

30

Figure 4.9: Piecewise Linear Function Fitting Example

currentMin = 1 (4.1)

and

currentMax = p ∗ 2m

q

= 1 ∗ 2m

2

= 2m−1 (4.2)

currentMin is the first entry in the data set, as shown in equation (4.1). Equation (4.2)

shows currentMax equal to the middle index of the data set. One line has now been fit to

the first half of the data set. Next we fit the 2nd half of the data by letting p = 2. Now:

31

currentMin = currentMax

= 2m−1 (4.3)

and

currentMax = p ∗ 2m

q

= 2 ∗ 2m

2

= 2m (4.4)

Equation (4.3) shows currentMin now equal to the previous value of currentMax. The

previous maximum index becomes the current minimum index to ensure continuous fitting.

currentMax has now taken the final index position in the observed data, by equation (4.4).

currentMin and currentMax now bound the 2nd half of the data set. Thus, two lines are

fit to the data set in order to achieve a higher accuracy than a simple linear approximation.

The piecewise fitting algorithm will continue in splitting ranges in half and fitting lines

until i = m. With i = m, 2m − 1 lines will be fit the data set. When this happens, one line

is fit between each set of points in the data set (by sampled order). When only using two

points to fit a regression model, the R2 value is guaranteed to be one.

4.2.3 Optimization Overview

Following the edge / node fitting, the other necessary data parameters and indexing sets are

generated or input. First, the indexing sets are built based on information from the graph

meta-model.

A set is formed that contains all nodes on the graph. Multiple subsets are derived from

the main set of all vertices. Two important subsets are the input and goal subsets. The

input subset consists of all input nodes on the graph. Another subset is the goal subset,

consisting of all goal nodes. The subset of goal nodes will most likely contain the output

32

nodes; however intermediate nodes may also exist. A user specified goal parameter value

is required for each node in the goal subset.

In the linear programming model, one of the primary constraints are based on a principle

from linear signal flow graphs. In linear signal flow graphs, the addition rule states that the

sum of all inputs to a node multiplied by their respective edge weights equal the output of

that node [8]. One of the main constraints (4.8) in the linear programming model in figure

4.10 is based on structure of linear signal flow graphs.

Looking at the addition rule in another way, the scalar product of the inputs of a node

and their respective magnitudes equal the output of that node. One can accommodate non-

linear terms and functions by generalizing the addition rule; the output of a node is equal to

some function of that nodes inputs. Constraints represent this structure for all nodes on the

graph except input nodes. There are two reasons why input nodes need unique constraints.

By definition, an input node has no inputs; the standard constraints would force all input

nodes to zero. Additionally input nodes are assumed controllable in the real life system

being modeled. Input values are simply bounded by lower and upper bounds.

The objective function minimizes the sum deviations from the user specified goals. Ob-

jectives of this type are implemented with a goal programming approach. By minimizing

the sum of deviations about the specified goals, the model balances the trade-offs associ-

ated with getting as close as possible to all user specified goals. An added bonus to this

type of objective function is that the optimization models should never be infeasible! If a

goal can not be achieved, then the objective value at optimality will be larger than zero.

A linear program and mixed integer program are used to find the optimal input combi-

nations. These math program formulations are detailed in this chapter.

4.2.3.1 Sets, Parameters and Variables

All sets, parameters, and variables used in the mathematical programs below are detailed

in this subsection. The sets are detailed in table 4.1. Constant data values, also known as

33

parameters, are listed in table 4.2. All variables that appear in the math models are shown

in table 4.3.

Table 4.1: Sets
V Set of all vertices on the graph.
I Subset of V, those vertices which are input actors.
G Subset of V, those vertices which are goal actors.
C Subset of V, those actors which allow cycles.
CSD Subset of C, all sample delay actors.
CACC Subset of C, all accumulator actors.
T Set of all time periods,| T | should equal the number of iterations.
Mv Set of indexes related to the number of breakpoints fit for each piecewise

linear function.

Table 4.2: Parameters
β Fitted weight for an edge on the graph.
ω Target value for each goal vertex.
l Lower bound for the input variables.
u Upper bound for the input variables.
k Initial value of a sample delay actor in the 0th iteration.
a The “x“ coordinate of fitted piecewise functions.
b The “y“ coordinate of fitted piecewise functions.

Table 4.3: Variables
xvt The value of each vertex in the graph.
θg Value corresponding to the percent achieved of each goal, ideally its value is 1.
∆+

g Variable corresponding to goal nodes with actual values greater than their desired
value, ideally this variable should be zero.

∆−g Variable corresponding to goal nodes with actual values less than their desired value,
ideally this variable should be zero.

λvtm Linear variable used to take the weighted average of two fitted breakpoints in a piece-
wise function.

δvtm Binary variable used to switch between ranges within piecewise functions.

4.2.3.2 Linear Program

When an SDF model contains actors that only have linear functions, a linear program can

be used to accurately and efficiently optimize it. Since all output functions within nodes are

linear, a weight can be applied to each input edge of each actor on the elicited graph. Any

constant (e.g. intercept) term in the linear function can be represented by a data parameter.

34

The linear programming formulation in figure 4.10 that can optimize the linear deter-

ministic cases of table 4.1 is detailed below. Note, if the SDF’s elicited graph is acyclic

then the set T should only contain one element. Elicited graphs that are cyclic should have

an element in T for each iteration experiments have been conducted on. One can think of

the LP as treating acyclic graphs as a special case of cyclic graphs.

Minimize z =
∑
g∈G

∆+
g + ∆−g (4.5)

Subject To:

θg =
xgt
ωg

∀g ∈ G, t = max(T) (4.6)

θg −∆+
g + ∆−g = 1 ∀g ∈ G (4.7)

β0jt +
∑
i∈V

βijtxit = xjt ∀j ∈ V \ (I and C), t ∈ T (4.8)

β0jt +
∑
i∈V

βijtxit = xjt+1 ∀j ∈ CSD,min(T) < t < max(T) (4.9)

kj = xjt ∀j ∈ CSD, t = min(T) (4.10)

xjt−1 + β0jt +
∑
i∈V

βijtxit = xjt ∀j ∈ CACC, t ∈ T |t > min(T) (4.11)

β0jt +
∑
i∈V

βijtxit = xjt ∀j ∈ CACC, t = min(T) (4.12)

xit = xit+1 ∀i ∈ I, t ∈ T |t < max(T) (4.13)
li ≤ xit ≤ ui ∀i ∈ I, t ∈ T (4.14)

∆+
g ,∆

−
g ≥ 0 ∀g ∈ G (4.15)

Figure 4.10: Linear SDF Optimization Model

The objective function (4.5) minimizes the sum of positive and negative deviation vari-

ables. This allows the model to balance the trade-offs associated with achieving all goals.

Constraint (4.6) sets the percent of goal achieved, θg, for each goal g in the set G. All

deviation variables are bound by constraint (4.7). If every θg equals one, then the deviation

variables ∆+
g and ∆−

g will have values of zero. If θg is larger than one, then ∆+
g will have a

value greater than zero to meet this constraint. Similarly, ∆−
g will need to be non-zero if θg

is less than one.

Constraint (4.8) is the implementation of the addition rule from linear signal flow graphs.

35

The scalar product of weights βijt and node values xit for each node i going into node j

equals the value of node j, for all vertices excluding those in the I subset. The β0jt term

represents the fitted intercept of node j.

Sample delay actors are modeled in (4.9), where the scalar product of all inputs into the

sample delay are equal to the output of that actor in the next time period (xjt+1). The initial

value of the sample delay actor is fixed to k (4.10).

Accumulator actors are constrained in (4.12) and (4.11). Constraint (4.12) requires the

output of an accumulator node to be equal to the sum of its inputs, plus the value of that

node in the previous time period (xjt−1). The variable xjt−1 is omitted from (4.11), since

that term will not exist in the 0th time period.

Finally, input node values xit are bounded by li and ui in constraint (4.14). Since input

values will not change once the SDF model executes, constraint (4.13) is necessary. The ∆

variables are restricted to be non-negative in constraint (4.15).

Applying the LP formulation in figure 4.10 to the simple linear Ptolemy example in

figures 4.2 through 4.8, the resulting optimization model is shown in figure 4.11. Here the

goal value is set to 25.0 for node C.

Minimize z = 1.0 ∗∆+
0 + 1.0 ∗∆−0

Subject To:
2.0 ∗B0 + 5.0 ∗A0 = 1.0 ∗ C0

1.0 ∗ θ0 =
C0

25.0

1.0 ∗ θ0 − 1.0 ∗∆+
0 + 1.0 ∗∆−0 = 1

1.0 ≤ A0, B0 ≤ 10.0

Figure 4.11: Linear Optimization Formulation for Simple Linear Ptolemy Model

4.2.3.3 Mixed Integer Program

The mixed integer programming model in figure 4.12 is used to optimize the non-linear

deterministic cases in table 4.1. Just as in the linear programming formulation, if the model

36

is acyclic then the set T should only have one element. Special constraints for accumulators

are not necessary, as their variation over time is captured with the sampling experiment.

However, using constraints (4.12) and (4.11) would reduce the number of binary variables

in the mixed integer program.

Minimize z =
∑
g∈G

∆+
g + ∆−g

Subject To:

θg =
xgt
ωg

∀g ∈ G, t = max(T)

θg −∆+
g + ∆−g = 1 ∀g ∈ G∑

m∈Mi

aitmλjtm = xit ∀j ∈ V \ I, i ∈ V |i→ j, t ∈ T (4.16)

∑
m∈Mj

bjtmλjtm = xjt ∀j ∈ V \ (I and CSD), t ∈ T (4.17)

∑
m∈Mj

bjtmλjtm = xjt+1 ∀j ∈ CSD, t ∈ T (4.18)

∑
m∈Mi

λitm = 1 ∀i ∈ V, t ∈ T (4.19)

∑
m∈Mi

δitm = 1 ∀i ∈ V, t ∈ T (4.20)

λitm ≤ δitm−1 + δitm ∀i ∈ V,m ∈Mi, t ∈ T (4.21)
kj = xjt ∀j ∈ CSD, t = min(T)

xit = xit+1 ∀i ∈ I, t ∈ T |t < max(T)

li ≤ xit ≤ ui ∀i ∈ I, t ∈ T
∆+

g ,∆
−
g ≥ 0 ∀g ∈ G

0 ≤ λitm ≤ 1 ∀i ∈ V,m ∈Mi, t ∈ T (4.22)

δitm ∈ B+ ∀i ∈ V,m ∈Mi, t ∈ T (4.23)

Figure 4.12: Non-Linear SDF Optimization Model

The MIP in figure 4.12 is very similar to the LP in figure 4.10; the main differences are

the addition of constraints that are needed to model piecewise linear functions. The MIP

implements the λ form of piecewise linear functions, since the outputs of actors can not be

guaranteed to be convex. The constraints derived from linear signal flow graphs, (4.8) and

(4.9), have been replaced by constraints (4.16), (4.17), and (4.18).

37

Essentially, constraints (4.16), (4.17) are a split up version of (4.8), where constraint

(4.16) restricts the inputs of a node and constraint (4.17) limits the outputs. These two con-

straints ensure that λjtm values are equal for both the input and output of each node on the

graph. This relationship helps ensure accuracy in the model, since the fitted ranges directly

correspond to the control and response data. Allowing the λjtm variables to take different

values would result in combinations of a parameters that were not sampled together being

selected, thus producing inaccurate results. Constraint (4.18) is the output constraint for

sample delay actors; output values are lagged by one time iteration (xjt+1).

Constraints (4.19), (4.20), (4.21), (4.22), and (4.23) are all taken directly from the λ

formulation outlined in the literature review (see figure 4.1).

4.2.4 Solution Evaluation

Following the execution of the optimization solver, the resulting optimal solution is pro-

vided to the user in a meaningful way. Simply dumping the output from an optimization

solver is unacceptable! Variables from the optimization should be named such that they

are easily identifiable. If possible, the names should be the same as the Ptolemy actors the

elicited graph structure represents.

In this work, a text file is generated after the solver is executed. This text file contains the

entire math program, along with the value of every variable at optimality. All the variables

names are taken directly from the elicited graph meta-model. Having results displayed

in this manor all the user to quickly find the optimal input values that should yield their

desired goal. As listed in the problem statement, there are three metrics primarily used to

assess quality in this work: run time, precision, and accuracy. The output text file contains

the run time information in addition to the math model and optimal variable values.

To test quality of the method, one simply has to run the simulation model with the

reported optimal input values. If the output of the simulation model is the same as or very

close to the predicted output from the optimization model, one can say the optimization was

38

accurate. If the input values reported by the optimization solver produce an output close

to the user specified goals, then one can say the optimization was precise. However it is

important to note that the precision measurement only makes sense when the user chooses

goal values that are obtainable within the provided input ranges. The most desirable results

are highly accurate, highly precise, with a low run time.

The expanded model:
IloModel {
IloMinimize : 1.0*PositiveDeviation[0] + 1.0*NegativeDeviation[0]
IloRange : 0.0 <= 2.0*.example.B.output[0] + 5.0*.example.A.output[0]
- 1.0*.example.C.output[0] <= 0.0
IloRange : 0.0 <= -0.04*.example.C.output[0] + 1.0*theta[0] <= 0.0
IloRange : 1.0 <= -1.0*PositiveDeviation[0] + 1.0*NegativeDeviation[0]
+ 1.0*theta[0] <= 1.0

}

Objective Value: 0.000

The solve time = 0

All theta Values:
theta[0] = 1.000000
All Positive Deviation Values:
posDelta[0] = 0.000000
All Negative Deviation Values:
negDelta[0] = 0.000000
All x Values:
.example.A.output[0] = 1.000000
.example.B.output[0] = 10.000000
.example.C.output[0] = 25.000000

Total time = 1984
Solve time = 0
Model prep time = 125
Experiment time = 1859

Figure 4.13: Example Solver Output for Simple Linear Ptolemy Model

A demonstration of the solution evaluation method begins with figure 4.13, a sample

output from the Java implementation of the methodology. CPLEX 12.1 was used to solve

the simple linear Ptolemy model with a goal value of 25.0 for expression C. The optimal

solution reported by the solver is A = 1.0 and B = 10.0 This is certainly feasible, as the

39

input ranges were 1.0 through 10.0 for both nodes A and B. What about the accuracy and

precision, and solve time?

Executing the Ptolemy model with the optimal input value yields and output of 25.0!

These results can be seen in figure 4.14. The name of the metrics used to quantify accuracy

and precision are respectively: math program vs simulation deviation and math program vs

goal deviation. These metrics will appear again in chapter 5 and Appendix A. The math

program vs simulation deviation (accuracy) is given by:

MP vs Sim Deviation = |1.0− Simulation Output
Math Program Output

|

= |1.0− 25.0

25.0
|

= |1.0− 1.0|

= 0.0

The math program vs goal deviation (precision) is given by:

MP vs Goal Deviation = |(Math Program Output)− (Simulation Output)|

= |25.0− 25.0|

= 0.0

Thus, it can be said that the simple linear Ptolemy model was solved accurately, precisely,

and quickly. The accuracy and precision is high, because there is no deviation seen between

the optimization model and the actual SDF model. The solve times are shown at the end

of figure 4.13; a total run time of under 2000 ms is low, and desirable! This methodology

would have high practical significance if large complex SDF models could be solved in a

40

similar amount of time.

Figure 4.14: Simple Linear Ptolemy Model Execution with Optimal Input Values

4.3 Discussion of Methodology

The three categories of the methodology outlined in this chapter are information abstrac-

tion, optimization, and solution evaluation. Here is a brief summary of all steps in the

methodology:

1. Load an SDF model into memory,

2. Elicit graph based meta-model from the current SDF,

3. Perform a sampling experiment for each node on the graph (one at a time),

4. Assess the magnitude of the input(s) on the output of each node on the graph (one at

a time) by fitting functions (either linear or piecewise linear),

5. Read in user specified goals,

6. Generate indexing sets and constant data parameters using the graph based meta-

model, fitted functions, and user specified goals,

7. Pass all data into the optimization model,

41

8. Solve the optimization model and write out a text file with run time information and

optimal values for all variables,

9. Execute the SDF model with the optimal input values as reported by the optimization

model,

10. Compare the actual results of the SDF model with the expected results from the opti-

mization model.

The structure of the methodology should allow flexibility for many different scenarios.

Total run time should be significantly effected by the number of samples taken during the

experimental sampling step, and the minimum acceptable R2 value. Setting an R2 value

less than one should allow the algorithm to complete in fewer than m iterations (where the

number of samples taken = 2m).

One important aspect of the information abstraction step that has not been discussed in

depth is the reason for experimenting on actors one at a time. Most simulation optimization

methods take an approach similar to the one in this work; that is sampling parts of the model

with no a priori knowledge of the type of function inside. There are many reasons to do

this, one of the most prevalent being that the majority of simulation software allow the user

to execute their won custom code. If a method was developed that could not support this,

it would most likely be limited in functionality.

The optimization models, in figures 4.10 and 4.12, should solve efficiently relative to

size of the SDF model. If the SDF is linear, then one should have minimal concerns about

the size of the model as model LP solvers can deal with hundreds of millions of variables.

In the nonlinear cases, the modeler should be more concerned as mixed integer program is

typically computationally intensive. At least the types of models produced in this method-

ology are at worst mixed binary integer programs, which are generally less computationally

intensive than a mixed integer program or a nonlinear program.

42

An added aspect of this methodology is that it should be applicable to any system that

has a graph structure in which the output of a node is some function of its inputs. One of the

intriguing benefits of the method is that as long as the output functions are continuous, the

piecewise linear fitting algorithm, in algorithm 4.1, will fit a function usable in the mixed

integer programming model (figure 4.12). The large variety of systems this method may be

applicable for is an attractive feature.

43

Chapter 5

Experimental Performance Evaluation

This chapter describes the example SDF models used to test the information abstraction

and optimization methods outlined in the methodology.

5.1 Experimental Models

Test SDF models were created In order to verify the effectiveness of the methodology. Four

models were built, one for each possible graph characteristic combination. The name of

each model and size of each elicited graph is listed in table 5.1.

5.1.1 Acyclic Linear Deterministic Model

The acyclic linear deterministic SDF model is shown in figures 5.1 and 5.2. The Ptolemy

model is shown in figure 5.1 and the elicited graph is shown in figure 5.2. This model con-

sists of many expression actors that multiply their inputs by linear terms. All mathematical

operations in this model are linear, thus the linear optimization formulation (figure 4.10)

can be used to efficiently find the input values that yield the optimal goal.

This model has a tree structure; with many input nodes and one output node. The large

Table 5.1: List of Example Models

Name of Model Number of Vertices Number of Edges
Acyclic Linear Deterministic 54 53
Cyclic Linear Deterministic 12 17
Acyclic Nonlinear Deterministic 13 12
Cyclic Nonlinear Deterministic 13 12

44

Figure 5.1: Acyclic Linear Deterministic SDF Model: Ptolemy II

number of inputs and small number of outputs provide many feasible solutions to obtain a

user specified goal.

The node labeled goal is the user specified goal node. Technically the goal node is an

intermediate node. However the output node will always have the same value as the goal

node, since it is elicited from a display actor. The display actor shows all input tokens in

a small window on screen to user, when executing the SDF simulation. A display actors

output can be seen in figure 4.14, the results from the simple linear Ptolemy model example

in chapter 4.

45

Figure 5.2: Acyclic Linear Deterministic SDF Model: Graph Structure

5.1.2 Cyclic Linear Deterministic Model

The second linear test case is the cyclic linear deterministic model. The Ptolemy SDF

model is shown in figure 5.3 and the elicited graph structure is shown in figure 5.4. This

model uses a sample delay actor to create a cycle. All functions within the other expression

actors are linear, so the LP (figure 4.10) can be used to solve this model.

This model has three input nodes and one output node. Just as in the acyclic linear

deterministic case, the output node is elicited from a display actor. Here, many expression

actors perform linear functions on their inputs. The expression actors all effect one and

other; input values are magnified rapidly due to the cycle.

5.1.3 Acyclic Nonlinear Deterministic Model

Figures 5.5 and 5.6 show the acyclic nonlinear deterministic Ptolemy model and graph

structure. Many nonlinear functions are inside the actors in this model. In particular, the

46

Figure 5.3: Cyclic Linear Deterministic: Ptolemy II Model

Figure 5.4: Cyclic Linear Deterministic: Graph Structure

47

multiply divide actor produces a difficult function to approximate:
cos(x3)

x54
.

Figure 5.5: Acyclic Nonlinear Deterministic: Ptolemy II Model

Figure 5.6: Acyclic Nonlinear Deterministic: Graph Structure

This test model has four input nodes and two output nodes. The goal node is once again

labeled goal, and it elicited from an expression actor that contains a ternary expression.

The ternary operation selects the largest input, from the output of the add subtract actor

and multiply divide actor, and then outputs that value to the sequence plotter and display

actors.

48

5.1.4 Cyclic Nonlinear Deterministic Model

The final example model is the cyclic nonlinear deterministic model, shown in figures 5.7

and 5.8. This model is simply a modified version of the acyclic nonlinear deterministic

example. The ternary expression has been replaced with an accumulator actor. Note, that

the cycle is not shown in figure 5.8. The current version of graph elicitation software does

not properly represent accumulator actors as creating a cycle, however the mixed integer

optimization model (figure 4.12); does correctly account for the cycle.

Figure 5.7: Cyclic Nonlinear Deterministic: Ptolemy II Model

Figure 5.8: Cyclic Nonlinear Deterministic: Graph II Structure

49

5.2 Experimental Setup

To test the performance of the models, ten runs of each model were conducted with different

goal values each run. Eight samples were taken for each of the linear models. In theory only

two samples should be required to fit a line to a linear function, however the R statistical

software provided inconsistent results when only two points were used. Much more reliable

fits were observed when eight samples were taken, hence their use. Since the cyclic models

are sensitive to iterations, the experiment was set to run for 25 iterations. The outputs of

acyclic models will not change regardless of the number of iterations, so they were only

experimented on for one iteration.

A variety of data is shown for each model; the math program vs simulation deviation

(MP vs Sim Deviation), math program vs goal deviation (MP vs Goal Deviation), time

required for sampling and functions fitting (Experiment Time) and the time required to

solve the math program (Solve Time). MP vs Sim deviation describes the accuracy of the

optimization method, while MP vs Goal Deviation describes the precision of the method. In

the best cases these values will be zero, implying that the optimization correctly predicted

the output of the simulation and the output was very close (or exactly equal) to the user

specified goal. Experiment and solve times show how long the method took to run, the

hope is that run times remain low while accuracy and precision are high. Thus, the best

attainable results are a combination that minimize the values of MP vs Sim Deviation, MP

vs Goal Deviation, Experiment Time, and Solve Time.

All experiments were completed on a computer with a 2.66 GHz Intel core 2 duo pro-

cessor and 4 GB of ram. The machine runs a 32 bit version of Windows XP, which limits

the amount of ram available to only 3.37 GB. All sampling experiments and function fitting

algorithms were written in or called from Java. The Java JDK build 1.6.0 20 was used for

all experiments, and all optimization models were solved using CPLEX 12.1 via concert

for Java. Concert is a CPLEX API that provides methods to build optimization models.

50

The optimization models were solved at CPLEX’s default settings.

5.3 Results

A complete list of data from all experiments run is listed in the Data Table appendix (Ap-

pendix A). The tables in this section are collections of the averages of the results from all

experiments. All four of the performance evaluations are the average of 10 runs; each run

with varied goal values. An example of the detailed results shown in Appendix A can be

seen in table 5.2. Note, the acyclic linear deterministic entry in table 5.3 contains data from

the Averages row of table 5.2. Additionally, note that table 5.2 is identical to table A.2.

Table 5.2: Detailed Acyclic Linear Deterministic Results
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

500.0 500.0 500.0 0.000 0.0 2421.0 16.0 109.0 2296.0
550.0 550.0 550.0 0.000 0.0 2374.0 0.0 109.0 2265.0
600.0 600.0 600.0 0.000 0.0 2407.0 0.0 110.0 2297.0
650.0 650.0 650.0 0.000 0.0 2406.0 0.0 109.0 2297.0
700.0 700.0 700.0 0.000 0.0 2391.0 0.0 110.0 2281.0
750.0 750.0 750.0 0.000 0.0 2390.0 0.0 109.0 2281.0
800.0 800.0 800.0 0.000 0.0 2390.0 0.0 110.0 2280.0
850.0 850.0 850.0 0.000 0.0 2376.0 0.0 110.0 2266.0
900.0 900.0 900.0 0.000 0.0 2422.0 0.0 109.0 2313.0
950.0 950.0 950.0 0.000 0.0 2407.0 0.0 110.0 2297.0

Averages: 0.000 0.0 2398.4 1.6 109.5 2287.3

Table 5.3: Results From Linear Models

Name of Model MP vs Sim
Deviation

MP vs Goal
Deviation

Experiment
Time (ms)

Solve Time
(ms)

Acyclic Linear Deterministic 0.0 0.0 2287.3 1.6
Cyclic Linear Deterministic 0.0 0.0 4662.0 4.8

51

Table 5.4: Acyclic Nonlinear Deterministic Results

Number of
Samples

MP vs Sim
Deviation

MP vs Goal
Deviation

Experiment
Time (ms)

Solve Time
(ms)

R2 = 1

4 0.014 0.2 2498.1 6.3
8 0.003 0.2 2659.6 10.9
16 0.001 0.2 2914.4 31.2
32 0.000 0.2 3536.4 48.5

R2 = 0.9

4 0.011 0.2 2409.6 4.5
8 0.005 0.2 2480.2 6.3
16 0.002 0.5 3391.2 4.8
32 0.002 0.7 2770.6 4.7

R2 = 0.75

4 0.014 0.2 2450.5 6.2
8 0.005 0.2 2601.6 6.4
16 0.005 5.0 3508.2 9.3
32 0.008 0.7 2740.6 1.6

Table 5.5: Cyclic Nonlinear Deterministic Results

Number of
Samples

MP vs Sim
Deviation

MP vs Goal
Deviation

Experiment
Time (ms)

Solve Time
(ms)

R2 = 1

4 0.016 0.0 6199.6 100.0
8 0.027 0.0 9603.4 707.7
16 0.027 0.0 17066.2 12259.1
32 0.028 0.0 30724.5 44949.5

R2 = 0.9

4 0.016 0.0 5810.0 78.2
8 0.026 0.0 7682.2 329.6
16 0.033 0.0 8675.1 114.0
32 0.032 0.0 9490.0 64.3

R2 = 0.75

4 0.016 0.0 5649.5 65.7
8 0.025 0.0 6588.6 79.8
16 0.015 80.3 6963.5 48.4
32 0.032 0.0 8112.5 35.7

52

5.4 Discussion of Results

The results from linear models, shown in table 5.3, are positive. Both models have values

of zero for both deviation metrics! This means that the optimization output was always

exactly the same as the actual simulation output. These models were essentially solved

instantaneously, as noted by the solve times. The experiment time grows as the number of

iterations increase; this makes sense because the experiment must be run for each iteration.

The nonlinear results, shown in tables 5.4 and 5.5 are also positive. Both models show

relatively low deviations; less than 1.4 % for the acyclic case and less than 3.3 % for the

cyclic case. For the acyclic model, the deviation score decreases (becomes better) as the

number of samples taken increases. The cyclic case shows the opposite effect, with the

deviation scores increasing (becoming worse) as more samples are taken.

A likely explanation for this behavior must be that small errors seen from approximating

non-linear functions are compounded over each iteration. So, negligible improvements are

seen from the extra data points provided from additional sampling. A second notable cause

could be the increased complexity of solving larger mixed integer programs. It is also

possible that multiple degenerate solutions exist, and the branch and bound tree terminated

when the MIP gap was below the threshold.

Another important column in the results summary tables is the precision column. Preci-

sion is a measurement of how close the math program was able to get to the user specified

goal. All goals specified to all test cases are achievable within the set input bounds, so the

math program should have always been able to find input values that yielded the requested

output. Precision values less than one in tables 5.4 and 5.5 are the effects of the sampling

algorithm, and varying R2 values. For example, the high accuracy in the cyclic non lin-

ear SDF model with 16 samples and R2 = 0.75 occurred because of low precision. The

exact results can be seen in table A.26; note that the reduced R2 value eliminated feasi-

ble solutions less than 600.7. Thus a high accuracy is observed because the optimization

53

model was frequently accurate, the provided input would always yield 617.2 regardless of

the requested goal.

54

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The work presented in this thesis show that it is possible to use mathematical programming

to optimize graphs that have a special structure. All scenarios listed in table 4.1 can be

handled by the linear and integer programs (figures 4.10 and 4.12). Systems that operate

similarly to SDF models should be able to solved using the methods outlined in this thesis.

A system that operates similarly would be any graph whose vertices output values based

on a function of that nodes inputs. However please note that only graphs elicited from SDF

models have been tested, so this idea is purely speculation.

Unfortunately, the methods implemented in this work are not without fault. The results

of the optimization models are highly dependent on the data provided to them. In many

cases, having even one poorly fit actor can result in totally inaccurate output from the

optimization model.

There are many common situations in SDF models that can easily produce inaccurate

fits when using the current experimental sampling algorithm. Noncontinuous functions will

not be correctly handled using the current sampling algorithm and mathematical program.

Even linear functions with multiple variables will not be fit accurately unless a special

sampling method is used! Many models pass an initial value into sample delay actors, such

as an initial population or an initial inventory. A special sampling experiment is required

if one wishes to optimize these initial values. The information abstraction methods should

55

be targeted first for improvement.

Although the methods presented in this thesis are not without fault, the results are over-

whelmingly positive! Many scenarios can be optimized using the outlined optimization

models, and the sampling experiment applies to a wide variety of situations. The exam-

ples and testing were completed in Java using Ptolemy as the simulation software, but the

methods outlined in this work could easily be applied to other domains.

6.2 Future Work

There are many different areas of the methods outlined in this work that could be improved

in the future. Some of the potential improvements are listed below.

One possible improvement could be creating information abstraction methods specific

to a particular simulation domain or programming language. By limiting the scope of the

experiments, code could be written to abstract the necessary information from efficiently

and accurately. The obvious downside to this is the high restriction placed on the types of

models that can be solved. A possible mitigation could be to create a hybrid approach where

many actors have specific code written to abstract information correctly, and experimental

sampling is relied upon to weight nodes or edges that are not supported.

The current piecewise linear fitting algorithm, in algorithm 4.1, requires the user to input

a minimum acceptable R2 value. The purpose of this value is to allow the user to adjust the

quality of to the functions being experimented on The major downside to this approach is

that piecewise functions are fit only to the sampled data, since the underlying functions are

unknown. If the functions inside of actors in the simulation model were known, it is likely

that better approximations could be generated. This may significantly improve the results

of the cyclic nonlinear case.

In this work all SDF input values are treated as real numbers, however in many real

life problems certain inputs must be integers. One simple way to force an input to take an

56

integer value, would be to set the sampling range of these inputs to only test integers and

then require the relevant λ variables to be binary instead of real. This method could yield

higher efficiency than just declaring the input to be integer, especially if the input range is

broad and the modeler is not concerned with many small increments of integers.

Consider instances where the input must be an integer that is a multiple of some quantity.

Perhaps the input sets an initial inventory, and orders can only be placed in increments of

10 (e.g. order 10 or 20 or 30...). Situations like this should gain efficiency in the branch

and bound if the “binary λ” method was used; certainly when compared to defining that

input over the complete integer range of 10 through 30.

Another possible improvement could come from sampling at a “higher level”. If a graph

elicitation method was written to group actors into aggregate (or composite) nodes, it is pos-

sible that noisy functions could have less effect in the optimization model. Unfortunately,

it is also likely that a more complicated sampling experiment would be required to effec-

tively implement this idea. In situations where the aggregate node would have many inputs,

more complex algorithms may be necessary to ensure meaningful input combinations are

sampled.

One important area that has not been considered in any of the test cases in this work

are stochastic functions. Most simulations include stochastic functions, as many simula-

tions are used to analyze a system subject to randomness! If a simulation model has many

stochastic functions, it is possible that methods from robust optimization could be incorpo-

rated into the existing optimization models.

Robust optimization is a technique used to deal with uncertain data in mathematical

modeling [4]. By specifying an uncertainty set for the constraints of the problem, one can

produce solutions that are much less sensitive to minor perturbations in data. This method-

ology also avoids the overly conservative results of worst-case estimates of uncertain data.

An extension of robust optimization useful for this work would be the application of

57

robust optimization methods to remove the noise generated from stochastic variables in the

simulation. A key development has shown that robust methods can be used even when

the stochastic data is not normally distributed [6] . This should allow the perturbation of

uncertainty sets regardless of the distribution of the stochastic variable.

Finally, it could be possible to make the optimization models solve more efficiently by

taking advantage of the underlying graph structure. In general, graph based linear programs

can be solved much more quickly than standard LP’s since special algorithms can be used.

The optimization models in this work do not exploit the graph structure, so it is possible

that additional efficiencies can be realized by modifying some of the constraints. The

graph structure could be used to remove constraints from the model that include nodes

which are irrelevant to the goals. Getting rid of unnecessary constraints and variables from

the optimization model will result in solutions being found more quickly. Determining

important nodes could be done strictly or loosely, either by relying 100 % on the graph

structure or by using factor screening techniques [20].

58

Bibliography

[1] F. Azadivar. A tutorial on simulation optimization. In Proceedings of the 24th confer-
ence on Winter simulation, pages 198–204. ACM, 1992.

[2] E.M.L. Beale. Advanced algorithmic features for general mathematical programming
systems. Integer and Nonlinear Programming, American Elsevier Publishing Com-
pany, New York, pages 119–137, 1970.

[3] E.M.L. Beale and J.A. Tomlin. Special facilities in a general mathematical program-
ming system for non-convex problems using ordered sets of variables. OR, 69:447–
454, 1970.

[4] A. Ben-Tal and A. Nemirovski. Robust optimization–methodology and applications.
Mathematical Programming, 92(3):453–480, 2002.

[5] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng. Heterogeneous
concurrent modeling and design in Java (Volume 1: Introduction to Ptolemy II). EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2008-28, Apr,
2008.

[6] X. Chen, M. Sim, and P. Sun. A robust optimization perspective on stochastic pro-
gramming. Operations Research, 55(6):1058, 2007.

[7] G. B. Dantzig. On the significance of solving linear programs with some integer
variables. Econometrica, 28:30–44, 1960.

[8] J. J. DiStefano, A. R. Stubberud, and I. J. Williams. Schaums outline series of theory
and problems of feedback and control systems. McGraw-Hill, 1990.

[9] R. Fourer and D.M. Gay. Expressing special structures in an algebraic modeling
language for mathematical programming. ORSA Journal on Computing 7, pages 166–
190, 1995.

[10] M.C. Fu. Optimization for simulation: Theory vs. practice. INFORMS Journal on
Computing, 14(3):192–215, 2002.

59

[11] JA Joines, RR Barton, K. Kang, PA Fishwick, J.R. Swisher, and S.H. Jacobson. A
Survey Of Simulation Optimization Techniques And Procedures. 2000.

[12] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987.

[13] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies
for mixed integer programming. INFORMS J. Comput., 11(2):173–187, 1999.

[14] A. Matta. Simulation optimization with mathematical programming representation of
discrete event systems. In Proceedings of the 40th Conference on Winter Simulation,
pages 1393–1400. Winter Simulation Conference, 2008.

[15] D.C. Montgomery, E.A. Peck, G.G. Vining, and J. Vining. Introduction to linear
regression analysis. Wiley New York, 2006.

[16] S. Olafsson and J. Kim. Simulation optimization. In Proceedings of the 34th confer-
ence on Winter simulation, pages 79–84. Winter Simulation Conference, 2002.

[17] R.L. Rardin. Optimization in operations research. Prentice Hall, 2000.

[18] L.W. Schruben. Mathematical programming models of discrete event system dynam-
ics. In Proceedings of the 32nd conference on Winter simulation, pages 381–385.
Society for Computer Simulation International, 2000.

[19] E. Stinstra and D. Den Hertog. Robust optimization using computer experiments.
European Journal of Operational Research, 191(3):816–837, 2008.

[20] G. Tauer. A graph-based factor screening method for synchronous data flow simula-
tion models. 2009.

[21] W. Venables and D. M. Smith. An Introduction to R. 2009.

[22] L.A. Wolsey. Integer programming. Wiley New York, 1998.

60

Appendix A

Data Tables

This appendix lists all data collected during the solution evaluation phase of the methodol-

ogy, for each test case. A description of the column headings in the data tables is provided

in table A.1.

Table A.1: Description of Data Table Columns
Goal Value Desired output value.

Math Program Output Expected simulation output reported by the optimization model.
Simulation Output Actual output from the simulation model with the predicted inputs.

MP vs Sim Deviation |1− Simulation Output
Math Program Output

|

MP vs Goal Deviation |(Math Program Output)− (Simulation Output)|
Total Time Sum of Solve Time, Model Prep Time, and Experiment Time.
Solve Time Time (ms) required to solve the optimization model.

Model Prep Time Time (ms) required to prepare sets and data parameters for the optimiza-
tion model.

Experiment Time Time (ms) required to elicit graph from SDF model and perform all
experimental sampling and fitting (including the piecewise linear fitting
algorithm).

A.1 Acyclic Linear Deterministic Model

These are the results from the acyclic linear deterministic SDF model.

Simple linear models should all exhibit the same behavior as the results shown in table

A.2; low deviations and low run time. The average run time of 2398.4 ms is very fast, the

1.6 ms average solve time is essentially instantaneous.

61

Table A.2: Acyclic Linear Deterministic Results: R2 = 1, Samples = 8, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

500.0 500.0 500.0 0.000 0.0 2421.0 16.0 109.0 2296.0
550.0 550.0 550.0 0.000 0.0 2374.0 0.0 109.0 2265.0
600.0 600.0 600.0 0.000 0.0 2407.0 0.0 110.0 2297.0
650.0 650.0 650.0 0.000 0.0 2406.0 0.0 109.0 2297.0
700.0 700.0 700.0 0.000 0.0 2391.0 0.0 110.0 2281.0
750.0 750.0 750.0 0.000 0.0 2390.0 0.0 109.0 2281.0
800.0 800.0 800.0 0.000 0.0 2390.0 0.0 110.0 2280.0
850.0 850.0 850.0 0.000 0.0 2376.0 0.0 110.0 2266.0
900.0 900.0 900.0 0.000 0.0 2422.0 0.0 109.0 2313.0
950.0 950.0 950.0 0.000 0.0 2407.0 0.0 110.0 2297.0

Averages: 0.000 0.0 2398.4 1.6 109.5 2287.3

A.2 Cyclic Linear Deterministic Model

These are the results from the cyclic linear deterministic SDF model.

Table A.3: Cyclic Linear Deterministic Results: R2 = 1, Samples = 8, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

500.0 500.0 500.0 0.000 0.0 4485.0 0.0 125.0 4360.0
550.0 550.0 550.0 0.000 0.0 5500.0 0.0 156.0 5344.0
600.0 600.0 600.0 0.000 0.0 5422.0 0.0 140.0 5282.0
650.0 650.0 650.0 0.000 0.0 5329.0 16.0 125.0 5188.0
700.0 700.0 700.0 0.000 0.0 4531.0 16.0 109.0 4406.0
750.0 750.0 750.0 0.000 0.0 4584.0 0.0 125.0 4459.0
800.0 800.0 800.0 0.000 0.0 4538.0 0.0 125.0 4413.0
850.0 850.0 850.0 0.000 0.0 4522.0 0.0 125.0 4397.0
900.0 900.0 900.0 0.000 0.0 4503.0 16.0 109.0 4378.0
950.0 950.0 950.0 0.000 0.0 4518.0 0.0 125.0 4393.0

Averages: 0.000 0.0 4793.2 4.8 126.4 4662.0

The results of the seconds linear test case are just as positive as the first. Here, the

deviation scores are zero and the run time is low. Even though this model has been run for

25 iterations, there is a minimal run time penalty.

62

A.3 Acyclic Nonlinear Deterministic Model

These are the results from the acyclic nonlinear deterministic SDF model.

Table A.4: Acyclic Nonlinear Deterministic Results: R2 = 1, Samples = 4, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 5.8 5.8 0.000 0.8 2968.0 0.0 140.0 2828.0
10.0 10.0 9.9 0.007 0.0 2564.0 0.0 109.0 2455.0
15.0 15.0 14.4 0.043 0.0 2642.0 16.0 156.0 2470.0
20.0 20.0 19.6 0.018 0.0 2564.0 16.0 109.0 2439.0
25.0 25.0 24.5 0.020 0.0 2548.0 0.0 109.0 2439.0
30.0 30.0 29.4 0.020 0.0 2579.0 15.0 110.0 2454.0
35.0 35.0 34.4 0.017 0.0 2642.0 0.0 157.0 2485.0
40.0 40.0 39.5 0.012 0.0 2596.0 16.0 110.0 2470.0
45.0 45.0 44.7 0.006 0.0 2611.0 0.0 109.0 2502.0
50.0 49.2 49.2 0.000 0.8 2595.0 0.0 156.0 2439.0

Averages: 0.014 0.2 2630.9 6.3 126.5 2498.1

Table A.5: Acyclic Nonlinear Deterministic Results: R2 = 1, Samples = 8, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 6.0 6.0 0.000 1.0 4034.0 0.0 1329.0 2705.0
10.0 10.0 10.1 0.010 0.0 2799.0 16.0 109.0 2674.0
15.0 15.0 15.1 0.009 0.0 2799.0 16.0 110.0 2673.0
20.0 20.0 20.1 0.005 0.0 2798.0 0.0 125.0 2673.0
25.0 25.0 25.0 0.000 0.0 2736.0 15.0 110.0 2611.0
30.0 30.0 30.0 0.001 0.0 2783.0 16.0 109.0 2658.0
35.0 35.0 34.9 0.002 0.0 2752.0 15.0 110.0 2627.0
40.0 40.0 39.9 0.002 0.0 2815.0 16.0 109.0 2690.0
45.0 45.0 44.8 0.004 0.0 2815.0 0.0 125.0 2690.0
50.0 49.1 49.1 0.000 0.9 2720.0 15.0 110.0 2595.0

Averages: 0.003 0.2 2905.1 10.9 234.6 2659.6

With R2 = 1 (figures A.4 through A.7), the results are predictable for the acyclic nonlin-

ear deterministic case. As the number of samples increase, the deviations decrease. Unfor-

tunately, the run times of the models with more samples are much higher than those with

fewer. The solve time is significantly higher in these cases as well; this is most attributable

to the increase in binary variables in the math program.

63

Table A.6: Acyclic Nonlinear Deterministic Results: R2 = 1, Samples = 16, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 6.0 6.0 0.000 1.0 3033.0 16.0 109.0 2908.0
10.0 10.0 10.0 0.002 0.0 3064.0 31.0 109.0 2924.0
15.0 15.0 15.0 0.002 0.0 3080.0 31.0 125.0 2924.0
20.0 20.0 20.0 0.000 0.0 3049.0 16.0 109.0 2924.0
25.0 25.0 25.0 0.000 0.0 3064.0 31.0 110.0 2923.0
30.0 30.0 30.0 0.000 0.0 3112.0 47.0 110.0 2955.0
35.0 35.0 35.0 0.000 0.0 3033.0 31.0 125.0 2877.0
40.0 40.0 40.0 0.000 0.0 3080.0 47.0 156.0 2877.0
45.0 45.0 45.0 0.001 0.0 3049.0 47.0 109.0 2893.0
50.0 49.0 49.0 0.000 1.0 3064.0 15.0 110.0 2939.0

Averages: 0.001 0.2 3062.8 31.2 117.2 2914.4

Table A.7: Acyclic Nonlinear Deterministic Results: R2 = 1, Samples = 32, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 6.0 6.0 0.000 1.0 3643.0 16.0 109.0 3518.0
10.0 10.0 10.0 0.000 0.0 3690.0 47.0 110.0 3533.0
15.0 15.0 15.0 0.000 0.0 3690.0 63.0 109.0 3518.0
20.0 20.0 20.0 0.000 0.0 3690.0 47.0 125.0 3518.0
25.0 25.0 25.0 0.000 0.0 3705.0 62.0 110.0 3533.0
30.0 30.0 30.0 0.000 0.0 3705.0 62.0 126.0 3517.0
35.0 35.0 35.0 0.000 0.0 3721.0 63.0 125.0 3533.0
40.0 40.0 40.0 0.000 0.0 3674.0 47.0 125.0 3502.0
45.0 45.0 45.0 0.000 0.0 3721.0 63.0 109.0 3549.0
50.0 49.0 49.0 0.000 1.0 3768.0 15.0 110.0 3643.0

Averages: 0.000 0.2 3700.7 48.5 115.8 3536.4

Reducing the R2 value from 1 to 0.9 (tables A.8 through A.11) has an effect on the

solution quality. Run time is reduced at the expense of deviation! Since fewer lines are fit

to the output of nodes, certain sampled points are excluded from the regression line. These

excluded points increase the MP vs goal deviation values.

Further reducing the R2 value from 0.9 to 0.75 (tables A.12 through A.15) continues

the observed trends. Deviations are increased while lower run times are observed. This is

because the piecewise fitting algorithm completes in fewer iterations by fitting less accurate

lines to the non linear output. Having less breakpoints in the piecewise functions require

64

Table A.8: Acyclic Nonlinear Deterministic Results: R2 = 0.9, Samples = 4, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 5.8 5.8 0.000 0.8 2562.0 0.0 109.0 2453.0
10.0 10.0 9.9 0.007 0.0 2563.0 0.0 110.0 2453.0
15.0 15.0 14.8 0.013 0.0 2532.0 0.0 156.0 2376.0
20.0 20.0 19.6 0.018 0.0 2531.0 0.0 156.0 2375.0
25.0 25.0 24.5 0.020 0.0 2578.0 15.0 157.0 2406.0
30.0 30.0 29.4 0.020 0.0 2531.0 0.0 156.0 2375.0
35.0 35.0 34.4 0.017 0.0 2563.0 0.0 156.0 2407.0
40.0 40.0 39.5 0.012 0.0 2531.0 15.0 110.0 2406.0
45.0 45.0 44.7 0.006 0.0 2547.0 15.0 141.0 2391.0
50.0 49.2 49.2 0.000 0.8 2563.0 0.0 109.0 2454.0

Averages: 0.011 0.2 2550.1 4.5 136.0 2409.6

Table A.9: Acyclic Nonlinear Deterministic Results: R2 = 0.9, Samples = 8, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 6.0 6.0 0.000 1.0 2657.0 16.0 141.0 2500.0
10.0 10.0 10.2 0.016 0.0 2656.0 15.0 188.0 2453.0
15.0 15.0 15.2 0.012 0.0 2610.0 0.0 156.0 2454.0
20.0 20.0 20.0 0.002 0.0 2626.0 16.0 140.0 2470.0
25.0 25.0 25.1 0.005 0.0 2641.0 0.0 156.0 2485.0
30.0 30.0 29.6 0.014 0.0 2610.0 16.0 109.0 2485.0
35.0 35.0 35.0 0.000 0.0 2641.0 0.0 156.0 2485.0
40.0 40.0 39.9 0.001 0.0 2610.0 0.0 156.0 2454.0
45.0 45.0 44.9 0.001 0.0 2626.0 0.0 110.0 2516.0
50.0 49.1 49.1 0.000 0.9 2609.0 0.0 109.0 2500.0

Averages: 0.005 0.2 2628.6 6.3 142.1 2480.2

fewer binary variables in the math programs, yielding faster solve times.

65

Table A.10: Acyclic Nonlinear Deterministic Results: R2 = 0.9, Samples = 16, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 8.4 8.4 0.000 3.4 11300.0 16.0 328.0 10956.0
10.0 10.0 10.0 0.003 0.0 2672.0 0.0 109.0 2563.0
15.0 15.0 15.1 0.004 0.0 2813.0 0.0 125.0 2688.0
20.0 20.0 20.0 0.002 0.0 2657.0 0.0 110.0 2547.0
25.0 25.0 25.0 0.001 0.0 2626.0 0.0 110.0 2516.0
30.0 30.0 29.9 0.003 0.0 2641.0 16.0 109.0 2516.0
35.0 35.0 34.9 0.004 0.0 2626.0 0.0 110.0 2516.0
40.0 40.0 39.9 0.004 0.0 2461.0 0.0 110.0 2531.0
45.0 45.0 44.9 0.001 0.0 2657.0 16.0 109.0 2532.0
50.0 48.3 48.3 0.000 1.7 2656.0 0.0 109.0 2547.0

Averages: 0.002 0.5 3510.9 4.8 132.9 3391.2

Table A.11: Acyclic Nonlinear Deterministic Results: R2 = 0.9, Samples = 32, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 10.2 10.2 0.000 5.2 2828.0 15.0 110.0 2703.0
10.0 10.2 10.2 0.000 0.2 2719.0 0.0 109.0 2610.0
15.0 15.0 15.0 0.001 0.0 2735.0 0.0 110.0 2625.0
20.0 20.0 20.0 0.001 0.0 2719.0 0.0 110.0 2609.0
25.0 25.0 24.9 0.003 0.0 2751.0 16.0 109.0 2626.0
30.0 30.0 29.9 0.005 0.0 2735.0 0.0 110.0 2625.0
35.0 35.0 34.8 0.005 0.0 2735.0 16.0 109.0 2610.0
40.0 40.0 39.8 0.005 0.0 3329.0 0.0 141.0 3188.0
45.0 45.0 44.9 0.002 0.0 3594.0 0.0 125.0 3469.0
50.0 48.7 48.7 0.000 1.3 2451.0 0.0 110.0 2641.0

Averages: 0.002 0.7 2859.6 4.7 114.3 2770.6

66

Table A.12: Acyclic Nonlinear Deterministic Results: R2 = 0.75, Samples = 4, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 5.8 5.8 0.000 0.8 2532.0 0.0 125.0 2407.0
10.0 10.0 9.9 0.007 0.0 2563.0 16.0 109.0 2438.0
15.0 15.0 15.6 0.039 0.0 2563.0 15.0 157.0 2391.0
20.0 20.0 20.7 0.034 0.0 2844.0 15.0 110.0 2719.0
25.0 25.0 25.7 0.026 0.0 2563.0 0.0 109.0 2454.0
30.0 30.0 30.5 0.017 0.0 2532.0 0.0 110.0 2422.0
35.0 35.0 35.3 0.009 0.0 2563.0 0.0 109.0 2454.0
40.0 40.0 40.1 0.003 0.0 2563.0 0.0 157.0 2406.0
45.0 45.0 44.7 0.006 0.0 2579.0 16.0 156.0 2407.0
50.0 49.2 49.2 0.000 0.8 2563.0 0.0 156.0 2407.0

Averages: 0.014 0.2 2586.5 6.2 129.8 2450.5

Table A.13: Acyclic Nonlinear Deterministic Results: R2 = 0.75, Samples = 8, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 6.0 6.0 0.000 1.0 3297.0 0.0 140.0 3157.0
10.0 10.0 10.2 0.016 0.0 3204.0 0.0 188.0 3016.0
15.0 15.0 15.2 0.012 0.0 2626.0 16.0 109.0 2501.0
20.0 20.0 20.0 0.002 0.0 2626.0 0.0 125.0 2501.0
25.0 25.0 24.8 0.008 0.0 2626.0 0.0 157.0 2469.0
30.0 30.0 29.6 0.014 0.0 2594.0 16.0 109.0 2469.0
35.0 35.0 35.0 0.000 0.0 2610.0 0.0 157.0 2453.0
40.0 40.0 39.9 0.001 0.0 2625.0 16.0 156.0 2453.0
45.0 45.0 44.9 0.001 0.0 2625.0 0.0 156.0 2496.0
50.0 49.1 49.1 0.000 0.9 2626.0 16.0 109.0 2501.0

Averages: 0.005 0.2 2745.9 6.4 140.6 2601.6

67

Table A.14: Acyclic Nonlinear Deterministic Results: R2 = 0.75, Samples = 16, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 24.6 24.7 0.004 19.6 7407.0 0.0 172.0 7235.0
10.0 24.6 24.7 0.004 14.6 2875.0 0.0 109.0 2766.0
15.0 24.6 24.7 0.004 9.6 3656.0 15.0 125.0 3516.0
20.0 24.6 24.7 0.004 4.6 3234.0 0.0 140.0 3094.0
25.0 25.0 25.1 0.003 0.0 3297.0 16.0 125.0 3156.0
30.0 30.0 29.7 0.008 0.0 3266.0 0.0 125.0 3141.0
35.0 35.0 34.5 0.013 0.0 3203.0 15.0 125.0 3063.0
40.0 40.0 39.6 0.010 0.0 3282.0 16.0 140.0 3126.0
45.0 45.0 44.9 0.001 0.0 3172.0 15.0 125.0 3032.0
50.0 48.3 48.3 0.000 1.7 3094.0 16.0 125.0 2953.0

Averages: 0.005 5.0 3648.6 9.3 131.1 3508.2

Table A.15: Acyclic Nonlinear Deterministic Results: R2 = 0.75, Samples = 32, Iterations = 1
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

5.0 10.2 10.2 0.000 5.2 2721.0 0.0 110.0 2611.0
10.0 10.2 10.2 0.000 0.2 2674.0 0.0 110.0 2564.0
15.0 15.0 15.4 0.028 0.0 2721.0 0.0 109.0 2612.0
20.0 20.0 20.5 0.025 0.0 2752.0 0.0 109.0 2643.0
25.0 25.0 25.3 0.011 0.0 3112.0 0.0 125.0 2987.0
30.0 30.0 29.9 0.003 0.0 2705.0 0.0 110.0 2595.0
35.0 35.0 35.1 0.004 0.0 2658.0 0.0 109.0 2549.0
40.0 40.0 39.6 0.010 0.0 2705.0 0.0 110.0 2595.0
45.0 45.0 44.9 0.001 0.0 3406.0 0.0 109.0 3297.0
50.0 48.7 48.7 0.000 1.3 3078.0 16.0 109.0 2953.0

Averages: 0.008 0.7 2853.2 1.6 111.0 2740.6

68

A.4 Cyclic Nonlinear Deterministic Model

These are the results from the cyclic nonlinear deterministic SDF model.

Table A.16: Cyclic Nonlinear Deterministic Results: R2 = 1, Samples = 4, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 266.5 0.066 0.0 6827.0 156.0 141.0 6530.0
350.0 350.0 362.0 0.034 0.0 6358.0 94.0 141.0 6123.0
450.0 450.0 456.9 0.015 0.0 6452.0 141.0 140.0 6171.0
550.0 550.0 552.0 0.004 0.0 6452.0 140.0 203.0 6109.0
650.0 650.0 647.6 0.004 0.0 6452.0 94.0 140.0 6218.0
750.0 750.0 744.2 0.008 0.0 6313.0 94.0 141.0 6078.0
850.0 850.0 865.9 0.019 0.0 6344.0 78.0 141.0 6125.0
950.0 950.0 960.0 0.011 0.0 6328.0 78.0 140.0 6110.0
1050.0 1050.0 1043.1 0.007 0.0 6438.0 63.0 203.0 6172.0
1150.0 1150.0 1146.3 0.003 0.0 6578.0 62.0 156.0 6360.0

Averages: 0.017 0.0 6454.2 100.0 154.6 6199.6

Table A.17: Cyclic Nonlinear Deterministic Results: R2 = 1, Samples = 8, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 274.4 0.097 0.0 10078.0 281.0 156.0 9641.0
350.0 350.0 371.8 0.062 0.0 10484.0 703.0 156.0 9625.0
450.0 450.0 469.0 0.042 0.0 10391.0 593.0 157.0 9641.0
550.0 550.0 564.1 0.026 0.0 10126.0 422.0 156.0 9548.0
650.0 650.0 661.8 0.018 0.0 10390.0 609.0 156.0 9625.0
750.0 750.0 759.0 0.012 0.0 10344.0 625.0 156.0 9563.0
850.0 850.0 856.6 0.008 0.0 10469.0 782.0 218.0 9469.0
950.0 950.0 954.5 0.005 0.0 10516.0 782.0 156.0 9578.0
1050.0 1050.0 1051.4 0.001 0.0 11547.0 1562.0 141.0 9844.0
1150.0 1150.0 1147.8 0.002 0.0 10437.0 718.0 129.0 9500.0

Averages: 0.027 0.0 10478.2 707.7 158.1 9603.4

The cyclic nonlinear deterministic (CND) model withR2 = 1 (tables A.16 through A.19)

shows results with the acyclic nonlinear deterministic (AND) example model. Since the

CND model was executed for 25 iterations, all the run times are longer than the AND

model. The experiment and optimization times become significantly longer as more sam-

ple points are taken. Also, the MP vs simulation deviation appears best when the fewest

69

Table A.18: Cyclic Nonlinear Deterministic Results: R2 = 1, Samples = 16, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 272.3 0.089 0.0 19891.0 3297.0 172.0 16423.0
350.0 350.0 370.5 0.059 0.0 32105.0 15514.0 172.0 16419.0
450.0 450.0 467.7 0.039 0.0 21810.0 5249.0 204.0 16357.0
550.0 550.0 565.5 0.028 0.0 23356.0 6733.0 235.0 16388.0
650.0 650.0 663.0 0.020 0.0 22200.0 5546.0 172.0 16482.0
750.0 750.0 760.7 0.014 0.0 21937.0 5485.0 156.0 16296.0
850.0 850.0 858.1 0.010 0.0 20969.0 4375.0 250.0 16344.0
950.0 950.0 956.0 0.006 0.0 38359.0 21953.0 250.0 16156.0
1050.0 1050.0 1053.4 0.003 0.0 50126.0 28860.0 297.0 20969.0
1150.0 1150.0 1151.2 0.001 0.0 44657.0 25579.0 250.0 18828.0

Averages: 0.027 0.0 29541.0 12259.1 215.8 17066.2

Table A.19: Cyclic Nonlinear Deterministic Results: R2 = 1, Samples = 32, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 272.3 0.089 0.0 43439.0 12500.0 188.0 30751.0
350.0 350.0 369.9 0.057 0.0 84175.0 53893.0 265.0 30017.0
450.0 450.0 467.7 0.039 0.0 54315.0 23392.0 203.0 30720.0
550.0 550.0 565.4 0.028 0.0 90972.0 60455.0 266.0 30251.0
650.0 650.0 663.1 0.020 0.0 99815.0 64142.0 203.0 35470.0
750.0 750.0 760.8 0.014 0.0 69877.0 40126.0 188.0 29563.0
850.0 850.0 867.6 0.021 0.0 73080.0 42985.0 250.0 29845.0
950.0 950.0 956.1 0.006 0.0 68126.0 37704.0 188.0 30234.0
1050.0 1050.0 1053.8 0.004 0.0 102959.0 71905.0 188.0 30866.0
1150.0 1150.0 1151.6 0.001 0.0 72109.0 42393.0 188.0 29528.0

Averages: 0.028 0.0 75886.7 44949.5 212.7 30724.5

number of samples are taken. This is because the same sample points are not taken with

each increment of additional sample points. This example shows why information about

the function inside an actor would be useful, as a better fit could be possible (the potential

to yield lower deviations).

Just as in the AND model, reducing theR2 value yields higher deviations while decreas-

ing run times.

70

Table A.20: Cyclic Nonlinear Deterministic Results: R2 = 0.9, Samples = 4, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 266.5 0.066 0.0 6110.0 78.0 141.0 5891.0
350.0 350.0 362.0 0.034 0.0 6001.0 94.0 141.0 5766.0
450.0 450.0 456.9 0.015 0.0 6017.0 94.0 141.0 5782.0
550.0 550.0 552.0 0.004 0.0 6048.0 109.0 157.0 5782.0
650.0 650.0 647.6 0.004 0.0 6017.0 110.0 141.0 5766.0
750.0 750.0 744.2 0.008 0.0 6032.0 62.0 141.0 5829.0
850.0 850.0 842.1 0.009 0.0 6095.0 63.0 156.0 5876.0
950.0 950.0 941.7 0.009 0.0 6001.0 63.0 140.0 5798.0
1050.0 1050.0 1043.1 0.007 0.0 6032.0 62.0 141.0 5829.0
1150.0 1150.0 1146.3 0.003 0.0 5985.0 47.0 157.0 5781.0

Averages: 0.016 0.0 6033.8 78.2 145.6 5810.0

Table A.21: Cyclic Nonlinear Deterministic Results: R2 = 0.9, Samples = 8, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 274.6 0.098 0.0 8001.0 187.0 156.0 7658.0
350.0 350.0 372.7 0.065 0.0 8079.0 297.0 219.0 7563.0
450.0 450.0 468.1 0.040 0.0 8079.0 250.0 141.0 7688.0
550.0 550.0 561.9 0.022 0.0 8172.0 406.0 219.0 7547.0
650.0 650.0 655.1 0.008 0.0 8173.0 344.0 203.0 7626.0
750.0 750.0 748.9 0.001 0.0 8173.0 375.0 203.0 7595.0
850.0 850.0 844.5 0.007 0.0 8782.0 343.0 157.0 8282.0
950.0 950.0 942.6 0.008 0.0 8251.0 437.0 219.0 7595.0
1050.0 1050.0 1043.8 0.006 0.0 8173.0 422.0 140.0 7611.0
1150.0 1150.0 1148.4 0.001 0.0 8033.0 235.0 141.0 7657.0

Averages: 0.026 0.0 8191.6 329.6 179.8 7682.2

71

Table A.22: Cyclic Nonlinear Deterministic Results: R2 = 0.9, Samples = 16, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 277.4 0.110 0.0 8751.0 156.0 156.0 8439.0
350.0 350.0 379.5 0.084 0.0 8855.0 78.0 219.0 8558.0
450.0 450.0 476.9 0.060 0.0 8714.0 124.0 157.0 8433.0
550.0 550.0 570.6 0.038 0.0 8901.0 156.0 156.0 8589.0
650.0 650.0 662.3 0.019 0.0 10839.0 110.0 187.0 10542.0
750.0 750.0 753.8 0.005 0.0 8698.0 109.0 140.0 8449.0
850.0 850.0 847.4 0.003 0.0 8667.0 78.0 203.0 8386.0
950.0 950.0 944.6 0.006 0.0 8731.0 125.0 218.0 8388.0
1050.0 1050.0 1046.5 0.003 0.0 8749.0 94.0 140.0 8515.0
1150.0 1150.0 1150.2 0.000 0.0 8702.0 110.0 140.0 8452.0

Averages: 0.033 0.0 8960.7 114.0 171.6 8675.1

Table A.23: Cyclic Nonlinear Deterministic Results: R2 = 0.9, Samples = 32, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 273.9 0.096 0.0 9610.0 47.0 141.0 9422.0
350.0 350.0 380.0 0.086 0.0 9625.0 63.0 156.0 9406.0
450.0 450.0 480.4 0.068 0.0 9704.0 63.0 156.0 9485.0
550.0 550.0 575.6 0.046 0.0 9641.0 63.0 140.0 9438.0
650.0 650.0 657.4 0.011 0.0 9672.0 78.0 141.0 9453.0
750.0 750.0 753.1 0.004 0.0 9686.0 63.0 156.0 9467.0
850.0 850.0 849.3 0.001 0.0 9717.0 78.0 156.0 9483.0
950.0 950.0 945.1 0.005 0.0 9655.0 47.0 156.0 9452.0
1050.0 1050.0 1046.3 0.004 0.0 9655.0 47.0 156.0 9452.0
1150.0 1150.0 1149.7 0.000 0.0 10077.0 94.0 141.0 9842.0

Averages: 0.032 0.0 9704.2 64.3 149.9 9490.0

72

Table A.24: Cyclic Nonlinear Deterministic Results: R2 = 0.75, Samples = 4, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 266.5 0.066 0.0 6454.0 62.0 157.0 6235.0
350.0 350.0 361.9 0.034 0.0 5783.0 63.0 140.0 5580.0
450.0 450.0 455.8 0.013 0.0 5782.0 78.0 140.0 5564.0
550.0 550.0 552.0 0.004 0.0 5783.0 63.0 140.0 5580.0
650.0 650.0 647.6 0.004 0.0 5797.0 78.0 140.0 5579.0
750.0 750.0 744.2 0.008 0.0 5907.0 78.0 203.0 5626.0
850.0 850.0 842.1 0.009 0.0 5844.0 62.0 219.0 5563.0
950.0 950.0 941.7 0.009 0.0 6954.0 62.0 1282.0 5610.0
1050.0 1050.0 1043.1 0.007 0.0 5861.0 79.0 203.0 5579.0
1150.0 1150.0 1146.3 0.003 0.0 5767.0 32.0 156.0 5579.0

Averages: 0.016 0.0 5993.2 65.7 278.0 5649.5

Table A.25: Cyclic Nonlinear Deterministic Results: R2 = 0.75, Samples = 8, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 274.6 0.098 0.0 6830.0 63.0 219.0 6548.0
350.0 350.0 372.6 0.065 0.0 6876.0 78.0 141.0 6657.0
450.0 450.0 468.1 0.040 0.0 6798.0 63.0 156.0 6579.0
550.0 550.0 561.9 0.022 0.0 6813.0 62.0 203.0 6548.0
650.0 650.0 654.0 0.006 0.0 6891.0 62.0 219.0 6610.0
750.0 750.0 749.2 0.001 0.0 6845.0 63.0 230.0 6579.0
850.0 850.0 844.5 0.007 0.0 6876.0 78.0 203.0 6595.0
950.0 950.0 942.6 0.008 0.0 6845.0 94.0 172.0 6579.0
1050.0 1050.0 1043.8 0.006 0.0 6908.0 78.0 219.0 6611.0
1150.0 1150.0 1148.4 0.001 0.0 6877.0 157.0 140.0 6580.0

Averages: 0.025 0.0 6855.9 79.8 190.2 6588.6

73

Table A.26: Cyclic Nonlinear Deterministic Results: R2 = 0.75, Samples = 16, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 600.7 617.2 0.028 350.7 7860.0 47.0 156.0 7657.0
350.0 600.7 617.2 0.028 250.7 7048.0 47.0 156.0 6845.0
450.0 600.7 617.2 0.028 150.7 7111.0 47.0 141.0 6923.0
550.0 600.7 617.2 0.028 50.7 7079.0 47.0 141.0 6891.0
650.0 650.0 662.3 0.019 0.0 7141.0 62.0 141.0 6938.0
750.0 750.0 753.8 0.005 0.0 7095.0 62.0 141.0 6892.0
850.0 850.0 847.4 0.003 0.0 7017.0 32.0 140.0 6845.0
950.0 950.0 944.6 0.006 0.0 7048.0 31.0 141.0 6876.0
1050.0 1050.0 1046.5 0.003 0.0 7111.0 47.0 141.0 6923.0
1150.0 1150.0 1148.4 0.001 0.0 7048.0 62.0 141.0 6845.0

Averages: 0.015 80.3 7155.8 48.4 143.9 6963.5

Table A.27: Cyclic Nonlinear Deterministic Results: R2 = 0.75, Samples = 32, Iterations = 25
Goal
Value

Math
Program
Output

Simulation
Output

MP vs
Sim
Deviation

MP vs
Goal
Deviation

Total
Time
(ms)

Solve
Time
(ms)

Model
Prep Time
(ms)

Experiment
Time (ms)

250.0 250.0 273.9 0.096 0.0 8235.0 31.0 140.0 8064.0
350.0 350.0 380.0 0.086 0.0 8251.0 31.0 157.0 8063.0
450.0 450.0 480.4 0.068 0.0 8392.0 47.0 141.0 8240.0
550.0 550.0 575.6 0.046 0.0 8267.0 31.0 157.0 8079.0
650.0 650.0 667.1 0.026 0.0 8344.0 46.0 141.0 8157.0
750.0 750.0 757.4 0.010 0.0 8298.0 31.0 140.0 8127.0
850.0 850.0 849.3 0.001 0.0 8219.0 31.0 141.0 8047.0
950.0 950.0 945.1 0.005 0.0 8376.0 31.0 156.0 8189.0
1050.0 1050.0 1046.3 0.004 0.0 8205.0 32.0 156.0 8017.0
1150.0 1150.0 1149.7 0.000 0.0 8329.0 46.0 141.0 8142.0

Averages: 0.034 0.0 8291.6 35.7 147.0 8112.5

