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Abstract

One of the goals of modern prosthetics research is to provide natural, neurologically driven

control of a prosthetic device, preferably in a portable format. Previously, an algorithm for

asynchronously decoding individuated finger and wrist movements from recordings of neu-

ral activity in the primary motor cortex was developed by Aggarwal et al.and implemented

in software. The first objective of this work was to determine what effect simplifying

Aggarwal’s algorithm by using linear Artificial neural networks instead of nonlinear ones

would have on movement detection and classification accuracy. The simplified algorithm

developed in this work was demonstrated to achieve movement detection and classifica-

tion accuracies of 99.7%, 89.9%, and 95.3% for an individuated movement decoding task

across three subjects using neural recordings from 80 neurons. In comparison, the origi-

nal algorithm demonstrated accuracies of 96.2%, 90.5%, and 99.8% for the same task and

subjects using neural recordings from 40 neurons. Additionally, the simplified algorithm

was demonstrated to have a detection and classification accuracy of 80.5% for a combined

movement task, whereas the original algorithm achieved accuracy of 92.5%. Even though

a greater input space size was required for the linear decoder, the computational intensity

was reduced with a mean accuracy loss in the individuated movement task of only 0.53%.

However, the 12% loss of accuracy observed in the combined movement task is considered

unacceptable and suggests that the simplified algorithm is not appropriate for this task.

The second objective of this work was to create a digital hardware implementation of

the simplified linear artificial neural network version of Aggarwal’s algorithm. A scalable,

fully parallel architecture was designed for implementation on a Xilinx Virtex-4 FX60
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FPGA. This implementation could be realized with an input dimension of up to 60 neu-

rons on this FPGA, although computations were performed on the order of 104 times faster

than was necessary for realtime operation, indicating that there is an opportunity to reduce

hardware size in exchange for computational speed. This work is an important exploration

into the eventual goal of incorporating a hardware movement decoder in a prosthetic de-

vice and demonstrates that a hardware implementation is feasible using currently available

technology.
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Chapter 1

Introduction

One of the primary problems in prosthetics development is the need for a means of control

that functions similarly to the biological system the prosthetic is intended to replace. Recent

research has focused on brain-machine interfaces (BMI), which is the recording and decod-

ing of electrophysiological measures of neural activity to control an electronic device[1].

The nervous system has several unique properties that must be accounted for when design-

ing a BMI. One of these properties is the duplication of signals in multiple locations in

the body, which has allowed researchers to explore multiple methods of recording nervous

information[2, 3]. This also means that it is often very difficult to isolate a single signal re-

sponsible for any individual action, so machine learning techniques are typically employed

to convert neural recordings to useful information. One method of performing this, the

asynchronous dexterous decoder developed by Aggerwal et al.[1], is the foundation of the

research presented in this paper. This algorithm has been previously demonstrated to be

capable of asynchronously detecting and identifying hand movements in rhesus monkeys

with as high as a 99.8% accuracy[1], indicating that it is potentially viable for use in a hand

prosthesis. The goal of this research is to develop a simplified version of the asynchronous

dexterous decoder that requires fewer computational resources per classification decision,

quantify the accuracy of the simplified decoder, and design and implement a hardware

realization of this decoder.
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1.1 The Nervous System

In order to meet the objective of this research it is necessary to understand the structure of

the nervous system and the nature of the signals it generates. The nervous system is one

of the primary organ systems responsible for control and communication between all other

systems in the body. Its functions include sensory integration and motor control, along

with cognition. The functional units of the nervous system are nerves, which are bundles

of specialized excitable cells called neurons that can accept and propagate signals through

the body[4].

The primary means of signal propagation in an individual neuron is the action potential,

a rapid depolarization and repolarization of the electrical potential between the interior and

exterior of the neuron[5]. A depolarization in one part of the cell will cause depolarization

of adjacent portions of the cell, effectively allowing for the action potential to travel down

the cell. Action potentials typically have a amplitude of +100mV and can occur at a max-

imum rate of 200Hz[5]. Since the amplitude of an action potential is fixed, information is

encoded in the rate at which the action potentials occur. The rate at which action poten-

tials occur is limited by the presence of a refractory period following each action potential,

during which another action potential cannot occur[4].

Individual neurons are bundled in groups called nerves which are responsible for trans-

mitting information through the body. Any nerve not located in the brain or spinal cord

are designated as part of the peripheral nervous system (PNS), while the brain and spinal

cord are collectively known as the central nervous system (CNS). The PNS is primarily

responsible for propagation of sensory and motor information, while the CNS performs

most decision making and control signal generation tasks. The brain is divided into several

distinct components, each of which is primarily responsible for different aspects of mental

function, including sensory integration, cognition, and control of autonomic processes. The

outer layer of neurons in the brain, the cerebral cortex, plays a significant role in perception,

thought, and voluntary control[4].
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The cerebral cortex can be divided into regions called Brodmann areas that are pri-

marily responsible for specific functions[4]. Communication in these area is performed by

ensembles of neurons firing together, so recording from any portion of one of these areas

should give a good overall representation of the area’s current activity. The function of an

individual neuron in one of these areas may change over time, but the overall function of

the area remains fairly constant[4].

One Brodmann area of particular interest for this research is the primary motor cortex,

which is responsible for voluntary movement. Control of every portion of the body is

mapped topographically to the primary motor cortex, so recording the activity of a portion

of the primary motor cortex can provide relevant information about what the corresponding

portion of the body is doing[4]. Research has demonstrated that sufficient information to

decode the movement of individual fingers is distributed throughout the hand control region

of the primary motor cortex, so neural recordings taken from any portion of this region can

provide a good representation of overall hand activity[3].

1.2 Recording Nervous Signals

In order to make use of the information available in the nervous system a means of record-

ing and interpreting its signals is necessary. Several methods of performing this task are

currently being researched, one of which is electrode implantation. As the name implies,

this method involves directly implanting electrodes into some section of the brain for the

purpose of recording neural signals. Typically, recording is done using a cluster of elec-

trodes arranged in an array suitable for implantation in one specific portion of the brain[6].

Research has shown that recording as few as 20 neural signals located anywhere within

the hand area of the primary motor cortex is sufficient to provide a reliable estimate of

hand activity[3], although the most common type of electrode array, the Utah Intracortical

Electrode Array, is capable of recording significantly more[6]. Individual electrodes in the

array may pick up signals from multiple neurons as well as additional background noise,
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but several filtering and sorting algorithms known collectively as spike sorters have been

developed to address this issue[7, 8]. Additionally, long term studies have been performed

on electrode arrays that demonstrate they can maintain signal quality for a period of at least

1.5 years, which shows potential for use in long term applications[9]. The specific record-

ing areas, significant quantity of data, and long term durability make this approach viable

for prosthetic control.

However, electrode implantation does have a few significant limitations. The biggest

barrier to this approach is the need to directly implant the electrodes into the brain, which

requires significant surgery to remove the skin, bone, and meninges directly over the desired

recording site [6]. This surgical procedure has been performed on cats[6] and monkeys[1],

but obvious ethical considerations prevent much experimentation on humans. Additionally,

the function of individual neurons is known to potentially shift over time[9], so systems

designed to use information recorded from an electrode array will need to be capable of

accounting for this shift.

1.3 Machine Learning

Once nervous signals are obtained from a subject, they can be processed using machine

learning. Machine learning is the study of algorithms that can learn rules based on example

data[10]. It is often used to create rules that relate data sets in situations where the relation-

ship between those sets is not well understood. In the context of brain-machine interfacing,

machine learning can be applied to create rules that relate nervous activity to observed body

function. The ability to generate relationships between data sets is of particular value in

this application due to the fact that the exact function of any individual nervous signal is

often difficult to determine. In general, there is no guarantee that a relationship between a

set of nervous signals and body function exists, but previous research has demonstrated that

activity in the hand control region of the primary motor cortex can be mapped to a set of

hand movements[3, 1]. Several different classification algorithms exist for the purpose of
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creating a relationship between two data sets[11]. One approach, artificial neural networks,

can be used to create mappings of arbitrary complexity from one data set to another and

are capable of defining complex, nonlinear relationships.

An Artificial Neural Network (ANN) is a directed graph where each node computes a

weighted sum of its inputs. An ANN consists of external inputs from one data set, weighted

connections between nodes, and external outputs that represent the network’s mapping into

a different set. The complexity and linearity of the mapping performed by the ANN is

controlled by the number of nodes and the way they are connected, while the exact shape

is determined by the weight values. Mapping an input set to an output set is performed

via training, which uses presented data to adjust network weights. Although ANNs can be

constructed arbitrarily, in this work only layered feedforward networks will be considered

in order to avoid introducing the increased complexity of time variant systems. A feedfor-

ward network consists of two or more discrete layers of neurons in which every node of

one layer functions as an input to every node in the next layer. The first layer is the input

layer, where system inputs are directly applied, and the last layer is the output layer, where

the output values are read from. Additional layers between the input and output layers are

referred to as hidden layers, because they are not directly controlled or visible outside the

ANN. In hidden layers a nonlinear function, typically a sigmoid or a hyperbolic tangent is

applied to each sum to allow for the ANN to produce nonlinear mappings[10]. Figure 1.1

shows a diagram of a simple ANN consisting of three inputs, a single hidden layer with

two nodes, and a single output.

Each connection from one layer to the next can be viewed as a transform from one space

to another. If no hidden layers are present in the ANN then the relationship between the

inputs and an individual output can be expressed simply as a weighted sum and is therefore

linear. Geometrically, this describes a hyperplane drawn through the input space. The dis-

tance from a point in the input space to this plane determines the value of the corresponding

output of the ANN. Alternatively, if hidden layers are used then the transformation from

input space to output space ceases to be as simple and is no longer linear, due to the fact
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Figure 1.1: Example of a simple artificial neural network with three inputs, a single hidden
layer, and one output. Each node, represented by circles, computes the weighted sum of
each input, represented by arrows.

that a nonlinear function is applied to each sum. If this nonlinear function was not present

the ANN would be several cascaded linear transforms, which could be simplified to a sin-

gle linear transform and render it unable to perform higher order functions. Nonlinearity is

advantageous because it allows for mappings that are not possible with a linear transform,

although additional computation is required to perform this mapping. Each hidden layer

increases the order of the mapping function, which can allow for mappings that would not

be attainable with a lower order function[10].

For the sake of simplicity it is preferable to use the least computationally intensive ANN

that meets performance requirements. The number of hidden layers and hidden nodes in

an ANN determine the order of complexity of the functions it is capable of learning as

well as the number of calculations required to compute a result[10]. Therefore, there is a

tradeoff between accuracy and computational cost that is governed by hidden layer size and

quantity. An ANN with no hidden layers is only capable of computing linear functions,

but only requires a number of computations of order n, where n is the input dimension.

In comparison, an ANN with hidden layers can compute a greater class of functions for
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each hidden layer, but requires a number of computations of order nm, where m is the

number of hidden layers. Additionally, each hidden layer requires the computation of a

nonlinear function for each sum. This tradeoff indicates that it is desirable to find the

smallest ANN that is capable of estimating the desired function to a specified accuracy. If

problem complexity is unknown, as is the case for many machine learning applications,

then using an ANN with more hidden layers or nodes than necessary will not adversely

affect performance, but will be more computationally intensive than necessary.

One of the objectives for any machine learning task is the minimization of output error.

Typically, this requires that the system be trained using sample data. One of the common

methods of training an ANN is gradient descent. Gradient descent is a supervised learning

algorithm that minimizes error by descending the gradient of the mean square error between

the actual and desired outputs. In an ANN with no hidden layers this is done by giving the

system an input value, comparing the system output to the desired output, and modifying

the weights in the weight vector by subtracting from it the partial derivative of the error

with respect to that weight multiplied by a learning factor. In this method, weights that

have a greater contribution to the incorrect value are modified more heavily. As the system

is trained the learning factor is gradually decreased in order to converge on a single set of

weights for the system. Equation 1.1 expresses this rule mathematically, where ∆wtj is the

amount added to weight wj after training example t, η is the learning factor that controls

the magnitude of weight adjustments, rt is the desired output at training example t, yt is

the actual output at training example t, and xtj is the input corresponding to weight wj[10].

∆wtj = η(rt − yt)xtj (1.1)

For an ANN with hidden layers gradient descent is performed via backpropagation, which

essentially performs the same weight modifications one layer at a time. The output layer is

modified in a manner identical to gradient descent, and previous layers are iteratively mod-

ified after determining the amount of error each neuron in the previous layer contributed.

Note that in order for this to be possible the output of every neuron needs to be differen-

tiable, which is a constraint on the nonlinear function applied to each sum in the hidden
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layer[10].

Another potential goal for a machine learning task that has a large number of inputs is

to reduce the number of inputs to a smaller subset that still meet performance requirements.

This is especially useful when it is suspected that some inputs provide information that is

redundant or independent of the desired output function. Reduction of system complexity

can be accomplished by incorporating a method of structural adaptation into the learning

algorithm. This can be either constructive, where inputs are added to a very simple net-

work as needed, or destructive, where inputs are removed from a complex network as they

are determined to be unnecessary. One simple method of destructive reduction is weight

decay. Weight decay replaces the error function used for gradient descent with an error

function that penalizes output error and weight size. This gives each weight in the system

a tendency to decay to zero. If a particular input associated with a weight is not necessary

to provide accurate classification then its contribution to the system is removed without af-

fecting overall accuracy. Input weights that are critical to correct classification are updated

whenever an error occurs, so their weights are not removed. At the end of training, any

inputs with weights of zero can be removed without affecting classifier accuracy[10].

1.4 Asynchronous Dexterous Decoder

The asynchronous dexterous decoder developed by Aggarwal et al.is a system for decoding

a specific set of hand movements from neural signals recorded from the primary motor

cortex. This decoder uses committees of artificial neural networks to detect and classify

finger and wrist extension and flexion from intracortical neural signal recordings. It was

demonstrated to be accurate over 90% of the time in three different subjects, indicating that

it is a potentially viable for use in a neurally controlled multifingered hand prosthesis[1].

The data used for this work were intracortical neural signals recorded from three male

rhesus monkeys, identified as monkeys C, G, and K. Each monkey was trained to perform

the desired set of hand movements in response to a visual cue for a water reward. While
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performing these movements, a recording was obtained from a single neuron in the pri-

mary motor cortex. Each subject had different numbers of recording sites: 312 neurons

were recorded from in monkey C, 125 neurons were recorded from in monkey G, and 115

neurons were recorded from in monkey K. Data was collected from each neuron individ-

ually in a series of repeated trials for each movement type. For monkeys C and G up to

seven trials were recorded for each neuron for each movement type, while for monkey K

up to 15 trials were recorded per neuron per movement type. These recordings were then

processed by a spike detector that quantified the time at which action potentials occurred

with respect to time at which a movement was performed[1].

The feature that makes this decoder unique is its asynchronous nature. Most prior

research focused on cued decoding, which relies on an external signal to indicate when

decoding should be performed. Obviously, this dependence is undesirable when attempting

to develop a useful prosthetic device. The asynchronous dexterous decoder overcomes this

limitation by using two classifiers: one classifier determines whether or not a movement

is occurring (gating classifier), and the other determines what type of movement out of a

specified set is being performed (movement classifier). Input to both classifiers is provided

as a count of the number of action potentials that occur during a 100ms window that shifts

forward every 20ms. This sliding window produces a set of discrete time, discrete valued

signals that describe the activity of each neuron in the system[1].

As shown in figure 1.2, the gating classifier was designed as a odd numbered committee

of artificial neural networks trained to produce an output between 0 and 1 corresponding to

the probability that movement was occurring. Each ANN possessed a single tan-sigmoidal

hidden layer containing anywhere from 0.5 to 2.5 times the number of input neurons, a

single output neuron, and a log-sigmoidal output function. The output of each ANN was

thresholded at a value of γ to produce a boolean value of 0 or 1. A majority voting rule

was used to determine the committee output. If the committee output was 1 more than β

times in the past τ decisions then the gating classifier fired, indicating positive movement.

Once the gating classifier fired it was prevented from firing again for a refractory period ρ
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to guard against false positives[1]. This rule is expressed mathematically in equation 1.2,

where G(tk) is the gating ANN committee output and Gout(tk) is the movement detection

decision, with a 1 indicating movement and a 0 indicating no movement.

Gout(t) =

1 if
∑tk

t=tk−τ G(tk) > β

0 otherwise
(1.2)

Like the gating classifier, the movement classifier consists of an odd numbered com-

mittee of ANNs, but each ANN had a number of output neurons equal to the number of

movement types decoded, with each neuron corresponding to a specific movement type.

A set of twelve distinct movement types were performed in all subjects: flexion and ex-

tension of each individual finger and the wrist. In one subject, monkey K, additional data

was recorded for an extra set of six movement types: combined flexion and extension of

the thumb and forefinger, the forefinger and middle finger, and ring finger and little finger.

Every movement type was treated as a binary decision, with no consideration given to par-

tial movements. Each ANN was trained to output values between 0 and 1 corresponding

to the probability that a given movement type was occurring. The movement type with the

highest probability was chosen as the output of each network, and a majority voting rule

was used to determine the movement classifier output[1]. Equation 1.3 expresses this rule

mathematically, where s(t) is the movement decision out of the set of i movements at time

t and Pi(t) is the output of movement ANN i at time t.

s(t) = arg max
i
Pi(t) (1.3)

The final classification decision was produced by multiplying the output of the gating

classifier with the output of the movement classifier. Ideally, this produces an output of

zero when no movement is detected and an integer corresponding to a specific movement

type when that movement type is detected. A diagram of the decoder is shown in figure 1.2

All portions of the decoder were implemented and trained in software using Matlab[1].

The asynchronous dexterous decoder was demonstrated to have an accuracy of above 90%
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Figure 1.2: A diagram of the original asynchronous dexterous decoder[1]. The use of two
classifiers allows for the detection and classification of movement from recorded nerual
signals, X(tk), without any reliance on external cuing. The gating classifier output, G(tk),
is a boolean value that corresponds to whether or not movement is occurring, with the
heuristic check, Gtrack(tk), eliminating spurious classifications. The movement classifier
output, S(tk), represents which type of movement, out of a predefined set, is occurring.
Together, they allow for the asynchronous detection of a specified set of finger and wrist
movements from the recorded firing rates of neurons in the primary motor cortex[1].

for all three subjects when as few as 40 neurons were used as input. Additionally, the

decoder was shown to be as high as 99.8% accurate for monkey K in the individual finger

movement task and 92.5% accurate for monkey K when combined movements were added

to the output space. These results demonstrate that this algorithm is robust to decode hand

movements regardless of the specific neural population recorded from, which indicates that

it has potential application to the development of a neurally controlled hand prosthesis[1].

Additionally, research by Acharya et al.[3] demonstrates that movement can be accurately

decoded by as little as 20 neurons, suggesting that recordings from a greater number of
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neurons contain some redundant information. Since it is known that a good nonlinear

approximation exists when 20 neurons are used adding information from other neurons can

be viewed as a transformation to a higher dimensional space, which may allow classes to be

separated linearly[10]. However, since the exact transformation that occurs when neurons

are added is unknown, linearly separability cannot be guaranteed, but the possibility that

linear separability exists for this problem was investigated because it would allow for the

order of complexity of the ANNs in the asynchronous dexterous decoder to be reduced.

1.5 Thesis Objective

The purpose of this research is to determine if an asynchronous dexterous decoder that

uses only linear ANNs can achieve accuracy comparable to that of the original decoder

presented in [1] and, if so, implement the linear ANN decoder in digital hardware. Ide-

ally, the linear ANN decoder will be as accurate as the nonlinear ANN decoder, although

accuracy degredation is acceptable if the best case decoder accuracy does not fall below

90%, which is comparable to the lowest best case performance demonstrated by the origi-

nal nonlinear ANN decoder. It is proposed that meeting this accuracy objective will require

a larger input space than necessary for comparable accuracy in the nonlinear ANN de-

coder. This requirement is considered acceptable, because even if the linear ANN decoder

requires a larger input space, the order of complexity will still be lower than that for the

nonlinear ANN decoder. If this accuracy objective can be met, the linear ANN decoder

would be adapted for a digital implementation capable of making classification decisions

in real time, which was defined in the original algorithm as one decision every 20ms.

The implementation of a digital realization of the asynchronous dexterous decoder is

an important step toward a practical prosthesis, but it is beyond the scope of this work to

develop a completely independent prosthetic control system. All ANN training will be per-

formed in software using MATLAB (Mathworks Inc., Natick, MA) using custom scripts

and the MATLAB Neural Network Toolbox. Once the digital implementation is designed,
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feasibility of implementing a hardware based machine learning system will be performed

as a basis for potential future work. Additionally, the data used to train and test the system

will be the discrete time, discrete valued integer counts of the number of action poten-

tials(spikes) that occurred in the past 100ms, moving forward every 20ms, as described in

section 1.4. In a complete neurally controlled prosthesis this information would need to be

extracted from neural recordings by spike sorting and counting hardware, then provided to

the asynchronous dexterous decoder. Several algorithms for the detection of action poten-

tials that would be suitable for incorporation into a neurally controlled prosthesis have been

developed previously[12, 13], indicating that this requirement is not a major limitation on

future work. The other necessary component of a neurally controlled prosthesis, the end ef-

fector, will not be integrated with the asynchronous dexterous decoder in this work. Figure

1.5 shows a block diagram of a complete neurally controlled hand prosthesis and the way

in which the research performed in this thesis is meant to be incorporated into a complete

prosthetic system.

Figure 1.3: Block diagram of a complete neurally controlled hand prosthesis. White text
indicates preexisting structures, red text indicates the proposed work, and blue text indi-
cates additional components necessary for a complete portable neurally controlled hand
prosthesis.
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Chapter 2

Algorithm Modifications

The first objective of this research is to determine if the asynchronous dexterous decoder

algorithm can be modified to use linear artificial neural networks while still meeting the

accuracy requirements defined previously. This chapter describes the theoretical modifica-

tions made to the asynchronous dexterous decoder algorithm and their impact on the com-

putational complexity of the system. For a digital hardware implementation of an ANN

the number of floating point multiplications necessary to compute the output is the most

intensive aspect of the algorithm[14], so computational complexity of the decoder will be

primarily measured in terms of number of floating point multiplications. The four modifi-

cations made to the decoder algorithm were the replacement of the nonlinear ANNs with

linear ANNs, the removal of the committee voting structure, a new gating decision algo-

rithm, and an integer approximation of all floating point math. These modifications pur-

posefully do not include any changes to the sliding input window or decision rate, so that

any larger system can use the original decoder algorithm developed by Agarwal et al.or the

new, modified algorithm interchangeably, and to simplify direct comparison between the

two algorithms. All modifications were designed with the intention of providing the same

movement classification accuracy as the original algorithm at a reduced computational cost.

Since the functionality of the original algorithm is only approximated some error is intro-

duced, although attempts were made to minimize its impact on movement classification

accuracy. All training and testing computations described in this chapter were performed

by scripts created for use with MATLAB.
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2.1 Replacement of Nonlinear Artificial Neural Networks

The first modification performed on the decoder algorithm was the replacement of the non-

linear, single hidden layer ANNs with linear ANNs. The purpose of this modification was

to determine if the same classification accuracy can be achieved at a lower computational

cost. The switch from a nonlinear ANN to a linear ANN can be viewed as simply removing

the hidden layers from the ANN. Removing hidden layers imposes a significant constraint

because it restricts the ANN to only linear transformations, but if linear separability can be

demonstrated then this constraint will not adversely affect performance.

Switching from nonlinear ANNs to linear ANNs reduces the usefulness of the commit-

tee voting structure used in the original algorithm. An ANN with hidden layers inherently

implements a nonlinear function, so more than one function that can approximate the de-

sired output may exist. Additionally, the number of nodes in a hidden layer may be varied,

so multiple ANNs, each with a different number of hidden layer nodes, can be combined in

a committee structure to yield accuracy greater than each ANN individually[1]. In compar-

ison, an ANN without hidden layers is only capable of implementing linear functions. This

limitation means there will only be one error minimum towards which all stable learning

algorithms will converge. Therefore, every member in a committee of linear ANNs would

appear to be almost identical, which eliminates the utility of the committee. Based on this

fact, it was decided a single linear ANN was sufficient to replace each committee.

In terms of computational complexity, the single most prevalent and expensive oper-

ation in the implementation of an ANN is floating point multiplication. A multiplication

is needed for each connection from one layer to the next, from which the total number

can be determined as the product of the number of neurons in each layer. For example,

a typical implementation of the original asynchronous dexterous decoder uses about 40

input neurons, 3 committees for each classifier, and 12 movement types. Assuming the

mean number of hidden layer neurons of 1.5 times the number of input neurons gives an

estimated need for ((40 input neurons)(60 hidden neurons)+(60 hidden neurons)(12 output

neurons))(3 ANNs in each committee) = 9360 floating point multipliers for the movement
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classifier and ((40 input neurons)(60 hidden neurons)+(60 hidden neurons)(1 output neu-

ron))(3 ANNs in each committee) = 7,380 floating point multipliers for the gating classifier.

This gives a combined total of 16,740 floating point multiplications needed for the origi-

nal algorithm for each classification decision. In comparison, the number of multipliers

needed for a linear, committee-less algorithm is (40 input weights)(1 linear classifier) =

40 multipliers for the gating classifier and (40 input weights)(12 movement types)(1 linear

classifier) = 480 multipliers. This gives a total of 520 multipliers, which is still about 35

times fewer than the neural network. Furthermore, the lack of a hidden layer means that

the number of multiplications required to calculate a classification scales linearly with in-

put dimension, unlike the nonlinear ANN approach, where the number of multiplications

required increases as the square of the input dimension. Figure 2.1 compares the relative

complexity (number of multiplications required per classification) of each classification al-

gorithm with respect to the size of the input space. Note that, despite the change in the

way computations are performed, the input and output, a count of the number of spikes

for each neuron in the past 100ms and an integer corresponding to a classification deci-

sion, are untouched, so from an external perspective the linear and nonlinear classifiers are

interchangable.

Figure 2.1: Number of multiplications required per classification with respect to input space
dimension, assuming the nonlinear classifier uses an average hidden layer size 1.5 times
larger than the input space and a 12 movement output space.
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2.2 Gating Logic Modification

Ideally, the above changes should not have significantly impacted classifier performance.

However, it was observed in early testing that this was not the case. Figure 2.2 shows

the output of the new, linear gating classifier in response to a set of four movement trials

occurring once every two seconds. The variation in the shape of this output was observed

to be typical for the gating classifier. As shown, the gating classifier output does not closely

follow the desired output, in one case rising only as high as 0.58 instead of the desired value

of 1, but does demonstrate a rising and falling pattern that roughly follows the rise and fall

of the desired output. The potential reason for these variations is discussed later.

Figure 2.2: Response of linear gating classifier to a set of four movements occurring once
every two seconds using the entire input space. The blue solid line (desired output) rep-
resents the ideal signal that the gating classifier was trained to, and the red dashed line
(actual output) represents the actual response of the gating classifier. Note that the peak
level, duration, and location with respect to the desired output is not consistent from trial
to trial.

The error demonstrated in figure 2.2 by the gating classifier is undesirable. The peak

level, time, and duration are not consistant from trial to trial, and the classifier output

wanders (even taking negative values) when no activity is present. If the primary objective

of the classifier was to match the desired response signal this classification scheme would

17



be discarded in favor of a different solution. However, the goal of this classifier is to

provide enough information to allow a decision making scheme to accurately determine

when a movement occurs. Based on the clear presence of output activity at the desired

times an alternative decision making rule was designed.

As described previously, the original algorithm used a movement detection scheme that

counted the number of times the gating classifier output was above a static threshold in a

set window and fired if the output was above the threshold above a certain number of times.

This approach was sufficient for the nonlinear classification scheme because the nonlinear

gating classifier closely and predictably followed the desired output, but since the linear

gating classifier did not consistently reach a specific peak value for a predictable duration

this decision scheme was not as effective. A four dimensional search of the parameters γ,

τ , β, and ρ was performed (values ranged between 0.15 to 1 in 0.05 increments for γ, 3 to

10 in integer increments for τ and β, and 2 to 10 in integer increments for ρ) to find param-

eter values that met the specified accuracy requirements, but a set of values that achieved

at least 90% movement detection accuracy was not found. As a result, an alternative de-

cision method was developed. Analysis of the problem showed that although the gating

classifier output did not peak consistently, it did drop off rapidly following a movement.

This lead to the decision to use the derivative of the gating classifier output as well as the

output itself. Figure 2.3 shows the derivative of the actual response signal from figure 2.2,

computed as G(tk) − G(tk − ∆), where ∆ ranged from 1 to 5. The important aspect of

these signals is the negative peaks, which correspond to a decrease in the gating classifier

output, indicating that a movement occurred. As ∆ increases the magnitude of the negative

peaks increases, along with the delay between the actual movement time and peak time.

This relationship creates a tradeoff between movement identifiability and temporal accu-

racy. To compromise, a value of ∆ = 3 was selected, creating a delay of three time samples

(60ms) and negative peaks that are sufficiently large to detect movement (Determination of

exact threshold levels is discussed later, in chapter 4). Further analysis of figure 2.3 shows

that the derivative signal is insufficient to detect movement on its own as smaller negative
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peaks, such as the one slightly before the two second mark, are present in the signal even

when no movement is occurring. Because of this, the decision was made to use both the

gating classifier output and its derivative to detect movement. Figure 2.4 shows the same

movement response as in figure 2.2 with added information of the gating classifier output

discreet derivative, computed as G(tk)−G(tk − 3).

Figure 2.3: The discrete derivative of the gating classifier response to a set of four move-
ments using the entire input space, computed as G(tk)−G(tk −∆), where ∆ ranges from
1 to 5. Movements occurred at times 1, 3, 5, and 7 seconds, to which the negative signal
peaks correspond (the peak observed near time 2 seconds is a false positive). Note that
as ∆ increases both the peak magnitude and delay between movement time and peak time
increase.

Based on this, the new movement detection decision scheme was designed to check if

the output was above some static threshold γ and instead of counting the number of time

windows during which the output was above this threshold also checked the derivative of

the gating classifier output. If the difference between the current output and the output three

time windows ago was less than the negative constant δ and the current output was above

the threshold γ the gating classifier fired. Equation 2.1 expresses this rule mathematically,

where γ and δ are the parameters described above, G(t) is the gating classifier output

and Gout(t) is the movement detection decision, with a 1 indicating movement and a 0
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Figure 2.4: Response of linear gating classifier to a set of four movements occurring once
every two seconds using the entire input space with gating classifier derivative. The blue
solid line represents the function that the gating classifier was trained to, the red dashed
line represents the actual response of the gating classifier, and the green line represents the
discrete time derivative of the gating classifier response.

indicating no movement.

Gout(t) =

1 if G(t) > γ and G(t)−G(t− 3) < δ

0 otherwise
(2.1)

One additional issue highlighted by figure 2.4 is that the criteria for movement detection

defined in equation 2.1 can be true for more than one classification decision during each

movement trial. Every time the gating classifier fires it is considered a separate detection

of movement, which could lead to the misclassification of a single movement as multiple

movements. To reduce this occurrence a refractory period was added. Once the gating

classifier output a positive movement decision, further positive decisions were ignored until

at least ρ time steps had occurred.

The output of the movement classifier was also observed to determine if it still per-

formed similarly to the original algorithm. Figure 2.5 shows the response of the movement

classifier to a sequence of 12 movements occurring once every two seconds in the following

order: extension of each digit, in order from thumb to little finger (e1-e5), extension of the

20



Figure 2.5: Response of linear movement classifier to a sequence of trials occurring once
every two seconds using the entire input space. The movements were presented every
odd second in the following order: extension of each digit, in order from thumb to little
finger (e1-e5), extension of the wrist(ew), flexion of each digit in the same order(f1-f5),
and flexion of the wrist(fw). The diagonal row of spikes in the center of the diagram shows
that the largest response during each trial is the expected movement type.

wrist(ew), flexion of each digit in the same order(f1-f5), and flexion of the wrist(fw). The

desired output for this trial is a series of output spikes that have a value of 1 when the cor-

responding movement is being performed and 0 all other times. As shown in the diagram,

the response does not closely follow this desired output, instead peaking at a maximum of

0.32, but as in the gating classifier, enough information is still present to make a correct

decision. As mentioned previously, the movement classifier output is only used when the

gating classifier determines that a movement has occurred. As shown in this graph, at the

time a movement occurs there is a clear spike from the desired movement type, while all

other movement types show little activity. This demonstrates that choosing the movement

type with the largest corresponding movement classifier output when the gating classifier

fires will provide a correct movement classification. This rule is expressed mathematically

in equation 2.2, where Pi(t) is the output corresponding to each movement type i and s(t)

is the chosen movement type.

s(t) = arg max
i
Pi(t) (2.2)
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2.3 Elimination of Floating Point Multiplication

Even with a reduced number of floating point multiplications this operation still represents

the most computationally intensive portion of the algorithm. Fortunately, analysis of the

decoder algorithm shows that floating point math can be completely replaced by integer

math without introducing error sufficient to adversely affect classification decisions. Initial

analysis of weights in the gating and movement classifier after training with a full input

space showed that weights differed by several orders of magnitude, although the major-

ity were less than 10−3. Figure 2.6 shows the magnitude logarithm of an example set of

post-training weights. Examination of this figure suggests that weight magnitudes are ap-

proximately log-normally distributed. The fact that the order of magnitude of the weights

roughly falls in this distibution indicates that an approximation of these weights needs to

primarily focus on preserving the accuracy of the weights closer in order to the mean. In

this set of weights, the magnitude mean was 9.98 ∗ 10−4 and the magnitude standard devia-

tion was 1.2∗10−3, with minimum and maximum magnitudes of 4.11∗10−7 and 1.3∗10−2.

This range of about five orders of magnitude was typical, although exact values varied each

time the system was trained.

Figure 2.6: This graph shows the base-10 logarithm of a sample distribution of classifier
weights after training to a full input space (1495 weights total).
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With this distribution in mind a simplification that eliminated floating point multiplica-

tions was derived. Generally, a linear classifier can be described by equation 2.3, where n

is the number of inputs, w is the constant weight multiplied by each input x, b is a constant

offset, and y is the classifier output.

y =
n∑
i=0

wixi + b (2.3)

For this specific problem it is known that all inputs x are nonnegative integers with a max-

imum value of about 20, due to the limiting effect of refractory periods. The weights are

floating point numbers and are on the order of 10−2 to 10−7, which makes direct rounding

them a poor idea. However, scaling by a large constant α (henceforth referred to as the

rounding coefficient) reduces the error introduced by rounding.

αy =
n∑
i=0

αwixi + αb (2.4)

Note that in this state αwi is still a floating point number. To simplify, a new value ŵi that

is the nearest integer to αwi is substituted into the equation.

ŵi = round(αwi) (2.5)

αŷ =
n∑
i=0

ŵixi + αb (2.6)

This substitution effectively eliminates the need for floating point multiplication. To prove

that this introduces negligible error rounding can be modeled as a uniform error between

-0.5 and 0.5, assuming that the value of the rounding coefficient is large enough that every

weight has a magnitude of at least 1, and the value of ŷ can be compared to y.

ŵi = αwi + U(−0.5, 0.5) (2.7)

Substituting this distribution into equation 2.6 gives

αŷ =
n∑
i=0

αwixi +
n∑
i=0

U(−0.5, 0.5)xi + αb (2.8)
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The products of uniform distributions and inputs are independent, identically distributed

random variables, so their sum can be approximated as a normal distribution[15].

n∑
i=0

U(−0.5, 0.5)xi ≈ N(0, σ2) (2.9)

Given that U(−0.5, 0.5) has a variance of 0.0833 and a mean of 0, assuming that xi is

discretely uniformly distributed between 0 and 20 at integer intervals and therefore has a

variance of 33.3 and a mean of 10, and that the number of inputs is 40, it is estimated that

the variance of the normal distribution is approximately σ2 = 0.0833∗33.3+102∗0.0833
40

= 0.278.

αŷ =
n∑
i=0

αwixi +N(0, σ2) + αb (2.10)

Dividing both sides by the rounding coefficient gives an equation for ŷ.

ŷ =
n∑
i=0

wixi + b+
N(0, σ2)

α
(2.11)

Substituting in the original equation for y gives the following

ŷ = y +
N(0, σ2)

α
(2.12)

Note that as the size of the rounding coefficient increases ŷ → y. In practice, the rounding

coefficient was chosen to be the reciprocal of the smallest weight present in any classifier,

and was observed to be between the order of 105 to 107. Therefore the error introduced is

99.7% likely to be less than ±2.78 ∗ 10−4, which is likely negligible when compared to the

magnitude of the signals in figures 2.4 and 2.5.

This simplification is useful due to the fact that the weights are computed during train-

ing and do not change after that. Multiplying every weight by the rounding coefficient and

then rounding introduces error on the order of 10−4 and eliminates the need for real time

floating point multiplication. Furthermore, since the refractory period of a neuron prevents

it from firing above a rate of about 200Hz it is very unlikely that any individual input to the

decoder will ever be above 20 in any given 100ms input window. This means that inputs

fall in a small range of values(0-20), which allows the integer multiplication required to be
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implemented as a lookup table, greatly reducing hardware demand. Note that one floating

point division is necessary if the value of ŷ is needed, but if subsequent processing can use

αŷ instead this division is not necessary. In equation 2.1 G(t), γ, and δ can be multiplied

by the rounding coefficient α and rounded to the nearest integer in order to take advantage

of the elimination of floating point math given in equation 2.6. By doing this the output

of the gating classifier multiplied by α can be used directly in equation 2.1, eliminating

the need to perform a floating point division. Additionally, since equation 2.2 chooses the

maximum likely movement type out of each of the movement classifier outputs its behav-

ior is unaffected if all movement classifier outputs Pi(t) are multiplied by a constant, so no

additional modifications need to be made to the movement classifier.
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Chapter 3

Hardware Implementation

Once the modified asynchronous dexterous decoder algorithm was developed the next step

was to design a hardware implementation. The first step in this task was to choose an archi-

tecture for the implementation and identify a target platform that could meet the require-

ments of the architecture. The target platform size and speed capabilities were analyzed

to ensure that it could meet the requirements of the hardware implementation. Next, the

digital design task was broken down into four independent stages that were designed indi-

vidually and then combined to form the complete decoder. Once the digital implementation

was designed the resulting hardware performance and size were analyzed.

3.1 Architecture Selection and Requirements

The first step in design of the hardware decoder was an analysis to determine an appropri-

ate architecture for performing the required computations. The hardware decoder needed

to be able to take the number of spikes that occurred in the past 20ms for each neuron

and based on that data perform the necessary computations, as described above, to produce

a movement classification. The necessary computations can be broken down into three

stages: The first stage stores and sums the number of spikes that occurred over the sliding

100ms window, the second stage performs the linear classification by multiplying spike

counts by weights and summing the result, and the third stage uses the classifier results to

determine movement type. Input data is partially shared between each movement decision,
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but, aside from refractory period suppression of positive movement classifications, each

movement decision is independent of any other classification. Additionally, the computa-

tions performed in each classifier within a single movement period are independent of one

another. It was decided that this independence should be exploited to create a hardware

architecture where all classifiers and multipliers were implemented in parallel. This fully

parallel approach closely mimics the theoretical algorithm structure, which is advantageous

because it is easy to understand and compare to both the theoretical behavior and software

implementation. Each hardware component can be easily compared to its theoretical coun-

terpart, allowing for easy verification of proper functionality. Additionally, a fully parallel

implementation should have a short critical path delay, making the 50Hz target clock rate

easily achievable. Since the product of intermediate computations do not need to be stored

if every computation is happening simultaneously the entire system can be clocked at the

50Hz rate, which also closely matches the theoretical algorithm structure. Optimizations

undoubtedly exist, but since this work represents a first attempt at implementing this algo-

rithm in hardware design simplicity was favored over speed and size.

Once a fully parallel approach was selected an analysis of required digital components

was performed. The sliding input window requires five registers for each input to store the

past five 20ms spike counts and a five input integer adder for each input. For the linear

classifiers the most prevalent operations are the multiplications required to compute the

weighted inputs to each classifier. Because the weights are constant when the decoder is

not being trained and the input value falls in a set range of 0 to 20 each multiplier can be

implemented as a lookup table, which is a basic digital design component. The number of

lookup tables required to implement the decoder is equal to the number of classifier inputs

multiplied by the number of movement types plus one. In order to complete each classifier

an adder is necessary to sum the multiplication products. The number of adders required

is equal to the number of movement types plus one, and each must have a number of in-

puts equal to the number of classifier inputs. For the gating logic two 2-input comparators

and an adder are necessary for movement detection and one comparator with a number of
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inputs equal to the number of movement types is necessary for movement classification.

Additionally, three registers are needed for the derivative computation, and one register is

needed for the refractory period. To give a concrete example of hardware requirements,

implementing a 50 input, 12 movement type decoder in hardware would require 64 regis-

ters, 12 5-input adders, 650 lookup tables, 13 50-input adders, 2 2-input comparators, and

1 12-input comparator.

3.2 Choice of a Development Platform

The above analysis gives an indication of the resources the hardware platform had to be

capable of providing to implement the decoder. For this work the ability to test the hard-

ware was necessary, so the platform also had to have an external communication interface

capable of sending data to and from a Matlab test script. It also had to be capable of com-

puting a result at a minimum rate of 50Hz to allow for realtime movement classification.

Because training was unique to each subject and the significance of recorded values could

potentially change over time the linear classifier weights had to be modifiable. Based on

these requirements, it was decided that a field programmable gate array would be the most

appropriate platform for hardware development.

A Field Programmable Gate Array(FPGA) is an electronic device consisting of small

digital memory and logic units that can be configured to form specific connections and

implement arbitrary digital circuits. Typically, a hardware description is written using a

hardware description language such as VHDL, synthesized to convert the hardware de-

scription to a set of physical connections, and programmed into the FPGA. The net result

is a physical realization of a digital electronic circuit that can be reconfigured, which meets

the requirements for a method of modifying classifier weights. Additionally, this reconfig-

urability also makes debugging a hardware design easier because corrections can be made

and applied nondestructively. In a digital implementation of the decoder algorithm each

stage could be computed in parallel rather than sequentially, which would easily allow
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for the 50Hz rate to be met without issue. Finally, a single FPGA is capable of provid-

ing enough hardware to implement the dexterous decoder, as the hardware description and

analysis below demonstrate.

The specific FPGA targeted for development was a Xilinx (Xilinx, Inc., San Jose, CA)

Virtex-4 FX60 FPGA (Virtex-4 for short) mounted on a Xilinx ML410 embedded devel-

opment platform. The Virtex-4 contains 25,280 logic slices that can be used to implement

user defined functionality, 128 digital signal processing(DSP) slices that are designed for

signal processing type applications, and two PowerPC processor cores that can run user

defined software, among other features. Each logic slice contains two 4-bit lookup tables

and two storage elements. Logic slices are organized into larger groups called configurable

logic blocks(CLB), with four slices in every CLB[16]. Additionally, the ML410 platform

provides 256 megabytes of DDR2 memory and a 512 megabyte flash card[17]. The mod-

erate number of slices provided should be sufficient for a hardware implementation and the

additional features are available for future development, although their use will be avoided

in this research so that the hardware implementation will be portable to other FPGA plat-

forms.

Use of the Xilinx ML410 can be justified by predicting the number of slices necessary

to implement each decoder component. Each register is eight bits wide, so four logic slices

will be needed for each. Each two-input adder and lookup table(5-bit input, 32-bit output)

will require 16 slices to implement. Each two-input comparator will require 32 slices to

implement. Components with greater than two inputs can be treated as the number of inputs

minus one two-input components of the same type (i.e. a 16-input adder can be treated as

15 two-input adders). Using these estimates the 60 input, 12 movement type example given

above would require 64*4 = 256 slices for registers, (48+637)*16 = 10960 slices for adders,

650*16 = 10400 slices for adders, and (2+11)*32 = 416 slices for comparators. This gives a

total of 22,032 slices necessary to implement the decoder without including logic required

for testing, which is less than the number of slices available on the Virtex-4 FPGA. This

rough estimate does not guarantee that a 50 neuron input space will be realizable when
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testing logic is incorporated, but suggests that it is likely. This estimate also suggests that a

full input space (115 inputs, at minimum) will not be realizable on the Virtex-4.

3.3 Hardware Implementation Overview

From a hardware perspective, the decoder can be viewed as a series of data transformations,

starting with the set of neuron spikes in the past 20ms and ending with a single number cor-

responding to a movement type. The three primary components are the input window, the

linear classifiers, and the gating logic. The input window stores the number of spikes that

occurred in the past five 20ms windows and outputs the sum of those windows, effectively

creating a 100ms window that slides every 20ms. The classifiers take this data and perform

linear classification, which creates a single output from each classifier. This data is then fed

to the output logic, which performs the maximum and thresholding operations described

above. In addition to these three components that form the decoder, a serial IO interface

was also implemented to allow for hardware testing. This interface received spike counts

from a Matlab program, sends those spikes to the input window, and sends back to the

Matlab program the classification result created by the output logic.

VHDL generate statements were used extensively in the design to allow for easy

synthesis of decoders with different numbers of inputs or movement types. Because of

this, the component descriptions given below are in terms of various synthesis parameters.

The number of input neurons is denoted n and the number of movement types is denoted

m.

Algorithm training was performed offline in Matlab; as mentioned previously, hardware

that can adapt online is restrictively complex and beyond the scope of this thesis. A Matlab

script was created that can generate a VHDL constants file usable in hardware synthesis.

Once the algorithm is synthesized and programmed into the FPGA the parameters cannot

be changed without another synthesis, although, outside of testing purposes, the FPGA does

not need to interact with PC once programmed and can perform movement classification
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independent of any other system.

For use in a complete system it is assumed that input signals would be provided in real

time, allowing the entire system to be clocked at a rate of 50Hz, which would create the

20ms time windows desired. However, because communication with test software running

on a PC does not occur at a predictable rate the system clock rate was given to the IO

interface, as described below.

3.4 Input Window

Figure 3.1: Block diagram of input window

The input window is a set of n five byte shift registers and a five input adder, as shown

in figure 3.1. Input to this component is an array of unsigned 8 bit integers indicating how

many spikes have occurred in each neuron since the input window was last clocked. When

the input window is clocked each shift register captures its corresponding input and shifts

all previous data by one, eliminating the oldest value. The contents of each shift register

are summed and that sum, another unsigned eight bit integer, is sent to the classifier stage.

If this stage is clocked at 50Hz it will effectively create a 100ms window that slides every

20ms. It is assumed that in a complete system the number of neural spikes in a 20ms period
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would be accumulated by an asynchronous counter that would be reset by the controlling

clock.

3.5 Classifiers

Figure 3.2: Block diagram of linear classifiers

Each classifier consists of n multipliers and one n input adder. Each multiplier, imple-

mented as a lookup table, takes one of the summed inputs provided by the input window

and converts it to a 32 bit signed integer based on the constant weight specific to that clas-

sifier and input. The n input adder, implemented as a linear array of two input adders, sums

the 32 bit integers produced by the multipliers. A total of m + 1 classifiers were imple-

mented: classifier zero is the gating classifier and classifiers 1 through m correspond to a
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particular movement type. A block diagram of the classifiers is shown in figure 3.2. Note

that this functionality consists solely of combinational logic, so no clock is necessary.

3.6 Output Logic

Figure 3.3: Block diagram of gating logic

The output decision logic consists of gating logic and movement logic, as in the modi-

fied algorithm described above. The gating logic takes input from the gating classifier and

determines if movement has or has not occurred. The movement logic takes input from

the m movement classifiers and determines the index of the largest movement value. Note

that since the multipliers used in the classifiers use weights scaled by α the output logic

constants must also be scaled by α.

The output of the gating classifier is sent to a three value 32 bit shift register that holds

the past three outputs of the gating classifier. The difference of the current output and

the output that occurred three clock cycles ago is then thresholded against the derivative

constant αδ, with inputs less than αδ generating a high output. Additionally, the current

gating classifier output is also compared to a level threshold αγ, with input greater than αγ

generating a high output. The output of these two thresholds is anded together and used

to gate the output of the movement classifier. Figure 3.3 shows the block diagram of the

gating logic.

Movement type is determined by the classifier with the largest output. This determina-

tion is done by an array of two input signed comparators that accept as input two values
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Figure 3.4: Block diagram of movement logic

and their corresponding indices and output the higher value and its corresponding index.

The output of a comparator is connected to the input of another comparator, which is also

connected to a different input. At the end of the line of comparators the highest value and

its index is obtained, and the index of this value is the movement logic output. Each index

and the output is an unsigned eight bit integer. Figure 3.4 shows the block digram of the

movement logic.

The output of the gating logic anded with the output of the movement logic, effectively

outputting a zero when no movement is detected and the movement type when movement

is detected. Additionally, a counter is used to create the refractory period. The counter

decrements every clock cycle when its value is nonzero and is set to a value of ρ every

time a nonzero output is generated. If the counter is not zero when movement is detected

it prevents the movement type from being sent. This prevents a second classification from

occurring less than ρ time units after a classification, which helps reduce the false positive

rate. Figure 3.5 shows the block diagram of the complete output logic circuit.

3.7 IO Interface

The IO interface was built solely to demonstrate hardware functionality and is not a compo-

nent that would be present in a real world implementation. However, its design is important
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for efficient testing of the hardware algorithm. It is responsible for receiving neuron spike

counts from a serial port, storing those values for the input interface, clocking the algo-

rithm implementation, and transmitting outputs over the same serial port. The IO interface

is configured to communicate at a 115200 baud rate with an 8N1 data format. Its oper-

ation is controlled by the transmission of synchronization bytes(sync bytes) from the PC

connected to its serial interface. When a sync byte, defined as 255, is received by the IO

interface from the serial port it clocks the algorithm implementation, transmits the current

movement classification, and resets its input index to prepare for another set of inputs.

After the sync byte, it is expected that the IO interface receives the spike counts for each

neuron in order. The IO interface stores each spike count in a register connected to the cor-

responding input window signal. After every register has been filled with a spike count the

IO interface waits for another sync byte, at which point the currently held register values

are clocked into the input window and the process repeats. Note that since the software

used to verify functionality will be designed in Matlab no guarantees of data transmission

rate will be made. The PC is expected to send data as fast as it can, but is not expected to

send data fast enough to meet the 50Hz realtime requirement. This will not be a limitation

in the implementation of this hardware in a prosthetic system since no PC will be present,

so this issue does not violate the timing requirement. It is assumed that the system sending

the data to the IO interface performs all verification functionality; the IO interface does not

check the correctness of the data it sends and receives. Figure 3.6 shows the block diagram

Figure 3.5: Block diagram of output logic
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Figure 3.6: Block diagram of asynchronous dexterous decoder hardware implementation
with IO interface

for the IO interface connected to the complete hardware implementation.

3.8 Hardware Analysis

After each component was designed and the decoder system was constructed limitations

on computation speed and algorithm size were analyzed. The significant metrics obtained

from this analysis were the maximum critical path delay and percent of available resources

used with respect to input dimension.

Figure 3.7 shows a graph of the critical path delay of the hardware realization with

respect to decoder input dimension. The maximum allowable delay for a realtime imple-

mentation of this algorithm is 20ms, which is never approached by this implementation.

Therefore, this implementation meets the computation speed requirement.

Figure 3.8 shows a graph of the number of FPGA slices required to implement the linear

classifier with a given input dimension. The synthesis results show slightly more efficient

use of FPGA resources than predicted. The rough estimate performed earlier suggested

that about 22,000 slices would be required to implement a decoder with an input space of

50 neurons, but the results show that less than 20,000 were actually required, even with

the IO interface. This discrepancy is most likely due to the synthesis software performing

automatic optimizations that were not accounted for in the original estimate. As predicted,

the Virtex-4 FPGA used for this experiment does not have enough resources to utilize the

full input space for any monkey, but can realize a synthesizable decoder with an input space
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Figure 3.7: Critical path delay with respect to input space dimension. Note that since the
graph scale is on the order of nanoseconds the 20ms maximum is not an issue.

of up to 60 neurons.

The results in figures 3.7 and 3.8 show that while it is possible to exceed the hardware

resources available on a single FPGA the time required to compute a result is orders of

magnitude less than the realtime computation requirement. Extrapolating from figure 3.7,

it can be estimated that even with a full, 312 neuron input space, the largest for any subject,

the critical path delay would be roughly 260ns, which, when compared to the 20ms realtime

computation requirement, indicates that only 1.3∗10−4% of the available time is being used

to do work. Using a different hardware decoder architecture the extra time available could

be substituted for space, which would result in a hardware implementation that could either

do more work or be implemented on a smaller FPGA. However, the purpose of this work is

simply to demonstrate that the viability of a hardware implementation, and for this purpose

it was preferred to design an implementation that was as similar to the theoretical structure

as possible. Optimizing the hardware implementation is a task that will be left to future

work.
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Figure 3.8: Number of FPGA Slices required to implement linear classifier with respect to
input space dimension. The black dashed line is the total amount of available slices on the
Virtex-4 FX60 FPGA.
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Chapter 4

Test Methodology

The desired goal of this research is to demonstrate the viability of the hardware imple-

mentation described above. However, the significant modifications made to the underlying

algorithm necessitated additional software level testing to verify that it could still provide

adequate performance. As a result, preliminary testing in Matlab, using floating point mul-

tiplications, was performed prior to the testing of the hardware implementation. All testing

was performed using the same primate data used by Aggarwal et al.to allow for comparison

of new data with previous results.

The primate data used for all testing was obtained from a previous experiment involv-

ing three male rhesus monkeys, identified as C, G, and K. Each monkey was trained to

either flex or extend a single digit or wrist in response to specific visual cues, for a to-

tal of 12 movement types. Additionally, monkey K was trained to perform six combined

finger movements along with the 12 single-finger movements. If the subject successfully

performed the desired action within a 700ms time limit it was given a water reward. Single

unit recording from a surgically implanted recording unit contralateral to the target hand

was used to capture the neural activity of the subject during movement trials. Individual

trials took roughly two seconds to complete, and all recordings were centered so that move-

ment occurred at the one second mark. Neural activity was recorded from 312 neurons in

monkey C, 125 neurons in monkey G, and 115 neuron in monkey K[1]. The time at which

action potentials occurred in each neural recording was quantified relative to movement

time and was used to form counts of the number of action potentials in each 20ms period.
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This data could then be used in the manner described previously. Testing was primarily

performed using data from monkey K, although results from C and G were considered to

ensure generalized performance.

4.1 Determination of gating classifier parameters

The first tests performed were to determine values for the gating classifier parameters δ,

γ, and ρ that would maximize correct movement identifications while minimizing false

positives. This was done in two steps. First, a point by point search was performed to

determine the optimal combination of derivative threshold δ and level threshold γ. Since

the values for δ and γ were both related to movement detection accuracy they had to be

considered together. A script was created that would train a gating classifier and then step

through values for both parameters incrementally. For each pair of parameter values the

gating classifier was provided with a sequence of movements. The movement detection rule

using the current pair of parameters was applied to the output of the gating classifier. If the

rule produced a high output solely in a 160ms window around the expected movement time

and not prior to or after this window the trial was considered a success. An exception was

provided for this rule to allow for the effect of the refractory period: if the rule produced

a high output during the expected window then the 100ms following the expected window

were ignored and not classified as false positives. Once this experiment was performed the

parameter combination that produced the highest number of successful trials was selected

for use in all other experiments. Selection of ρ was performed similarly. A gating classifier

was trained and the false positive rate was observed for a set of movement classifications

with different values of ρ. The smallest value of ρ that minimized false positives caused by

a second classification of a single movement was selected for use in all further experiments.
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4.2 Classifier testing

The next step was to test the gating and movement classifiers individually. Two scripts was

created that trained and then tested a classifier of each type with the full input space of a

specified subject. For the gating classifier, data was collected on the number of trials that

either produced no movement classification, produced more than one movement classifica-

tion, produced a classification prior to the expected movement time window, or produced a

classification after the expected movement time window. Any classification that occurred

within the refractory period was ignored. For the movement classifier, data was collected

on movement classification accuracy. A movement classification was considered correct if,

during the expected movement time window, the most likely movement type that occurred

the most matched the expected movement classification. Testing of both classifiers was

performed for each of the three subjects.

Once accuracy analysis was performed for both the gating and movement classifiers, a

script was developed to train and test the whole decoder with different neuron input sets.

Additionally, this script could reduce the input space by iteratively training and then re-

moving the neuron whose net weight magnitude was the least. It should be noted that in

destructive input space reduction the standard practice is to train and test the network with

every input removed one at a time and then chose the configuration that affects the accuracy

the least. This approach was not used because computationally it is of order n2, whereas

the approach used was of order n but still took as long as 18 days to compute in the case

of monkey C. Analysis of data presented in the results section included in the discussion

section provided validation of this approach. To determine decoder accuracy in a number

of different configurations, testing began with the full input space and iteratively trained,

tested, and removed an input until the input space was null. Accuracy was recorded for each

test, providing a measurement of decoder accuracy with respect to input space size. This

test was performed for each of the three monkeys and the results were compared. Addi-

tionally, for monkey K, decoder accuracy was compared between the individual movement

case (12 classes) and the individual and combined movement case (18 classes).
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4.3 Comparing Hardware and Software Implementations

To demonstrate that the hardware decoder described in chapter 3 performed computation

identical to the linear decoder implemented in Matlab software, both a gating and move-

ment classifier were trained, the classifier weights were used to synthesize a hardware

implementation for the Virtex-4 FPGA, and a script was used to feed identical trial data

to both the software and hardware decoders. The software decoder used floating point

computations to produce results, whereas the hardware decoder used the simplified com-

putations described in section 2.3. Since the only visible product of the hardware decoder

is a sequence of classification decisions, this was the metric used for comparing both im-

plementations. A list of positive output classifications and the corresponding trial number

and classification time were recorded for both the hardware and software decoders and

compared. Since the objective of this experiment is to demonstrate that the hardware and

software decoders behave identically a random input set was used and accuracy was not

observed. This experiment was performed for multiple input spaces of different dimen-

sion (dimensions of 10, 20, 30, 40, and 50 were used) to demonstrate that the hardware

implementation scaled properly with respect to input dimension.
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Chapter 5

Results

The results of the test to determine optimal values for the gating classifier parameters is

shown in figures 5.1, 5.2, and 5.3. The experiment to determine level threshold γ and

derivative threshold δ parameters was performed twice, a decision made after analysis of

the first experiment. Figure 5.1 shows the result of the first experiment, which tested a

value range of -0.1 to 0 in 0.01 increments for δ and of 0.2 to 0.5 in 0.025 increments

for γ, with 500 samples per point. A higher precision for both values was desired, so the

experiment was repeated in the region of highest accuracy of the first experiment, from -

0.06 to -0.01 in 0.005 increments for δ and from 0.25 to 0.35 in 0.01 increments for γ, with

750 trials per point. Figure 5.3 shows the percent of false positives that occurred for values

of the refractory period from no period to a period of 10 windows. Every increment of ρ

represents an additional 20ms delay after movement is detected during which no second

classification is allowed. From these graphs, it was determined that gating classifier error

was minimized when γ = 0.31 and δ = −0.055. The false positive rate was found to reach

its minimum when ρ = 9, so a refractory period of 180ms was selected.

Tables 5.1 and 5.2 summarize the gating and movement classifier accuracy results, re-

spectively. For the gating classifier, statistics were recorded on the percent of trials in

which no classification occurred, false positives occurred, early classification occurred, or

late classification occurred. For the movement classifier only classifier correctness during

the expected movement window was observed.

Figure 5.4 shows the accuracy of the complete decoder algorithm with respect to input
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Figure 5.1: Movement detection accuracy rate of the gating classifier with respect to the
level threshold and derivative threshold parameters γ and δ in the region 0.2 ≤ γ ≤ 0.5,
−0.1 ≤ δ ≤ 0.

Figure 5.2: Movement detection accuracy rate of the gating classifier with respect to the
level threshold and derivative threshold parameters γ and δ in the region 0.25 ≤ γ ≤ 0.35,
−0.06 ≤ δ ≤ −0.01.

Figure 5.3: False Positive rate of gating classifier with respect to the gating classifier re-
fractory period parameter ρ.
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Subject Input Percent Percent False Percent Percent
Monkey Dimension Missed Positive Early Late

C 312 0.01 0 0 0.01
G 125 0.17 6.67 3.69 7.4

K(indiv) 115 2.24 0.14 0.08 0.47
K(comb) 115 1.29 4.91 0.22 2.51

Table 5.1: Summary of gating classifier accuracy using the full input space of each subject.

Subject Monkey Input Dimension Percent Correct
C 312 100
G 125 100

K(indiv) 115 99.88
K(comb) 115 93.3

Table 5.2: Summary of movement classifier accuracy using the full input space of each
subject.

dimension for each subject, including the combined movement case for monkey K. Each

point was obtained by performing 100 trials per movement type for each input dimension,

starting from the full input space. For clarity, only input dimensions 0 through 80 are

shown. Above an input dimension of 80 accuracy did not improve for any subject.

Comparison of hardware and software decoder implementations showed some variation

between the two implementations. Tables 5.3, 5.4, 5.5, 5.6, and 5.7 show each case where

hardware and software output differed during comparison of decoders with input dimension

of 10, 20, 30, 40, and 50, respectively. For each trial the expected output is provided along

with movement decisions made by the hardware and software decoders and the time at

which each decision was made. All trials not presented here showed identical activity

between hardware and software decoder.
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Figure 5.4: Linear classifier decoding accuracy with respect to input space size. Note that
accuracy starts to drop around approximately 60 neurons, indicating that a larger input
space is necessary to attain a level of accuracy similar to that of the nonlinear classifier.
Additionally, note that the accuracy of the combined movement trials is significantly worse
than the nonlinear classifier.

Trial Expected Software Decoder Software Decoder Hardware Decoder Hardware Decoder
Number Output Output Output Time(ms) Output Output Time(ms)

13 e1 0 x e1 1100
15 e3 e3 1000 0 x
21 f3 f3 1080 0 x
27 e3 fw 1020 e3 1020
31 f1 fw 920 f1 920
32 f2 fw 1060 f2 1040
33 f3 f3 1060 f3 960
37 e1 e5 860 e1 860
39 e3 fw 940 e3 940
45 f3 ew 800 ew 820

ew 1120
59 f5 fw 1040 0 x
61 e1 f5 980 0 x
65 e5 fw 1080 f4 1080
69 f3 fw 1100 f3 1100
70 f4 fw 1120 f4 1120
82 f4 f4 1060 0 x
94 f4 f5 1040 f4 1080

100 e4 e4 1040 f3 1040

Table 5.3: Table of output differences between hardware and software implementation over
100 trials with an input dimension of 10.
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Trial Expected Software Decoder Software Decoder Hardware Decoder Hardware Decoder
Number Output Output Output Time(ms) Output Output Time(ms)

4 e4 fw 1120 f5 1120
5 e5 fw 1120 e5 1120
9 f3 fw 1000 f3 1000

10 f4 fw 1060 f4 1060
16 e4 fw 1080 e4 1080
21 f3 f5 1100 f3 1100
28 e4 fw 980 e4 980
33 f3 fw 1060 f3 1060
34 f4 f5 1060 f4 1060
46 f4 f3 840 f4 840

f4 1060 f5 1060
52 e4 0 x e4 1020
71 f5 fw 1160 e3 1160
76 e4 e3 1040 e4 1040
88 e4 fw 1000 e4 1000
93 f3 f5 1080 f3 1080
94 f4 fw 1080 f4 1080

Table 5.4: Table of output differences between hardware and software implementation over
100 trials with an input dimension of 20.

Trial Expected Software Decoder Software Decoder Hardware Decoder Hardware Decoder
Number Output Output Output Time(ms) Output Output Time(ms)

1 e1 e1 980 0 x
5 e5 0 x e5 1120
9 f3 fw 1060 f3 1060

18 ew 0 x ew 1020
34 f4 0 x f4 1020
35 f5 f5 1100 0 x
40 e4 e3 1100 e4 1100
45 f3 fw 1060 f3 1060
57 f3 fw 1000 f3 1040
69 f3 fw 1040 f3 1040
71 f5 fw 1120 0 x
81 f3 0 x f3 1100
95 f5 0 x f5 1140

Table 5.5: Table of output differences between hardware and software implementation over
100 trials with an input dimension of 30.
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Trial Expected Software Decoder Software Decoder Hardware Decoder Hardware Decoder
Number Output Output Output Time(ms) Output Output Time(ms)

1 e1 0 x e1 1100
5 e5 e5 1100 e5 1230
9 f3 f4 1040 f3 1040

10 f4 f4 1020 f4 920
14 e2 e5 1040 e5 1020
21 f3 0 x f3 960
34 f4 f4 940 f4 880
45 f3 fw 1020 f3 1020
46 f4 f4 1020 f4 920
58 f4 f4 1000 f4 940
69 f3 f4 1060 f3 1060
70 f4 f4 1020 f4 1140
73 e1 e1 1100 f5 1100
76 e4 fw 1080 e4 1080
78 ew 0 x ew 1000
96 fw 0 x fw 1100

Table 5.6: Table of output differences between hardware and software implementation over
100 trials with an input dimension of 40.

Trial Expected Software Decoder Software Decoder Hardware Decoder Hardware Decoder
Number Output Output Output Time(ms) Output Output Time(ms)

14 e2 e2 1060 e2 1000
15 e3 e3 1040 e3 1000
57 f3 f5 1120 f3 1120
58 f4 f4 900 f4 1020

Table 5.7: Table of output differences between hardware and software implementation over
100 trials with an input dimension of 50.
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Chapter 6

Discussion

6.1 Algorithm Modification Analysis

From the results presented in chapter 5 it was concluded that the goal of maintaining com-

parable accuracy (above 90%) for the individual movement cases was met. Table 6.1 shows

a comparison of accuracy between the original nonlinear artificial neural network approach

and the linear approach presented in this paper. As shown, for the linear ANN monkey C

performs better than the original algorithm with an input space of 50 or greater, and comes

within 0.1% of reaching the 99.8% accuracy of monkey K in the individual movement task,

which was the highest documented accuracy of the original algorithm. For the linear ANN

monkey G achieved similar levels of accuracy to the nonlinear ANN approach when an

input space of over 60 neurons was used. Also, for the linear ANN monkey K performed

above 95% accuracy for the individual movement task, although this was lower than the

99.8% accuracy achieved by the nonlinear ANN approach. It was expected that algorithm

simplification would reduce accuracy to some extent, so the loss is considered acceptable

for this work. The one loss of accuracy that was higher than expected and considered unac-

ceptable was for monkey K in the combined movement task, which never got much higher

than 80%, as shown in figure 5.4.

Data presented in tables 5.1 and 5.2 suggest that gating classifier is primarily respon-

sible for decoder failures. The percent missed and percent false positive statistics show

explicit failures of the gating classifier that lead to incorrect classifications. Future work on
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subject classification
monkey algorithm 25 neurons 35 neurons 40 neurons 50 neurons 60 neurons 80 neurons

C nonlinear 85.0% 92.9% 96.2% - - -
C linear 87.4% 93.4% 94.9% 97.3% 98.8% 99.7%
G nonlinear 72.9% 78.3% 90.5% - - -
G linear 61.6% 74.2% 82.4% 86.9% 90.5% 89.9%

K (indiv) nonlinear 95.4% 98.3% 99.8% - - -
K (indiv) linear 88.1% 94.2% 95.8% 94.3% 95.4% 95.3%
K (comb) nonlinear 82.4% 86.7% 92.5% - - -
K (comb) linear 58.2% 71.2% 71.7% 78.2% 78.8% 80.5%

Table 6.1: Comparison of original nonlinear artificial neural network and modified linear
artificial neural network algorithm accuracy with respect to input dimension. Information
on original algorithm accuracy was obtained from [1], which only provided information up
to 40 neurons.

this subject should focus on minimizing these failures in order to increase decoder accu-

racy. One potential solution would be to swap the linear gating classifier for the a nonlinear

classifier by using a software coprocessor or an alternative hardware implementation to

compute the required number of floating point operations. Additionally, the significant

amount of early and late classifications, especially for monkey C, may cause a movement

misclassification when the movement classifier made a correct selection during the ex-

pected movement time. This idea is also supported by the very high movement classifier

accuracy, which demonstrates that, aside for the combined movement case, the movement

classifier correctly classifies movement type for the majority of the expected movement

window. Note that the movement classifier accuracy test did not account for the window

in which movement was detected. Currently, the decoder only observes the movement

classifier output at the time the gating classifier detects movement, which can allow for

noise in movement classifier output to lead to incorrect classifications. In future work, this

could potentially be reduced by changing the movement decision to incorporate movement

classifications that occurred at previous times.

The reduced accuracy demonstrated by the movement decoder when combined move-

ments were incorporated highlights an important limitation of this implementation. The

lower accuracy of the movement classifier with combined movements as compared to sin-

gle finger movements, shown in table 5.2, suggests that a linear ANN may be incapable
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of completely distinguishing single finger movements from combined movements. This is

most likely caused by the fact that some overlap occurs in the neural signals for individu-

ated and combined movements, resulting in movement classifier confusion. Surprisingly,

training with combined movements also decreased the accuracy of the gating classifier by

4.77%. Since the neuron input space was identical between the individuated and combined

movement trials, this could be a product of the different forms of neural activity that occur

during combined movements.

6.2 Hardware Implementation Analysis

The discrepancies between the behaviors of the FPGA hardware decoder implementation

and the decoder implemented in Matlab software highlights a potential flaw in the design

assumptions presented in sections 2.3 and 2.2. The transition from equation 2.8 to equation

2.9 assumes that the product of rounding errors and input values can be approximated as

a Gaussian distribution. This approximation allows for the assumption that rounding error

will become negligible as the rounding coefficient becomes sufficiently large. As shown in

the results section, the error introduced by rounding is not negligible, due to the fact that

it is capable of causing changes in performance. This incorrect approximation can poten-

tially be attributed to one of three assumptions: that the input dimension is large enough

for the central limit theorem to be applicable, that individual inputs can be approximated as

stationary uniform distributions, and that the rounding coefficient is actually large enough

to negate error introduced by rounding. Given that the input dimension ranged from 10 to

50 in the hardware-software comparison tests it is likely that the central limit theorem is

actually not applicable, particularly at the smaller dimensions. Additionally, assuming that

individual inputs are stationary and uniformly random is clearly incorrect, otherwise any

attempt to extract time dependent information from these signals, such as in the gating and

movement classifiers, would fail. However, it is unclear if this approximation is sufficiently

inaccurate to cause a difference in system performance. In terms of rounding, it is possible
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that since the rounding coefficient was chosen to be the multiplicative inverse of the small-

est weight magnitude that the weights on the same order of magnitude were rounded in

a non-negligible manner. Approximating rounding error as a uniform distribution fails to

capture this possibility, and therefore may not have been the ideal model. The weight dis-

tribution shown in figure 2.6 demonstrates that the weights range across several orders of

magnitude, which would cause rounding to have a greater impact on smaller weights, po-

tentially changing their contribution to the output signal enough to change its classification.

Note that it may be possible, if the assumptions that allow for the approximation in equation

2.12 are true, to reduce the error introduced by the approximation by simply increasing the

rounding coefficient. One additional potential source of the discrepancy is the multiplica-

tion and rounding performed on the derivative and level thresholds. These fixed thresholds

are multiplied by the rounding coefficient and then rounded to eliminate the need for any

floating point math; it is possible that in some cases this rounding changes the thresholds in

a non-negligible manner. Regardless of cause, these discrepancies do not adversely affect

hardware performance (Out of all 67 observed discrepancies, 11 were solely timing related,

43 were caused by incorrect software classification only, 8 were caused by incorrect hard-

ware classification only, and 5 were caused by both incorrect software and hardware), so

the hardware decoder can still be considered as accurate as the software implementation of

the decoder.

One of the limitations of this implementation is that it is only able to realize an input

space of at most 60, although it was demonstrated in figure 5.4 that an input space of at least

80 is needed to reach peak decoder accuracy. Given the discrepancy between size and time

utilization highlighted in section 3.8 it seems feasible that an alternative implementation

to the one designed in this work would be capable of providing the required input dimen-

sion without exceeding size constraints. One potential alternative would be to perform the

multiplications for each classifier serially, rather than in parallel. This could be done by

multiplexing the spike count inputs and a lookup table of weight values for a classifier into

a single multiply-accumulate unit. If the multiplexer and multiply-accumulate unit were
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clocked at a rate equal to the input dimension times faster than the 50Hz clock this serial

classifier implementation would function identically to the fully parallel implementation

presented in this work. The serial implementation would scale in both space and time as

input dimension was increased, but space requirements would grow at a slower rate be-

cause only the weight lookup table and multiplexers would increase in size. Alternatively,

weights could be stored in random access memory outside of the FPGA, which would elim-

inate the growing space requirement for weights. Time requirements would increase at a

higher linear rate, but given the current imbalance between space and time utilization this

is not an issue. Additionally, since the number of multipliers in this approach would be

constant, floating point arithmetic could be used without increasing the rate at which space

requirements increased with respect to input dimension.

Recent trends have shown steady increases in FPGA size. At the time of publication,

the most recently released commercially available Xilinx FPGA, The Virtex-6 SXT line of

products, can incorporate as many as 74,400 logic slices, each of which provides 2 more

lookup tables and six more flip flops than a Virtex-4 logic slice, and 2,016 DSP slices, each

of which contains a 25 by 18 integer multiplier[18]. An increase in available resources

could allow for implementation of decoder features that were restrictively resource inten-

sive during development. One obvious result would be the ability to implement a decoder

that used a larger input space than was feasible for the Virtex-4. A less trivial use of the

added resources would be the implementation of a hardware learning system. A hardware

learning system could be implemented if the roughly 1000 lookup tables required to im-

plement a fixed parameter hardware decoder were replaced by integer multipliers that per-

formed the product of classifier weights and input spike counts. This would allow for the

classifier weights to be updated by a training component that could adjust each value based

on the learning heuristic used. If training speed was not an issue, classifier weights could

be multiplexed to the training system, allowing for efficient space utilization. Since each

Virtex-6 DSP slice contains a multiplier large enough to perform one of the required mul-

tiplications the learning system would theoretically be implementable on a single Virtex-6
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FPGA. Additionally, decoder accuracy could be improved by using an alternative to the

linear gating classifier. Research performed on the subject of nonlinear ANN implemen-

tation on FPGAs has demonstrated that multiplier multiplexing techniques can maximize

resource utilization on currently existing FPGAs[14], which may allow for the implemen-

tation of an nonlinear gating classifier.
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Chapter 7

Conclusions

The goal of this research was to work toward a mobile, brain controlled prosthetic de-

vice by creating a hardware implementation of an asynchronous dexterous hand movement

decoder that could theoretically be used to control a prosthetic hand. Previous research

provided an algorithm that was capable of accurately decoding hand movements from neu-

ral recordings[1], but it required a high number of floating point operations. Modifications

were made to reduce the computational complexity of the algorithm to the point where

it could be implemented on a single Virtex-4 FX60 FPGA. A hardware implementation

was designed and demonstrated to operate at accuracy comparable to the original algo-

rithm in real time, except in the case of combined movements. The fully parallel hardware

implementation was observed to be inefficient in its use of available computation time,

suggesting that an alternative digital architecture may be better suited to this task.

The primary objective of this research, to create a hardware implementation that could

decode movements in realtime with an accuracy of at least 90%, was met. The first phase

of this work, reducing the complexity of the original decoder algorithm while maintaining

comparable accuracy to it, was accomplished by using linear ANNs and by using integer

multiplication instead of floating point multiplication. The use of linear ANNs changed the

gating classifier signal in such a way that the movement detection heuristic in the origial

algorithm was unable to meet accuracy requirements with any combination of parameter

values, so an alternative detection scheme was created based on the gating classifier signal

and its derivative that did meet the requirement. Additionally, the approximation used to
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replace floating point math with integer math was observed to change the decoder output

in some instances and was therefore flawed, although it did not adversely affect accuracy.

The second phase of this work, the design and implementation of a hardware decoder, led

to creation of a decoder that could use an input space up to 60 neurons on a single Virtex-

4 FPGA. Accuracy analysis showed that this input space size limitation is not ideal, as

maximum accuracy is reached at an input space of at least 80 neurons, so an alternative im-

plementation would be preferable in future work. However, the hardware implementation

does successfully demonstrate proof of concept and provides a baseline for future hardware

implementations.

The ability to decode individuated hand movements from neural signals in a hardware

system is a significant advancement toward the development of a next generation prosthesis.

However, additional work must be performed before a neurally controlled prosthetic system

can approach the functionality of a biological human hand. Two limitations demonstrated

by this research significantly restrict the ability of a prosthesis to be truly dexterous: the

difficulty in distinguishing between individuated and combined finger movements and the

need for a refractory period following a movement classification to prevent false positives

that lead to unintended prosthesis activity. Aside from some anatomical limitations, the

average human is capable of moving each joint in each finger on a hand simultaneously

and independently of one another. In contrast, the decoder presented in this research is

capable of making an individual movement once ever 180ms, which would allow for only

about 5.5 movements per second. While this is an important first step toward creating a

hand prosthesis, it is still a long way from being truly natural.

That being said, this research does provide a good starting point and baseline accu-

racy measurements for future hardware implementations of movement decoder algorithms.

Increases in FPGA complexity and alternative algorithm implementation methods will re-

move limitations on what is feasible in hardware, enabling improvements that may even-

tually lead to a prosthesis comparable to the human hand. Future implementations must

focus on the problem of further increasing accuracy to the point where reliability is not an
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issue for most subjects, the problem of allowing for accurate classification of simultaneous

and rapid movements, and the constraints imposed by the need for portability.
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