess(3,2))
(Hess(2,4)+Hess(4,2)) (Hess(2,5)+Hess(5,2)) 01 0 0];

AAQ3,:) = [(Hess(3,1)+Hess(1,3)) (Hess(3,2)+Hess(2,3)) (Hess(3,3))
(Hess(3,4)+Hess(4,3)) (Hess(3,5)+Hess(5,3)) 00 1 0];

AA(4,) = [(Hess(4,1)+Hess(4,1)) (Hess(4,2)+Hess(2,4)) (Hess(4,3)+Hess(3,4))
(Hess(4,4)) (Hess(4,5)+Hess(5,4)) 00 0 1];

AA(5,)=[-10000000];
AA(6,)=[01000000];
AA(7,)=[00010000];
AA(8,)=[00001000];
CC(1,1) = [-dytn(D)];
CC(2,:) = [-dytn(2)];
CC(3,:) = [-dytn(3)];
CC(4,) = [-dytn(9)];
CC(5,) = [-G(D);

CC(s,) = [-G(2)];

CC(7,) =[-GB)];

CC(8,) =[-G(4)];
temp_mult = inv(AA)*CC;
dd(1,1) = temp_mult(1,1);

dd(2,1) =temp_mult(2,1);
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dd(3,1) = temp_mult(3,1);
dd(4,1) = temp_mult(4,1),
u(1) =temp_mult(5,1);
u(2) = temp_mult(6,1);
u(3) =temp_mult(7,1);

u(4) =temp_mult(8,1);
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% filename : "step_size"
% This subroutine determines the proper step size for the optimization procedure

flag =0,
Beta = gamma*(abs_dd)"2,
PHI o=Y + R(kk+1)*V,
mm =0,
tor flag = 0;
t=(1/2y"mm
X = [xn(1) xn(2) xn(3) xn(4)] + t*transpose(dd)
a(2) = X(1)*(a(1)+DELTA),
a(3) = X(2)*(a(4)-OH);
Kf=X(3)*Kf _max;
Kr = X(4)*Kr_max;
deformationo
PHI 1= Y+R(kk+1)*V;
if PHI_1 >=PHI_ o - t*Beta

mm = mm+1,;

else
flag=1,
a(2) = X(1);
a(3) = X(2);
Kf = X(3);
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