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(a) Pre Energy Bias (b) Post Energy Bias

Figure 5.18: Demonstration of the interactive touch screen energy bias. These images were
recorded on an LG Optimus 2x Android smartphone.

responsiveness of this feature is discussed in Section 5.2.5.

5.2.3 Battery Consumption

Though performance and quality were the main considerations for the video retargeting

model, battery consumption was also highlighted to emphasize the application’s ability to

function over long periods of time. Battery consumption for each of the available resizing

operators is demonstrated in Figure 5.19. These results were obtained by the PowerTutor

application [13] and depict the average power usage of each method. Each method at each

resolution was run for a significant amount of time in order to factor out the effects of

initialization.

From the figure, seam carving exhibits the highest battery consumption followed by

scaling and then cropping. These results make intuitive sense as they reflect the relative

complexity of each of the operators. Seam carving on average requires 24% more com-

putations than scaling. Scaling also requires a significant number of computations while

cropping only requires adjustment of the outputted window region. Furthermore, the bat-

tery results are logically consistent with the timing results previously presented. The system

components that draw this power are the LCD screen and the CPU.

In general the battery consumption appears to remain fairly consistent across multiple
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Figure 5.19: Battery consumption comparison of mobile resizing methods. These results
were recorded on an LG Optimus 2x Android smartphone using the PowerTutor application
[13]. Each dimension was reduced by 50% for each test.

resolutions. With the exception of the smallest supported resolution, the results demon-

strate very little fluctuation. This indicates that the retargeting methods presented in this

work are scalable, with respect to power.

Aside from the PowerTutor application, battery usage was also measured using built

in Android application managers. However, changes in the battery voltage were reported

only when a significant change occurred effectively preventing accurate measurements. In

addition, this method encompassed battery usage from other currently running applications.

Therefore, this approach yielded unreliable results.

5.2.4 Application Memory Usage

Memory analysis was performed on the mobile device to gauge the overall size of the appli-

cation. Memory usage was monitored for each resizing method. Figure 5.20 illustrates the

comparison of these methods over various, supported, Android resolutions. These results

indicate very little deviation in application size between the resizing methods. Additionally,

the results depict a near-linear trend based on the total number of pixels. This is instinctive

as each method inherently relies on the size of the frame being processed.
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Figure 5.20: Total memory usage of mobile resizing methods. These results were recorded
on an LG Optimus 2x Android smartphone using the PowerTutor application [13]. Each
dimension was reduced by 50% for each test.

The available seam carving features were also tested for their total memory consump-

tion. The results of these tests are encompassed in Table 5.9. This table suggests most

features exhibit the same amount of additional memory usage. This is intuitive since each

feature typically allocates memory large enough to store information relative to the entire

frame. However, the maximum energy feature nearly doubles the size of the application.

This is due to the fact that frames are buffered up to seven times and the maximum energy

matrices are buffered up to 15. Thus, a total of 22 matrices are allocated to store informa-

tion. Compared to enabling all features, enabling all features with downsampling doesn’t

reduce the memory usage to a fourth of its size merely because not all matrices are reduced

in size when downsampled.

It is also important to note that the two largest, available resolutions, 1600x1200 and

1920x1088, cannot be implemented. Usage of either resolution causes the application to

run out of available memory. However, this is not a reason for great concern as both reso-

lutions exceed the screen dimensions of the LG Optimus 2x, thereby making them imprac-

tical.
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Feature Total Memory Usage (kB)
Downsampling 38971
Face Detection 39043
Face Detection Downsampling 39039
Salience 39032
Seam Filtering 39019
Maximum Energy 67439
Temporal Energy 39023
All (no downsamplings) 83327
All (with downsamplings) 55335

Table 5.9: Total memory usage of seam carving features for the VGA resolution. These
results were recorded on an LG Optimus 2x Android smartphone. Each dimension was
reduced by 50% for each test.

5.2.5 Application Responsiveness

Upon startup, the tunnel vision application successfully completes its initialization proce-

dure in a reasonable amount of time. Once reached, the main user interface demonstrates

excellent responsiveness. Touch screen events, invoked by the user, are handled immedi-

ately. Events triggering updates to the interface are also very responsive and avoid any

noticeable delay.

During streaming video retargeting touch screen events are not always handled imme-

diately. Slight delays in touches and their corresponding actions are noticeable. This is

mainly due to the frame processing time since touches are executed only between frames.

Thus, touches will be more responsive if retargeting occurs in one dimension rather than

both. Also, returning to the application home screen is not immediate. Frames become

buffered and must execute prior to stopping the retargeting operation. It is also important

to note that scaling and cropping techniques are much more responsive during retargeting

events than seam carving since their processing time for each frame is much smaller.

Finally, during resizes, the application does not experience any slow down. From the

results gathered, it has been shown that the retargeting operators function at a consistent

rate over a long period of time making the application dependable and practical.
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Chapter 6

Conclusion

6.1 Research Summary

This thesis introduced a video retargeting model capable of retargeting images, or stream-

ing video, in each dimension. Dimensions were processed independently allowing for

changes in the aspect ratio and custom output resolutions. This model also contained re-

gion of interest techniques that permitted automated preservation of various features, such

as faces and salience, found within images and videos.

Additionally, the video retargeting model was incorporated into an Android application,

thereby producing a portable interface for users. Aside from seam carving, the application

also provides scaling and cropping operators allowing for a more complete retargeting ap-

plication where operators could be selected based on the user’s specific needs. The con-

structed interface makes operating the application intuitive and effectively eliminates any

initial learning curve. New users are able to use the application without prior training of

any kind.

The tunnel vision assistance application took advantage of the available buttons and

touch screen interface provided by the Android OS. This led to the formulation of interac-

tive resize and interactive energy bias features. These features provide novel user interac-

tion and empower users with the ability to intervene in the event automated techniques fail.

This increases the innovation, performance and appeal of the application.

Temporal coherence was successfully adapted to accommodate the real-time seam carv-

ing framework. This was accomplished by analyzing and extending its dynamic form.
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Real-time temporal coherence has been shown to drastically abate temporal artifacts in

streaming, retargeted videos. This technique has also demonstrated acceptable performance

capabilities.

The sliding window used to compute maximum energy exhibited promising results. The

main advantage it offered was its ability to react to moving objects. The energy associated

with moving objects preceded the actual object through frame buffering. Additionally, it

significantly reduced pixel noise, which made maximum energy a valuable feature.

This work also presented a novel and efficient seam filtering approach. The seam filter-

ing process computes an initial set of seams that are used to bias seam carving procedure.

This inherently allows the resulting seams to gravitate towards highly dense seam regions.

Seam filtering sacrifices the continuity of the spatial domain in order to preserve temporal

coherence within videos. Its simplistic, yet effective concept makes it ideal for inclusion in

a real-time application.

6.2 Future Work

Though this research presents a novel and usable solution to aid individuals diagnosed with

tunnel vision, there is still ample opportunity for continued development in this research

field. This section highlights improvements that can be made to the application and video

retargeting model established in this thesis.

6.2.1 Android Application Image Extension

Currently, the tunnel vision assistance Android application, developed in this thesis, sup-

ports video retargeting. Retargeting on the raw camera feed can occur in either dimension,

together or separately. However, as it stands, the application provides no existing support

for image retargeting.

The video retargeting model, used to provide real-time video retargeting in the current

version of the application, is also capable of image retargeting. To achieve this, an interface

must be created to select the appropriate image to resize. The image can either be a photo
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previously taken and stored on disk or a photo taken directly by the camera. Providing this

service would allow for a more robust, complete and appealing application.

6.2.2 Parallel Seam Carving Algorithm

Performing the real-time seam carving algorithm developed by Huang et al. requires three

passes of the image. These passes compute the forward and cumulative energies, define

the matching relations and perform the necessary seam removals. Each pass relies on

the previous pass of the image forming well defined data dependencies. Though these

dependencies cannot be avoided, compensation can be provided to efficiently account for

them.

With the proper hardware support the real-time seam carving algorithm can be pipelined

to achieve greater throughput. The pipeline would possess three stages, where each stage

would represent an image pass described above. If desired, the forward energy calculation

could also be expanded into multiple stages. This would allow for efficient incorporation

of additional energy calculations, such as temporal energy, face detection, salience, etc.

Furthermore, the cumulative energy computation can be achieved using multiple pro-

cessors. Stultz et al. developed a parallel approach for computing the energy and mini-

mization paths of the dynamic seam carving technique [32]. This procedure recognizes the

dependencies exhibited by the calculations, but is able to provide a novel workaround. This

is accomplished by separating each row, or column, into n sections, where n represents the

number of available processors. Each processor independently computes the cumulative

energy values of the pixels it is assigned. Communication between processors is achieved

using MPI sends and receives to resolve the inherent data dependencies. This approach

does not guarantee synchronization between the processors, but still achieves a noticeable

speedup.
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6.2.3 Generalized Multiscale Seam Carving

One area most seam carving algorithms struggle with is chaotic regions. Chaotic regions

are typically regions of high energy because of the fact that they exhibit a large amount of

randomness. Due to this high energy characteristic seams tend to avoid them. However, the

fact that these regions are so random makes them ideal for seam carving. Removing pixels

from chaotic regions is nearly undetectable and would subsequently leave more important

regions of the image unaltered. This would effectively make seam carving more robust to

a wider variety of images. Generalized multiscale seam carving offers a solution to this

issue.

Generalized multiscale seam carving [5], a technique introduced by Conger et al., re-

defines seam carving through the incorporation of filter banks and develops a multiscale

analysis model. This enables the use of different filter families for different settings and

produces improved seam selection results. The extension to multiscale is based on a cas-

caded filter bank for various sizes of the image being retargeted.

6.2.4 Camera Motion Compensation

Though temporal characteristics are taken into consideration under the current model, cam-

era motion compensation is not. Thus, temporal energy is not appropriately preserved be-

tween frames when camera motion occurs. This subsequently limits the model and the

application to static videos. To alleviate this pitfall, camera estimation techniques can be

employed to determine the proper application of spatial and temporal energy. This requires

additional computational complexity and, more importantly, a larger frame processing area.

6.2.5 Android GPU

As it currently stands, the raw camera data is encoded in YUV420SP. The format of this

encoding makes it easy to obtain the grayscale data of the retrieved frame, but it makes

seam removal more difficult. This can be attributed to the fact that YUV420SP is organized

as a planar format rather than a packed format. This means that the U and V planes are
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interleaved which leads to a much more complex seam removal process. Thus, to perform

the seam removal process as it currently stands, the frame must be converted to a packed

format, specifically ARGB8888.

The unpacking procedure involved in converting YUV420SP to ARGB8888 demon-

strates a high degree of concurrence. Due to this concurrence the image format conversion

is ideal for GPU processing. As it stands the latest version of the Android OS (Android

4.0, Ice Cream Sandwich) supports OpenGL ES 2.0. OpenGL is a graphics API that sup-

plies a software interface for 3D graphics processing hardware. OpenGL ES is a version of

OpenGL which specifically targets applications running on embedded devices. By fusing

OpenGL ES techniques with the conversion process a speedup should be achieved.
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Appendix A

Edge Weight Derivation

Seam removal revolves around pixel energies. The strategy Huang et al. take is to max-

imize the variance of the energy of matching edges. By doing this removed matching

edges possess a lower energy which simultaneously makes the total energy of the remain-

ing matching edges higher. The derivation of the variance maximizing function for vertical

seams is displayed below. Extension to horizontal seams is straightforward.

The following derivation uses image I which contains m rows and n columns. The

matching relations process is restricted to rows k and k + 1. Assume e(x, y) defines the

energy of pixel I(x, y) and w(i, j) corresponds to the weight of the edge connecting pixels

I(k, i) and I(k + 1, j). In addition to this assume Ei represents the energy of the matching

edge which connects to pixel I(k, i). This is formally defined as Ei = e(k, i) + e(k +

1,m(k, i)), where the function m is a mapping function.

σ2 =
1

m
·

m∑
i=1

(Ē − Ei)
2

=
1

m
·

m∑
i=1

Ē2 − 2

m
· Ē ·

m∑
i=1

Ei +
1

m
·

m∑
i=1

E2
i

= C1 − C2 +
1

m
·

m∑
i=1

[e(k, i) + e(k + 1,m(k, i))]2

= C1 − C2 +
1

m
·

m∑
i=1

[e2(k, i) + e2(k + 1,m(k, i))] +
2

m
·

m∑
i=1

e(k, i) · e(k + 1,m(k, i))

= C1 − C2 + C3 +
2

m
·

m∑
i=1

e(k, i) · e(k + 1,m(k, i))
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Since C1, C2 and C3 are constants in order to maximize the variance, σ2, the equation
m∑
i=1

e(k, i) · e(k + 1,m(k, i)) must be maximized. Therefore, the weight of a matching

edge is defined as follows:

w(i, j) =

e(k, i) · e(k + 1, j), |i− j| ≤ 1

−∞, otherwise
(A.1)

However, this definition only considers two rows which are isolated from the entire

image when assigning weight. As such this does not ensure the largest variance between

vertical seams within the image. Instead this achieves a local optimum rather than a global

optimum.

To correct this a new set of matrices must be defined. Matrix A corresponds to the cu-

mulative energy of computed seams. More specifically, A(i, j) symbolizes the cumulative

energy of the seam which begins at the top of the image and passes through the pixel I(i, j).

A is computed incrementally as the matching process is executed. Matrix M represents the

cumulative energy along optimal seams. M(i, j) indicates the optimal seam energy which

can be achieved starting at pixel I(i, j) and ending in the last row. M is calculated once

using dynamic programming from bottom to top.

Given these new matrices A(k, i) and M(k + 1,m(k, i)) replace e(k, i) and e(k +

1,m(k, i)) in the discussion above, respectively. This subsequently alters Ei which be-

comes Ei = A(k, i) +M(k + 1,m(k, i)). Thus Ei now represents the energy of the entire

vertical seam. More importantly maximizing the variance of Ei now maximizes the vari-

ance of vertical seams within the image. This leads to a new definition of edge weight

defined as:

w(i, j) =

A(k, i) ·M(k + 1, j), |i− j| ≤ 1

−∞, otherwise
(A.2)
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Appendix B

Spatial Coherence Derivation

Defined by Grundmann et al., spatial coherence attempts to gauge how much spatial error

will be introduced into an image after a seam removal [14]. In this sense, it is very similar

to forward energy. However, the formulation of spatial coherence leads to a more general

model allowing for piecewise, or discontinuous, seams.

The main difference between forward energy and spatial coherence is the criteria on

which they are based. Forward energy relies on pixel intensity variation, whereas spatial

coherence depends on the gradient variation of the intensity. This simple, yet crucial,

difference results in a distinct optimization of seams for each method. The motivation

for a gradient based spatial coherence measure is illustrated in Figure B.1.

In its simplest form, spatial coherence is comprised of two components that quantify

error in the vertical and horizontal directions. More specifically, their measures represent

the change in gradients in their respective dimension caused by a pixel removal. Their

combination leads to the overall spatial coherence cost Sc = Sh + Sv.

Each component of the spatial coherence equation has multiple cases. The horizontal

(a) No Detail Lost (b) Detail Lost (c) Linearity Preserved

Figure B.1: The spatial error associated with various pixel removals [14]. The pixel out-
lined in red is the pixel attempting to be removed.
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(a) Interior Pixel Removal (b) Border Pixel Removal

(c) Piecewise Seam Cost

Figure B.2: The spatial coherence costs for removing various pixels [14].

spatial component possesses cases for interior and border pixels. Interior pixels are rep-

resented in Figure B.2(a) and Equation B.1a while border pixels are represented in Figure

B.2(b) and Equation B.1b. Upon examination of these figures and equations, it is obvious

that this cost relies only on the current pixel. Therefore, Sh essentially describes the rela-

tive interest, or salience, of the pixel [14]. The value of Sh is small for cases (a) and (c) of

Figure B.1, whereas the value of Sh is much larger for case (b). This places more emphasis

on the preservation of intricate details within images.

Sh = |I(r, c− 1)− I(r, c)|+ |I(r, c)− I(r, c+ 1)| − |I(r, c− 1)− I(r, c+ 1)| (B.1a)

Sh = ||I(r, c− 1)− I(r, c)| − |I(r, c)− I(r, c+ 1)|| (B.1b)

The vertical spatial component relies solely on the best potential seam in the previous

row (for vertical seams). This indicates that Sv represents a spatial transition cost between

adjacent rows [14]. The vertical costs for the top left, top and top right pixels correspond

to Equations B.2a, B.2b and B.2c, respectively. These equations determine the vertical

linearity introduced by each removal. Notice that the top pixel cost is zero, since no new

vertical neighbors are formed. Thus, for this case, the change in linearity only occurs from

the horizontal cost. To avoid unjust bias to diagonal neighbors the pixels involved in the
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vertical cost are treated symmetrically.

sv =||I(r − 1, c− 1)− I(r, c− 1)| − |I(r − 1, c)− I(r, c− 1)||+

||I(r − 1, c)− I(r, c)| − |I(r − 1, c)− I(r, c− 1)|| (B.2a)

Sv =0 (B.2b)

sv =||I(r − 1, c+ 1)− I(r, c+ 1)| − |I(r − 1, c)− I(r, c+ 1)||+

||I(r − 1, c)− I(r, c)| − |I(r − 1, c)− I(r, c+ 1)|| (B.2c)

From the spatial coherence cost, extension to discontinuous seams occurs naturally.

An illustration of piecewise seams, and the pixels involved in the calculation, is shown

in Figure B.2(c). In this depiction, the blue and orange dotted lines indicate the gradient

magnitudes prior to removal and the red lines indicate the newly formed gradients. Again,

by considering both the blue and orange dotted lines, symmetry is observed to avoid unjust

bias.

The generalized, discontinuous, spatial transition cost associated with pixel (xb, y) and

pixel (xa, y − 1) is [14]:

S ′v(xb, xa, y) =

xb−1∑
k=xa

|Gv
k,y −Gd

k,y|+
xb∑

k=xa+1

|Gv
k,y −Gd

k−1,y| (B.3)

In this equation, Gv
k,y = |Fk,y − Fk,y−1| represents the vertical gradient magnitude be-

tween the pixel (k, y) and its top neighbor, where F indicates the current frame. Similarly,

Gd
k,y = |Fk,y − Fk+1,y−1| represents the diagonal gradient magnitude with the top right

neighbor for the pixel (k, y). Given this information, this equation directly extends the

vertical spatial coherence equations, Equation B.2.


