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1 Abstract

Given a graph G with a ranking function, f : V (G) → {1, 2, . . . , k}, the

ranking is minimal if only if G does not contain a drop vertex. The arank

number of a graph, ψr(G), is the maximum k such that G has a minimal k-

ranking. A new technique is established to better understand how to analyze

arankings of various cyclic graphs, Cn. Then the technique, flanking number,

is used to describe all arank properties of all cyclic graphs fully by proving

the following proposition: ψr(Cn) = blog2(n+ 1)c + blog2(
n+2
3 )c + 1 for all

n > 6.
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2 Introduction

Definition A labeling f : V (G)→ {1, 2, . . . , k} is a k-ranking of a graph

G if and only if f(u) = f(v) implies that every u− v path contains a vertex

w such that f(w) > f(u).

Let us first introduce some notation. Given a path, Pn, we use the

notation 1− 2− 3− . . .− k to represent the labels of each vertex in Pk. For

a cyclic graph, Cn, we use the notation 1− 2− 3− . . .− k− to represent the

labels of each vertex in Ck. Note that in this case, there is a dash to the

right side of k to illustrate that it cycles back to the first label in a cyclic

graph. For example, the notation 1− 2− 1 represents a path where the first

and third vertex have a label of one, while the second vertex has a label of

two.

Suppose we have a path with four vertices with the labels 1− 2− 1− 3.

Then this path has a 3-ranking. However, if the path has the labels 2− 1−
2 − 3, then the labeling is not a k-ranking, since the first vertex and the

third vertex violate the definition of k-ranking. As a final example, a path

with the labels 1− 2− 3− 4 is a 4-ranking of the path.

As an analogy, it might be helpful to think of all vertices on the path

with a k-ranking as skyscrapers where no tower can see another tower of

equal height. Shorter skyscrapers cannot see past the taller skyscrapers,

which is why the labels 1− 2− 1− 3 on P4 form a k-ranking, but the labels

of 2− 1− 2− 3 do not.

Definition A ranking f is minimal if for all x ∈ V (G) such that f(x) > 1,

the function g defined on V (G) by g(z) = f(z) for z not equal to x, and

g(x) < f(x) is not a ranking.

This definition is from Ghoshal, Laskar, and Pillone [2]. Taking two valid

labelings of P4 from above, 1− 2− 1− 3 is minimal, but 1− 2− 3− 4 is not

minimal. The latter is not minimal, since the labels of fourth vertex can be

reduced such that we get the labels 1− 2− 3− 1.

2



To simplify the notation for the rest of the paper, we refer to k-ranking

as “ranking”, as the most of the time, k will only refer to the largest label

of a given graph G.

Definition A ranking f has drop vertex x if the labeling defined by g(v) =

f(v) when v 6= x and g(x) < f(x) is still a ranking.

Taking the example of 1− 2− 3− 4, which is not a minimal ranking, we

can say that the vertex with label of 3 is a drop vertex, since 1− 2− 1− 4

is another ranking. However, the ranking 1− 2− 1− 3, which is a minimal

ranking, does not contain any vertex that is a drop vertex. It may not

be surprising that there is a relationship between the minimal ranking and

whether there is a drop vertex. Ghoshal, Laskar, and Pillone [2] proved that

a ranking is minimal if and only if it contains no drop vertices. Further

discussions about minimality of a graph can be found in an article from

Issak, Jamison and Narayan [4]. For the purpose of this thesis, we assume

that G has a minimal ranking unless noted otherwise.

There are two important varieties of minimal rankings – one with the

smallest k, and one with the largest k. Recalling that k is the largest label

in a ranking: the former is the rank number of a graph, χr(G), and the

latter is the arank number of a graph, ψr(G). As an example, let us take

a cyclic graph, C7. One possible ranking with the smallest k is 1− 2− 1−
3−1−2−4−, and the ranking with the largest k is 1−2−3−2−1−4−5−.

Note that the smallest k possible for a minimal ranking for C7 is 4, and the

largest k possible for a minimal ranking is 5.

Studies involving the rank number of a graph are motivated by its appli-

cations to designs of very large scale integration (VLSI) layouts [7], Cholesky

factorizations and solution to Tower of Hanoi puzzle [6]. There is also

a strong association between chromatic numbers and these rankings, with

early results by Bodlaender et al. [1] showing that χr(Pn) = blog2nc + 1.

In addition to the rank number of a graph, the studies of arank number

of a graph are motivated by the search for a certain bounding on possible

chromatic numbers of a graph, especially since χr(G) ≤ ψr(G). That is, if
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an arank of G is discovered, it might yield some new information about the

bounds on the chromatic number of a graph.

3 Preliminaries

Definition For a graph G and a set S ⊆ V (G), the reduction of G, de-

noted G[
S , is a subgraph of G induced by V − S with an extra edge uv in

E(G[
S) if there exists a u− v path in G with all internal vertices belonging

to S.

Unless otherwise stated, the set S will consist of vertices labeled 1. To

ease into notation for the rest of the paper, a reduction of G will always

imply removal of all vertices with label 1 and G[
S will contain a ranking by

which is produced by decrementing the remaining labels by 1. For example,

given C7, where the labels are 1−2−3−2−1−4−5−, then the reduction,

(C7)
[
S , is 1 − 2 − 1 − 3 − 4−. This can be taken further, using ideas from

Laskar and Pillone [2], and defining the reduction of the reduction of G,

using the notation (G[
S)[S [6]. The idea behind the redefinition is to show

that we can take as many reductions as necessary to prove or establish a

case.

Lemma 3.1. Let G be a graph and let f be a minimal ψr(G)-ranking of G.

Then a reduction of G yields a minimal ψr(G
[
S)-ranking of G[

S.

This lemma, from Ghoshal, Laskar, and Pillone’s work [3], shows that

if a ranking is minimal, then the reduction formed by removing all vertices

with label 1 and decrementing all other labels will yield a graph with a

minimal ranking. This result determines how one might be able to obtain a

graph with minimal rankings from another graph with minimal rankings.

Definition Given a graph G, an expansion of G is a graph G# such that

(G#)[S = G.

Let us work with C4 with the following labels, 1 − 2 − 1 − 3−. An

expansion of C4 would yield 1− 2− 3− 1− 2− 1− 4−, 1− 2− 1− 3− 1−
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2− 1− 4−, or 1− 2− 1− 3− 2− 1− 4−. Note that in this case, expansion

is limited to only raising all labels by one, then inserting some new vertices.

However, it is possible to produce an expansion of an expansion of G. For

aesthetic purposes, we will use expand to mean “produce an expansion of,”

and likewise for reduce, mutatis mutandis.

Lemma 3.2. Let f be a minimal k-ranking of G with adjacent vertices u and

v where f(u) > 1, f(v) > 1, and f(u) 6= f(v). Let G# be the graph created

by subdividing (u, v) and inserting a vertex w between u and v. Then let the

ranking f# of G# be defined so that f#(w) = 1 and f#(x) = f(x) for all

x 6= w. Then f# is a minimal k-ranking of G#.

Kostyuk and Narayan [6] presented this lemma as an approach in analysis

of how one might be able to insert a vertex and still expect a minimal ranking

of G. For example, suppose we have a C5 with the following minimal ranking

1 − 2 − 1 − 3 − 4−. Using the above lemma, we can insert a vertex with a

label of 1 between the vertices with label 3 and 4 to get C6 with a minimal

ranking, 1− 2− 1− 3− 1− 4−. Kostyuk and Narayan [6] also presented the

following:

Lemma 3.3. Let f be a minimal k-ranking of G. A graph G′ is created

by subdividing edges of G and adding a set of vertices S that dominates G′.

Then the labeling f ′ where f ′(x) = f(x) + 1 for all x ∈ V (G) and f ′(x) = 1

for all x /∈ V (G) is a minimal (k+1)-ranking of G′.

This lemma refers to how we might expand a graph G such that we

still have a minimal (k + 1)-ranking of G′. For example, let us use C4 with

minimal ranking 1− 2− 1− 3−. We expand this cyclic graph in accordance

with above lemma first by raising the labels first to get 2 − 3 − 2 − 4−,

then inserting a set of vertices with label 1 such that it dominates each

vertex to get 2 − 1 − 3 − 2 − 1 − 4−. Note that it is possible to produce

1− 2− 3− 1− 2− 4− as well.

However, this lemma does not tell us how we can dominate vertices in G′,

only that we must do so. In the next section, we will see a slight refinement

of this lemma that makes it clear which vertices need to be dominated.
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We take a look at three propositions that will establish many results in

the upcoming sections:

Theorem 3.4. Let m ≤ n. Then ψr(Cm) ≤ ψr(Cn).

This is the monotonicity property of arank number of cycles, proven by

Kostyuk and Narayan [6], and it will serve as a major component for proving

various properties about arank numbers of cyclic graphs.

Letting Si denote the set of vertices labeled i in a ranking, Ghoshal,

Laskar, and Pillone [2] presented the following lemma:

Lemma 3.5. In any minimal k-ranking |S1| ≥ |S2| ≥ · · · ≥ |Sk|.

That is, if there are more vertices with label 2 than vertices with label 1,

then the rankings of graph G cannot be minimal. Simple, but quite powerful

in our search for the arank numbers of various graphs. Kostyuk and Narayan

[6] followed up with the following theorem:

Theorem 3.6. For any minimal ranking of Cn, |S1 ∪ S2| ≥ n
2

Later on in this paper, this theorem will have an impact on our choice

of possible strategies for constructing graph with a minimal rankings.

Before moving on to the main part of the paper, we take a look at the

main problem and the earlier results from many others’ work. Given a

cyclic graph, what is the arank number of cyclic graph of any length? This

question is an open problem that has confounded many until now. Before

going into details, let us introduce earlier works and their results. First,

Kostyuk and Narayan [6] has produced results for certain families of cyclic

graphs:

Lemma 3.7. If 2m−2m−2−2 ≤ n ≤ 2m−2m−3−1 then ψr(Cn) = 2m−2.

Lemma 3.8 (24). If 2m − 1 ≤ n ≤ 2m + 2m−2 − 1 then ψr(Cn) = 2m− 1.

As a follow up, Kostyuk and Narayan discovered a tight upper and lower

bound of possible arank numbers of two families of cyclic graphs:
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Lemma 3.9. If 2m− 2m−3 ≤ n ≤ 2m− 2 then ψr(Cn) = 2m− 2 or 2m− 1.

Lemma 3.10. If 2m + 2m−2 ≤ n ≤ 2m + 2m−1 − 3 then ψr(Cn) = 2m − 1

or 2m.

However, this did not determine arank number for every cyclic graph,

but it gave us new avenues to explore. The determination of arank number

of two families of cyclic graphs is still an open problem. Prior to this paper,

it is known whether all cyclic graphs with length between 2m − 2m−3 and

2m − 2, inclusively, has an arank number of 2m− 2 or 2m− 1, but it is not

known which graph has which arank number. Similarly for all cyclic graphs

with length between 2m + 2m−2 and 2m + 2m−1 − 3, inclusively, has arank

number of 2m− 1 or 2m.

Nathan Kaplan [5], a Ph.D student in mathematics at Harvard deter-

mined some of arank number of certain graphs in these families. He dis-

covered the following fact: ψr(C14) = 6, ψr(C20) = ψr(C21) = 7. As of

February 2011, the smallest known case was n = 28. The paper will reveal

how to solve for n = 28, 29, 30, and all other unknown cases. The technique

introduced in the next section will enable us to solve this open problem of

determining arank number of all cyclic graphs. Furthermore, this technique

will uncover a very interesting property about the structure of arankings of

cyclic graphs.

4 Introduction to Flanking Numbers

Definition Given a graph G with a minimal ranking, let G+ be the graph

where all labels of all vertices in G is raised by 1. We define the flanking

number of a vertex to be 1 if its label cannot drop to label of 1 without

violating the definition of a k-ranking in G+, and 0 otherwise. More suc-

cinctly, let ζ be a function on a vertex v that defines its flanking number

thus: ζ(v) → {0, 1}. ζ(v) = 0 if the label of v can drop to 1 in G+, and 1

otherwise. This function can also act on a set of vertices, ζ(V (G))→ {0, 1}n

where n is the number of vertices in V (G).
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Given a cyclic graph C7 with labels of 1 − 2 − 3 − 2 − 1 − 4 − 5−, the

function that defines flanking numbers, ζ(V (G)) defines the flanking number

of each vertex as follows: (0− 0− 1− 0− 0− 0− 0−). Note the notation of

using parentheses to help us note which is a ranking, and which is a set of

flanking numbers.

Definition Given adjacent vertices w and u, with edge uw, we define in-

sertion to be a process where by a vertex v is placed such that new edges

vu and vw are formed, and edge uw is deleted.

In other words, we place a vertex on an edge between two vertices, split-

ting them. For the rest of the paper, we will consider all insertions to be

insertions of vertices with label 1 into a raised-label graph, G+, unless other-

wise indicated. As an astute reader may have noticed, the insertion process

is the exactly same as subdividing an edge into two edges and adding a new

vertex. As a result, both processes can be used interchangably, but for the

purposes of clarity, insertions will be used in the place of subdividing an

edge. The reasons for this definition is made clearer by the next theorem.

Theorem 4.1. Given a vertex v with ζ(v) = 0 in a raised-label graph G+,

if v is not dominated by vertices with label 1 inserted into G+, then the

resulting G# is not minimal.

Proof. Since ζ(v) = 0 in G+, the vertex v is not flanked by anything. Let

us move on to G#, and observe that if vertices with label 1 are not inserted

next to v, the vertices adjacent to v will have labels greater than 1. Since

ζ(v) = 0, and no vertices adjacent to v have label 1, v can drop to a label

of 1 without violating the definition of a ranking. Therefore, G# is not

minimal.

The significance of this theorem is that this provides us a method for

understanding how arankings of various cyclic graph are obtained. Before

we go into arankings, we need to understand how to construct rankings for

cyclic graphs based on flanking numbers.
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Proposition 4.2. Let G be a graph with a minimal ranking and v be a

vertex with ζ(v) = 0. After an expansion of G, the flanking number of v in

G# is 0 if and only if v is not adjacent to at least two of the newly inserted

vertices with label 1. Otherwise, ζ(v) = 1.

In other words, if vertex v has flanking number 0, it is not flanked by

anything, and therefore, it can drop to label 1 in G+. However, if we insert

new vertices with labels of 1 in G+ to produce G#, and we happen to insert

them such that at least two of those are adjacent to v, then v is “flanked”

(hence the term “flanking number”), and v cannot drop to a label of 1 in

any subsequent expansions.

Now we prove the proposition:

Proof. Proving in the forward direction, we shall prove by contrapositive:

if ζ(v) = 0 for some v ∈ V (G), and during an expansion of G into G#, v

is flanked by vertices with labels of 1 on either sides, then ζ(v) = 1. This

follows directly from the definition of a flanking number.

In the other direction, suppose that a vertex v has ζ(v) = 0, which

implies that v drops to label 1 in G+. Now suppose that v does not gain

vertices with label 1 on either side in the process of getting to G#. We

apply Lemma 4.1 to show that G# is not minimal. Now suppose only one

vertex with label 1 is inserted on only one side of v. Since ζ(v) = 0, one

label of 1 is not sufficient to flank the vertex, as the v drops to label 1 in

G#+. Therefore, v must have ζ(v) = 0 in G#.

Proposition 4.3. In a given graph G, any vertex v such that ζ(v) = 1

cannot become a vertex v such that ζ(v) = 0 in G# for any expansions of

G.

Proof. When a graph expands, all of labels of the vertices that the vertex is

flanked by are raised by one, and all of the labels of the vertices that flanks

the particular vertex will always remain above the labels of newly inserted

vertices during the expansion of graphs.

This proposition concerns the stability of flanking number. That is, once

a vertex has a flanking number of 1, it will always be flanked by something
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in any future expansions, and thus will never become a vertex that can

drop its label to 1 in subsequent expansions. The application of this idea

becomes more evident later with flanking partition structure, but for now,

we introduce some tools that let us readily identify flanking number for any

given vertex on a graph G:

Proposition 4.4. Given two adjacent vertices v and u on a path or a cyclic

graph, if the label of v is smaller than the label of u, then ζ(v) = 0

Proof. Since the label of v is smaller than the label of u, u cannot flank v,

as the label of u has no bearing on whether the label of v can drop. As a

result, u cannot flank v, and thus ζ(v) = 0.

Corollary 4.5. Adjacent vertices on a cyclic graph or a path cannot both

have a non-zero flanking number.

The above propositions motivate strategies for construction, especially

Proposition 4.2. In fact, the idea of vertex domination of all vertices with

flanking number 0 is the primary strategy for exploring different ways to con-

struct arankings of cyclic graphs Cn from arankings of other cyclic graphs

of lesser degree. Let us prove that C7 has a unique labeling up to permuta-

tion of the top three labels through construction from scratch using flanking

ideas. Before starting, let us define C1 to be a single vertex with a label 1

where we begin construction of our graph, and let us define C2 such that it

is comprised of two vertices, u and v, and an edge, uv. For the rest, let us

define Cn to be a normal cyclic graph.

The lone vertex of C1 has flanking number of 0, and thus, only one

possible way of inserting a vertex to produce C2. With C2, we have two

distinct vertices, and ζ(C2) = (0 − 0−). Since the flanking number of each

vertex is zero, so the labels of both vertices can drop to label of 1 in C+
2 . The

flanking numbers suggests that there are two possible insertion strategies -

insert one vertex or two vertices with label one in G+. In the former case,

we have C3 with labels 1− 2− 3− and ζ(C3) = (0− 0− 0−). In the latter,

we have C4 with labels 1− 2− 1− 3− and ζ(C4) = (0− 1− 0− 0−).
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Working from C3 to get to C7, there are two possible strategies for

domination of all zero flanking numbers, namely insertion of two or three

vertices. These produce four possibilities:

1− 2− 1− 3− 4−
1− 2− 3− 1− 4−
2− 1− 3− 1− 4−

1− 2− 1− 3− 1− 4−

The last case is different from all other cases, as it is C6 where ζ(C6) =

(0−1−0−1−0−1−), and thus needs insertions of three vertices to dominate

C6 and is clearly not the route to reach C7. Taking the three other cases,

it is clear they differ only by the position of the top three labels, so we

arbitrarily pick one, and demonstrate that we can get to C7 by inserting only

two vertices. Taking 1−2−1−3−4−, we have ζ(C5) = (0−1−0−0−0−).

Given that C5 has five vertices, we only can insert two more vertices into

C+
5 if there is any hope of reaching C7. There is a unique way of dominating

four vertices with flanking number of 0 with two insertions, and we get

1− 2− 3− 2− 1− 4− 5− for C7.

Now we go back to the second possible expansion of C2, i.e. C4. We

have the labels 1−2−1−3− and ζ(C4) = (0−1−0−0−). Using Theorem

3.6, which states that at least half the vertices of C7 must have label 1 or

2, it is clear that we cannot reach the arankings of C7 from the aranking of

C4, but for the sake of understanding, we will check it anyway. It is clear

that we need two insertions of vertices to dominate the three vertices with

flanking number 0. However, it should be noted that the vertices produced

by insertions will always have flanking number of 0 in the expanded graph.

So if we try to flank a vertex v, two vertices with flanking numbers of 0 will

take its place on either side of v. As a result, we cannot expect to insert

one vertex in the expansion of C6 to get minimal rankings of C7 as it will

violate Theorem 4.1. Since it is impossible to construct arankings of C7

from arankings of C4, the arankings of C7 are unique up to the permutation

of the top three labels.
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A couple of observations above can be summarized in the following lem-

mas – one follows the nature of flanking numbers of newly inserted vertices,

and the other concerns the monotonicity property of the number of vertices

with flanking numbers of zero:

Lemma 4.6. Given a graph G, if a vertex v with label 1 is inserted into the

graph G+ to produce an expansion of the graph, G#, then ζ(v) = 0.

Proof. Since vertex v has a label of 1, the lowest possible labeling in a

ranking of any graph, vertex v cannot be flanked.

Lemma 4.7. The number of vertices with flanking number of 0 in a cyclic

graph with minimal ranking will always either remain equal or increase with

subsequent new expansions of the graph.

Proof. Applying Lemma 4.6, we know that all insertions will result in new

vertices with flanking number 0. Note that it requires two insertions of ver-

tices with flanking number 0 to force a vertex in G to have flanking number

1. Subsequent flankings will require one or two new vertices inserted, de-

pending on which of the remaining vertices need to be flanked. As a result,

it is impossible to have more flanked vertices than the number of vertices

inserted into the graph, and thus, the number of vertices with flanking num-

ber of zero will always rise or remain equal – consider the example of C2 to

C3, and C2 to C4

Lemma 4.7 helps us understand how we construct minimal rankings of

graphs from other minimal rankings graphs. When a vertex with label 1

is inserted, the number of vertices with flanking number of 0 either stays

the same or increases. It increases only when the insertions occur next to a

vertex that is not already dominated by another vertex. It stays the same

only when the insertion of 1 is next to a vertex that is already dominated

by another vertex.

Corollary 4.8. The number of vertices insertions needed to dominate all

vertices with flanking number of 0 on a cyclic graph will always remain equal

or increase.
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Proposition 4.9. Given a cyclic graph, vertices with flanking number 0

can be partitioned by vertices with non-zero flanking number. This in turn

implies that we can focus on each partition independently of each other in

expanded graphs.

Proof. Given a cyclic graph G with two nonadjacent vertices, u, v ∈ V (G),

and ζ(u, v) = (1, 1), we observe that u and v will never contain flanking

number 0 in any expansions of G. This is due to Proposition 4.3 about

stability of flanking number. Now suppose we insert a vertex w into G+,

and we consider two possible paths from u to v – one that contains w and

one that does not. Now observe that the label of w is smaller than the labels

of both u and v, so it has no hope of flanking a vertex that is on the path uv

without w. This implies that we can focus on each path segment between

each vertex with flanking number 1 independently.

The idea here is to make it simpler to approach the flanking number in

approaches to discovering the aranking of larger cyclic graphs, such as C30,

or to understanding how to generate all possible arankings for C15.

Corollary 4.10. The number of vertices with flanking number 0 will always

remain the same or increase in each partition.

Proof. This corollary follows directly from Proposition 4.9 and Corollary

4.8, showing that inside each partition, the number of vertices that need to

be dominated by insertions of vertices with label 1 will always increase or

remain the same.

Extending Theorem 4.1, and applying Lemma 4.9, we can use vertices

with flanking number 1 to subdivide all vertices with flanking number 0 into

sets of vertices that must be dominated by insertions of vertices into G+.

This allows us to look at each partition individually:

Lemma 4.11. Given a cyclic graph G, if there exist m consecutive vertices

with flanking number 0, then the expansion of the subgraph induced by m

consecutive vertices must have at least m/2 insertions of vertices with label

1 in order to dominate all m vertices and achieve a minimal ranking for the

expanded graph.
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Proof. If any vertex with flanking number 0 is not dominated by a vertex

insertion during the expansion, then the graph G# is not minimal due to

Theorem 4.1. Also, since each vertex insertion is capable of dominating two

vertices in the m consecutive vertices at the same time in a cyclic graph, then

the number of insertions that will dominate all vertices is at least m
2 .

This proposition gives us the tools that allow us to count roughly how

many vertices we need to insert in order to dominate all vertices with flanking

number 0 in order to preserve the minimality of a ranking.

Theorem 4.12. All minimal rankings of cyclic graph Cn are constructed

by expanding multiple times from C1. Each expansion involves dominating

all vertices with flanking number of 0 by inserting vertices with label 1.

Proof. Suppose a minimal ranking of a cyclic graph is generated by domi-

nating only some (not all) vertices with flanking number of 0 by inserting

vertices with label 1. This immediately leads to a contradiction, as it was

shown in Theorem 4.1 that in order for an expansion of a graph to have

minimal ranking, all vertices with flanking number of 0 must be dominated.

Now suppose a graph is not generated by expanding from C1. If we reduce it

to its lowest form, we will get either no label, which should not happen, and

at least two vertices with the same highest labels, which violates the ranking

rule. Therefore, all minimal cyclic graph Cn are constructed by expanding

multiple times from C1.

This implies that we can begin construction of all minimal cyclic graphs

from a single vertex with label 1. This is the place from which we will begin

to search for strategies that allows us to find arankings of cyclic graphs of

various sizes.

5 Finding all arankings of C15

A good start to understanding what kind of strategies we need to discover

graphs is finding all possibilities for arankings of C15. First, we know from

previous works that it only can come from expanding C7, since ψr(C7) = 5
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and ψr(C6) = 4. In addition, we know from Theorem 3.6 that at least half

of the vertices of C15 must have label 1 or 2. With these facts, we limit our

search to C7 as a starting point. We saw earlier that the labeling of C7 is

unique up to permutation of the top 3 labels. Now, for the first strategy,

we try to insert three vertices with label 2 and five vertices with label 1 to

obtain C15, which means we want to insert three vertices with label 1 into

C+
7 , then five vertices with label 1 into C+

10. Let us look at one labeling of

C7 as follows:

3− 2− 1− 4− 5− 1− 2−

With ζ(C7) = (1 − 0 − 0 − 0 − 0 − 0 − 0−), there is only one way of

inserting three vertices with label 1 into C+
7 such that all vertices with label

1 will dominate all vertices with flanking number zero. After insertion, we

get the following labels and their respective flanking numbers:

4− 3− 1− 2− 5− 1− 6− 2− 1− 3−
(1− 0− 0− 0− 0− 0− 0− 0− 0− 0−)

Note that since all vertices inserted into C+
7 did not dominate a single

vertex twice, all flanking numbers except for the vertex with label 4 are

0. We now have 9 vertices with flanking number 0 in C10 that need to be

dominated by the insertion of vertices with labels of 1 in C+
10. There are 6

possible ways of dominating all 9 vertices with five 1’s to get C15, so we get

the following cyclic graphs with minimal rankings:

5− 1− 4− 2− 1− 3− 6− 1− 2− 7− 1− 3− 2− 1− 4−
5− 4− 1− 2− 1− 3− 6− 1− 2− 7− 1− 3− 2− 1− 4−
5− 4− 1− 2− 3− 1− 6− 1− 2− 7− 1− 3− 2− 1− 4−
5− 4− 1− 2− 3− 1− 6− 2− 1− 7− 1− 3− 2− 1− 4−
5− 4− 1− 2− 3− 1− 6− 2− 1− 7− 3− 1− 2− 1− 4−
5− 4− 1− 2− 3− 1− 6− 2− 1− 7− 3− 1− 2− 4− 1−

Now we try another strategy, where by we try to insert four vertices with

label 1 and 4 vertices with label 2. This strategy implies that we first need
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to insert four vertices first to get C11, then insert four more vertices in the

second expansion to get C15. There are ten ways of inserting four vertices

with label 1 into C+
7 such that they dominates all vertices with flanking

number 0, and we shall investigate each:

a) 4-1-3-1-2-5-1-7-2-1-3- → (1-0-1-0-0-0-0-0-0-0-0-)

b) 4-1-3-2-1-5-1-7-2-1-3- → (1-0-0-0-0-1-0-0-0-0-0-)

c) 4-1-3-2-1-5-7-1-2-1-3- → (1-0-0-0-0-0-0-0-1-0-0-)

d) 4-1-3-2-1-5-7-1-2-3-1- → (1-0-0-0-0-0-0-0-0-0-0-)

e) 4-3-1-2-1-5-1-7-2-1-3- → (1-0-0-1-0-1-0-0-0-0-0-)

f) 4-3-1-2-1-5-7-1-2-1-3- → (1-0-0-1-0-0-0-0-1-0-0-)

g) 4-3-1-2-1-5-7-1-2-3-1- → (1-0-0-1-0-0-0-0-0-0-0-)

h) 4-3-1-2-5-1-7-1-2-1-3- → (1-0-0-0-0-0-1-0-1-0-0-)

i) 4-3-1-2-5-1-7-1-2-3-1- → (1-0-0-0-0-0-1-0-0-0-0-)

j) 4-3-1-2-5-1-7-2-1-3-1- → (1-0-0-0-0-0-0-0-0-1-0-)

Let us take each case and look at the number of labels with flanking

number 0. Cases a,b,c,d,g,i, and j can be eliminated immediately, as there

are nine or ten vertices with flanking numbers of zero, and we cannot dom-

inate 9 vertices by inserting only 4 vertices on a cyclic graph. This leaves

us with cases e,f, and h. We look at case e and h at the same time, and

observe that the vertices with flanking number 0 are partitioned by vertices

with flanking number 1 into three sets: 5 vertices, 1 vertex, and 2 vertices.

Using lemma 4.11, we can look at each partition individually as a set of con-

secutive vertices with flanking number 0 separated by vertices with flanking

number 1. For the partition with 5 vertices, we need 3 vertices to dominate

all vertices in the partition. Also, one vertex insertion is needed for both of

other partitions, bringing us to a total of five insertions of vertices with la-

bel 1 to dominate these partitions, thereby ensuring that the ranking would

remain minimal. Therefore, these cases are impossible to use to get to C15.

Finally, we are left with only one case: f. This case has a set of vertices that

are also partitioned by vertices with flanking number of 1, using lemma 4.9

in order to apply the ideas behind lemma 4.11 again. But this time, the

vertices with flanking number of 0 are partitioned into 4 vertices, 2 vertices,
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and 2 vertices. For the respective sets, we only need 2 vertices with label 1

to dominate 4 vertices, and 1 vertex with label 1 to dominate each of the

other 2 partitions, leaving us with case f as the only working case in this

situation. After expanding, we get:

5− 4− 1− 2− 3− 2− 1− 6− 7− 1− 2− 3− 2− 1− 4−

With all the possibilities exhausted, we have shown that the below la-

belings of C15 are all the possible arankings of C15, up to the permutation

of the top three labels.

5− 1− 4− 2− 1− 3− 6− 1− 2− 7− 1− 3− 2− 1− 4−
5− 4− 1− 2− 1− 3− 6− 1− 2− 7− 1− 3− 2− 1− 4−
5− 4− 1− 2− 3− 1− 6− 1− 2− 7− 1− 3− 2− 1− 4−
5− 4− 1− 2− 3− 1− 6− 2− 1− 7− 1− 3− 2− 1− 4−
5− 4− 1− 2− 3− 1− 6− 2− 1− 7− 3− 1− 2− 1− 4−
5− 4− 1− 2− 3− 1− 6− 2− 1− 7− 3− 1− 2− 4− 1−
5− 4− 1− 2− 3− 2− 1− 6− 7− 1− 2− 3− 2− 1− 4−

The proof by constructing that there are only 7 possible labelings (up

to permutation of the top 3 labels) presents an interesting potential for a

strategy: the transformation of flanking number from zero to nonzero has a

way of partitioning the graph into subsets by which we can independently

focus on flanking number in each and come up with different strategies for

determining arank of larger graphs.

Let us present a result from Kaplan’s work [5]:

Theorem 5.1. ψr(C14) = 6

It is proven by Kaplan that this is the case, but let us prove this again

in the context of flanking numbers.

Proof. First, note that expanding the aranking of C7 twice to get C14 is

impossible, since the first expansion requires three vertex insertions to dom-

inate C7, producing C10. Note that we cannot insert four vertices first,
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otherwise, the theorem 3.5 is violated since the second expansion will re-

quire three vertex insertions if there is any hope of reaching C14. Looking

at the cases of C10 from earlier, we have 9 consecutive vertices with flanking

number 0. This implies that at least five vertex insertions are needed to

dominate all vertices, annihilating any hope of producing ψr(C14) = 7 from

the arankings of C7. Therefore, ψr(C14) = 6.

6 Arank of C30

Proposition 6.1. ψr(C30) = 8

Proof. Finally, let us look at C30, as one of our main goals is to prove the

arank number of this cyclic graph. In preparation for this proof, let us lay

out the known facts about C30. Using theorem 3.6, we know that at least

half of the labels of C30 must be 1 or 2. As a result, we can focus only

on C15 or smaller graphs. Since we know that the arank number of C14 is

6, this has the effect of limiting our strategies to only C15 in determining

whether the arank number of C30 is 8 or 9. Since the arank number of C15

is 7, we want to use this to see if we can attain arank of 9 for C30. First,

we demonstrate that we can attain 8-ranking of C30 easily – simply insert

15 vertices into C15.

We must consider all cases of C15 to make sure that we cover every-

thing. To review, we have the following labels and their respective flanking

numbers:

a) 5-1-4-2-1-3-6-1-2-7-1-3-2-1-4- → (1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-)

b) 5-4-1-2-1-3-6-1-2-7-1-3-2-1-4- → (1-0-0-1-0-0-0-0-0-0-0-0-0-0-0-)

c) 5-4-1-2-3-1-6-1-2-7-1-3-2-1-4- → (1-0-0-0-0-0-1-0-0-0-0-0-0-0-0-)

d) 5-4-1-2-3-1-6-2-1-7-1-3-2-1-4- → (1-0-0-0-0-0-0-0-0-1-0-0-0-0-0-)

e) 5-4-1-2-3-1-6-2-1-7-3-1-2-1-4- → (1-0-0-0-0-0-0-0-0-0-0-0-1-0-0-)

f) 5-4-1-2-3-1-6-2-1-7-3-1-2-4-1- → (1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-)

g) 5-4-1-2-3-2-1-6-7-1-2-3-2-1-4- → (1-0-0-0-1-0-0-0-0-0-0-1-0-0-0-)

First, observe that for all cases, we need to insert at least seven vertices

to dominate all vertices with flanking number 0 in C15, or we will not be
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able to get minimal rankings for C30. Thus, our only possible strategy is to

insert 7 vertices in the first expansion of C15, and 8 vertices in the second

expansion. Now, starting with case a and f: there are 14 vertices that need

to be dominated. Since the only strategy is to insert 7 vertices in the first

expansion, there is an unique domination of these fourteen vertices. This

unique domination increases the number of vertex with flanking number 0

to 21, which implies that at least eleven additional vertices are needed to

dominate the expansion of C15 in this case. Therefore, we cannot get a

9-ranking from these two cases.

The next cases, b and e, have two partitions of consecutive vertices with

flanking number 0 which are separated by vertices with flanking number 1.

In each case, the first partition has two vertices with flanking number 0,

and the second partition has eleven vertices with flanking number 0. The

first partition needs only one vertex to dominate it, and that implies that

after the first expansion, we need two vertices to dominate this partition in

order to get a cyclic graph with minimal ranking in the second expansion.

Now we look at the second partition, which has 11 vertices that need to be

dominated, and thus we need at least 6 vertex insertions. However, since

11 vertices need to be dominated, only one vertex can be dominated on the

both sides, and thus the flanking number will be changed from 0 to 1 and

we will have 11 + 6 − 1 = 15 vertices that need to be dominated during

the second expansion. This implies that we need 8 new vertices inserted to

dominate that partition. Since we already need 8 + 2 = 10 vertices, we can

eliminate b and e in our quest for finding rankings of C30 where k = 9.

Looking at cases c and d, we have two partitions of consecutive vertices

with flanking number 0. The partition with five consecutive vertices with

flanking number 0 will require the insertion of three vertices to dominate all

vertices. As for the partition with eight vertices, four vertices are required

to dominate this particular partition. The insertion of four vertices into

the partition of eight vertices is unique, which implies that there are twelve

vertices with flanking number 0 in that particular partition in the expansion

of C15. In turn, this implies that six vertices are needed to dominate all

vertices in this partition. However, when we look at the smaller partition,
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since it already needs 3 vertices to dominate for the next expansion, it is clear

that the smaller partition needs at least 3 vertices to dominate completely.

This leaves us needing at least 9 vertices for the second expansion, which

makes it impossible to get to C30.

Finally, we are left with the last case, g, which has three partitions with

lengths 3, 6, and 3. It is clear that we need two vertex insertions to dominate

the partitions with length 3, and three vertex insertions to dominate the

partition of length 6. This gives us seven vertices for the first expansion.

However, there is only one way to dominate the partition of length 6, and

in the expansion of the C15, we can see that the number of vertices with

flanking number 0 in that particular partition increases to 9, which implies

that it needs five vertices to dominate it completely. Since the two other

partitions already need two vertices to dominate each, we are over 8 vertices

needed to reach C30. So this case fails as well.

There is no possible way to construct a minimal 9-ranking for C30, and

there exists a possible way to construct a minimal 8-ranking. Therefore, the

arank of C30 is 8.

7 Strategies using Flanking Numbers

We note that above proof incorporated several strategies. Now the question

is, how much more we can squeeze from the application of flanking numbers?

First, observe that the amount of vertices with flanking number 0 will always

increase, but there are cases where there are fewer flanking numbers of 0 in

some expansions of a graph compared to other expansions of the same graph.

Why does this happen? It is due to the vertex insertions that happen to fall

on both sides of a vertex.

This observation motivates finding an intelligent approach to the prob-

lem. Now we establish a proposition:

Proposition 7.1. Given 2m+b, b ∈ {0, 1} consecutive vertices and m+r+b

(where 0 ≤ r < m) labels to insert in the graph during the expansion process,

the maximum number of flankings that can occur is 2r + b.
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Note that b reflects whether it is odd or even case. Now we move on to

the proof:

Proof. Let us apply the pigeonhole principle for both the odd and the even

case. First, observe that we are aiming to maximize the number of flankings

possible, and that means we must insert two vertices on the inside of both

the first vertex and the last vertex in the set of consecutive vertices with

flanking number 0. Let us distribute m + b − 2 labels insertions such that

every possible vertex with flanking number 0 is dominated. Note that in

the b = 1 case, there will one flanking, as there will be one vertex that is

dominated twice. Finally, we insert the remaining labels, and we get two

flankings for each insertion. Therefore, the maximum number of flankings

that can occur is 2r + b.

Proposition 7.2. If the insertion of r vertices into a cyclic graph with

m vertices with flanking number 0, creates s flankings, then the number of

vertices that need to be dominated in the expansion of the expanded graph is

m+ r − s.

Proof. Recall that flanking vertex v with flanking number 0 transforms v

into a vertex with flanking number 1, removing it from the set of vertices

with flanking number 0. So if we flank s vertices, then they cannot be

included in the set of vertices with flanking number 0. All of the newly

inserted vertices will have flanking number 0, so we add r to the number of

vertices with flanking number 0, leaving us with m+ r − s.

The above two propositions give us a way of trying to minimize the

number of vertices that we need to insert into the graph. After all, if we try

to insert too many vertices, we will be prevented from accomplishing our

quest for the aranking of a cyclic graph of a particular length. Also, note that

if we do not insert enough vertices, we might actually be preventing ourselves

from accomplishing arank status as well! It appears to be advantageous that

we minimize how many insertions we make, maximize how many flankings

we make, and minimize the number of vertices that need to be dominated

in the next step.
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As an example, let us look at a labeling of C15:

a) 5-1-4-2-1-3-6-1-2-7-1-3-2-1-4 → 1-0-0-0-0-0-0-0-0-0-0-0-0-0-0

In this case, note that there is only one partition, with 14 vertices that

need to be dominated. If we insert seven vertices to get to C22, it is clear

that the domination is unique, and also clear that there will be 21 vertices

to dominate in the next expansion.

Now suppose we decide to insert between every single vertex except for

those with non-zero flanking numbers. We will get thirteen vertex insertions,

and 14 vertices to be dominated in the next expansion. In this case, since

the domination is highly fragmented into many partitions, we will need 14

insertions total to dominate each partition in the next expansion, and we

are already at C29, with a 8-ranking, and it already does not appear to offer

any strategy for finding arankings in any expansions.

To help us visualize how we can insert vertices and determine whether a

vertex is flanked or not, we use the notation of a dot to represent a position

in C15 where an insertion is desired:

(1−0−.−0−.−0−0−.−0−.−0−0−.−0−.−0−0−.−0−.−0−0−.−0−)

In this case, nine vertices are inserted into C15 to get C24, and flanked five

vertices in the process. This gives us 14 + 9−5 = 18 vertices to dominate in

the next round of expansion. This implies that we need at least nine vertex

insertions in the next expansion. This seems much more efficient than both

other methods, though it comes at small cost of increasing the length of

cyclic graph.

In the context of arank, the above might not seem like much, but it

compels a searching heuristic. First of all, the knowledge of a cyclic graph’s

arank number is useful, along with the Theorem 3.6.

As a brief interlude, since we are interested in partitions generated by

vertices with flanking number 1, it becomes clear that we need a definition

that simplifies our idea of how each partition functions:
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Definition The flanking partition structure is a set of consecutive ver-

tices with flanking number 0 separated by a vertex with flanking number 1.

We establish that (m, r) notation on a cyclic graph implies that we have m

consecutive vertices with flanking number 0, one vertex with flanking num-

ber 1, then r consecutive vertices with flanking number 0, then one vertex

with flanking number 1.

For example, suppose we have the partition structure of one possible

rankings of C15, which is (3, 6, 3). Then in this particular case, ζ(C15) =

(1−0−0−0−1−0−0−0−0−0−0−1−0−0−0−). Recall Proposition 4.9

which allows us to treat each partition independently; as in we can insert

vertices in each partition and not worry about the other partitions until we

need to include them in our analysis. We will use the above as a tool to help

us determine the number of possible arankings of C31.

First, we try to get to C31 through C22 from C15, which means that

we are inserting seven vertices and then inserting nine vertices. We work

with the partition structure (3, 6, 3), which means that we need to insert

two vertices to dominate the first and the last partition, and insert three

vertices to dominate the partition of length 6. That brings us to total of

seven insertions in the first expansion. This presents us with the question

of how to insert two vertices in the partition of length 3. Proposition 7.2

above suggests that we will have at least one flanking in both partitions if

we are to maximize the number of flankings, thereby minimizing the number

of vertex dominations in the next expansion. That suggests that the next

partition structure after insertions is (4, 9, 4). The partition of length 9 is

predetermined, because the insertion of three vertices into the partition of

length 6 is unique. Finally, the insertion of two vertices into each partition

with length of three has only one possible way such that the insertion in the

next expansion will require only two vertices per partition. This way involves

one flanking, so after an insertion of two vertices, (3) will be transformed

into (2, 2). So the partition structure of the expanded graph is (2, 2, 9, 2, 2),

which implies we need to insert 1,1,5,1, and 1 vertices, respectively, bringing

us to a total of 9 vertex insertions. After the insertions, we have six possible
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cases of C31. How we arrive at six possible cases of C31 from this approach

will be explained more clearly shortly.

Now we examine a completely different route, namely arriving at C31

via C23. Let us look at the partition structure of (3, 6, 3) again, and observe

that if we try to put 3 labels in a 3 partition, we will not be able to achieve

optimal strategy. The resulting partition structure would be (1, 1, 1, 9, 2, 2),

which implies 1 + 1 + 1 + 5 + 1 + 1 = 10 insertions are needed to dominate

all the vertices with flanking number 0 in the next expansion. This is not a

way getting to C31, as the number of required insertions exceeds the number

of insertions determined for the second expansion. As a result, we must

insert two vertices at both ends, and four vertices in the middle partition.

As for the middle, Proposition 7.2 suggests that we should be able to get

two flankings! Proceeding with the insertion (recall that we’re doing the

same thing with 3-partitions), we get (3 + 2 − 1, 6 + 4 − 2, 3 + 2 − 1), or

([2, 2], [2, 4, 2], [2, 2]) – partitions are grouped for clarity – which means we

need two vertices for each partition on the ends, and four vertices for the

middle partition, bringing the number of vertices needed to dominate this

expansion to eight.

Notice that in the previous example, it is possible to simply use the

language of flanking numbers to construct a graph, and also to help motivate

the search for the arank number of a cyclic graph. It is a good exercise to use

the ideas above, along with the seven cases delineated for C15 to demonstrate

that there are only seven possible cases of C31 that can be reached from C15.

It should be noted that C16 is not a possible candidate to get to C31, since

C31 must be comprised by at least 16 labels of 1 or 2.

Our work thus far makes it easier for us to understand how to focus our

efforts on each partition, as long as we focus on each partition independently.

It is easier to focus on the number of vertices within a partition than focusing

on each vertex. How we focus on each partition will become clearer with each

proof of the Exhaustion Lemmas below. Before we move on to Exhaustion

Lemmas, let us define the notation of “insertions” within a graph. Suppose

one partition has three consecutive vertices with flanking number 0, then

we write it out as:
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0− 0− 0

Now suppose we wish to insert two vertices. Both insertions will occur

between two 0’s or at an end, and will be denoted with a dot. All possible

insertions are as follows:

.− 0− 0− .− 0

0− .− 0− .− 0

0− .− 0− 0− .

This notation will help as we go through each Exhaustion Lemma. As

to why they are called “Exhaustion Lemmas”, notice that we exhausted

all possible labelings for insertions of two vertices into the partition of size

three. Also, notice that the first and last choice of insertion points have five

vertices that need to be dominated in the subsequent expansion, but the

second one has only four vertices that need to be dominated, yielding the

partition structure of (2, 2). This shows that different insertion strategies

have a significant impact on future expansions. The Exhaustion Lemmas are

designed to show precisely what the impact each partition in the partition

structure has on the inserting vertices with label 1. Now we move on to the

first one, which is already proven here.

Lemma 7.3. Exhaustion Lemma (3): Given a partition of length three, and

two vertices to insert, then the optimal strategy is to produce the partition

structure (2, 2), as it will require only two vertices to dominate in the sub-

sequent expansion. Otherwise, it will require three vertices to dominate all

vertices in the subsequent expansion. Furthermore, if three vertices are in-

serted, then at least three vertices will be required to dominate all vertices in

the subsequent expansion.

Lemma 7.4. Exhaustion Lemma (6): Given a partition of length six, and

three vertices to insert, then we will have nine vertices that need to be dom-

inated by insertion of five vertices in the next expansion. However, if we

have four vertices to insert into the partition structure, the optimal strategy

is to insert such that we get the partition structure (2, 4, 2) as it will require
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only four vertices to dominate in the subsequent expansion. Otherwise, it

will require at least five vertices to dominate in the subsequent expansion.

Proof. The case with three vertices inserted into the partition size of 6 is

trivial, as each vertex insertion must dominate two vertices, and since we

did not flank anything, we are left with partition structure of (9), which will

require 5 vertices to dominate in the subsequent expansions. Now we turn

to the insertion of four vertices. We exhaust over (0 − 0 − 0 − 0 − 0 − 0),

and give their respective partition structure based on the insertions:

(.− 0− .− 0− 0− .− 0− 0− .− 0)→ (1, 8)

(.− 0− 0− .− 0− .− 0− 0− .− 0)→ (4, 5)

(.− 0− 0− .− 0− 0− .− 0− .− 0)→ (7, 2)

(.− 0− 0− .− 0− 0− .− 0− 0− .)→ (10)

(0− .− 0− .− 0− .− 0− 0− .− 0)→ (2, 1, 5)

(0− .− 0− .− 0− 0− .− 0− .− 0)→ (2, 4, 2)

(0− .− 0− .− 0− 0− .− 0− 0− .)→ (2, 7)

(0− .− 0− 0− .− 0− .− 0− .− 0)→ (5, 1, 2)

(0− .− 0− 0− .− 0− .− 0− 0− .)→ (5, 4)

(0− .− 0− 0− .− 0− 0− .− 0− .)→ (8, 1)

Note that for all partition structures except for (2, 4, 2), an insertion of

five vertices are needed to dominate all vertices for the next expansion. With

(2, 4, 2), we only need four vertex insertions, and this insertion is unique.

Lemma 7.5. Exhaustion Lemma (9): Given a partition of length nine, and

five vertices to insert, there are six possible ways of inserting five vertices,

giving us the following cases: (14) (twice), (2, 11) (permutable), (5, 8) (per-

mutable).

Proof. We start from the partition structure of (9), getting (0− 0− 0− 0−
0− 0− 0− 0− 0). Now we attempt to insert five vertices with label 1, and

give their respective partition structure.

(.− 0− 0− .− 0− 0− .− 0− 0− .− 0− 0− .− 0)→ (14)

(0− .− 0− .− 0− 0− .− 0− 0− .− 0− 0− .− 0)→ (2, 11)

26



(0− .− 0− 0− .− 0− .− 0− 0− .− 0− 0− .− 0)→ (5, 8)

(0− .− 0− 0− .− 0− 0− .− 0− .− 0− 0− .− 0)→ (8, 5)

(0− .− 0− 0− .− 0− 0− .− 0− 0− .− 0− .− 0)→ (11, 2)

(0− .− 0− 0− .− 0− 0− .− 0− 0− .− 0− 0− .)→ (14)

As we can see, we have six partition structures, each of which we can

handle independently for the next expansion. Intra-partition permutations

brings the number of cases down to three.

Lemma 7.6. Exhaustion Lemma for (14),(11, 2) and (5, 8): Given the par-

titions stated, inserting seven vertices with label 1 will require at least ten

insertions of vertices in the next expansion. Also, inserting eight vertices

will require at least nine vertices to insert in the next expansion.

Proof. Apply Proposition 7.2 to determine the minimum number of vertices

that can be inserted in the expansion, and we also can use Proposition 4.9

to do the same to each partition. We begin with (14) and seven vertices.

Using the Proposition 7.2, we end up with (21), which implies that we need

eleven vertex insertions to dominate the partition structure. Similarly, by

inserting eight vertices, we can see that we get 14 + 8− 2 = 20 vertices that

we need to dominate, resulting in a need to insert at least 10 vertices to

dominate the expanded partition structure.

We move on to (11, 2) and and insert seven vertices. First, observe that

we need six vertices to insert into the partition of length 11 and one to

dominate the partition of length two. This gives us (11+6−1, 2+1), which

means we need to dominate 16 vertices in one of the new partitions and

three vertices in other. In total, we will need an insertion of at least eight

vertices in one and two vertices in another. Therefore, we need at least ten

vertices to dominate all in the next expansion. Looking at the insertion of

eight vertices into (11, 2), there are two possible ways: six vertices into (11)

and two vertices into (2), or seven vertices into (11) and one vertex into (2).

In the first case, we get 11 + 6− 1 vertices that need to be dominated along

with two vertices, which implies that we need to insert at least ten vertices
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in the next expansion. In the other case, we get 11+7−3 vertices that need

to be dominated along with three vertices that also need to be dominated,

which implies that we need 8 + 2 vertex insertions to dominate all vertices.

Finally, we look at (5, 8) with seven vertices to insert. There is only one

possible way of inserting seven vertices in this partition structure, which is

three vertices into (5) and four vertices into (8). This results in (5+3−1) and

(12), which implies that we need 4+6 vertices to dominate all vertices. Now

we look at inserting eight vertices, and notice that there are two possible

ways of inserting eight vertices into (5, 8). One way is to insert four vertices

in (5), and four vertices in (8), and the other way is to insert three vertices

into (5) and five vertices into (8). In the first case, we get (5+4−3, 12) which

implies that we need at least nine vertices insertion in the next expansion.

In the second case, we get (5 + 3 − 1),(8 + 5 − 2), which implies we need

4 + 6 vertices to dominate all vertices in the next expansion.

In order to fully prove the theorem, we will need to establish a special

counting lemma, which will allow us to determine precisely the size of the

cyclic graph that we are looking at by looking at the partition structure.

Lemma 7.7. Given a set of partitions of vertices with flanking number 0 in

a cyclic graph, the number of vertices with nonzero flanking number is equal

to the number of partitions given. The number of vertices of a graph can be

determined by adding the sizes of all partitions and the number of partitions

in a graph.

Proof. Each partition on a cyclic graph is separated by a vertex with non-

zero flanking number. Thus, the number of vertices with non-zero flanking

number in the flanking partition structure is determined by counting the

number of partitions. Therefore, the number of vertices in a graph is deter-

mined by adding the lengths of all partitions and the number of partitions

in a graph.
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8 Arank number of any size of Cyclic Graph

Now we are well on our way to proving arank number of any cyclic graphs.

First, we prove the arank number of cyclic graphs that have size approxi-

mately equal to the average of two powers of 2.

Theorem 8.1. Given ψr(C2m−2) < ψr(C2m−1) and the following partition

structures of C2m−1 for m > 3:

(14, (2m−2 − 4) terms of 3’s) (occurs twice)

(2,11, (2m−2 − 4) terms of 3’s) (occurs twice)

(5,8, (2m−2 − 4) terms of 3’s) (occurs twice)

(3,6,3, (2m−2 − 4) terms of 3’s) (occurs once)

Then:

ψr(C2m+2m−1−3) < ψr(C2m+2m−1−2)

Proof. Since ψr(C2m−2) < ψr(C2m−1), we will begin from ψr(C2m−1). We

also take the partition structure as a given assumption.

Observe that we need to dominate all 2m−2 − 4 partitions of size 3, and

we need two vertices insertions for each of the said partition, which implies

that we need insertions of at least 2m−1 − 8 vertices. Finally, we look at

each partition structures (14), (2, 11), (5, 8), and (3, 6, 3) and we see that

we need to insert at least seven vertices for each, giving us a total of at

least 2m−1−1 vertex insertions into C2m−1, implying that we only can reach

C2m+2m−1−2. There is no way of reaching C2m+2m−1−3 from C2m−1, since

we need to dominate all vertices or the expansion does not have minimal

ranking. Therefore, ψr(C2m+2m−1−3) < ψr(C2m+2m−1−2) for m > 3.

This theorem is a small but important component of the next theorem,

which has two parts – first, that a certain cyclic graph will always have

distinct arankings, and distinct partition structures; second, that we can

determine the structure of arank number in some cases of cyclic graphs.
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Theorem 8.2. a) C2m−1 for m > 3, will always have seven possible in-

stances with arank rankings (up to permutation of the top 3 labels), and the

partition structures are as follows:

(14, (2m−2 − 4) terms of 3’s) (occurs twice)

(2,11, (2m−2 − 4) terms of 3’s) (occurs twice)

(5,8, (2m−2 − 4) terms of 3’s) (occurs twice)

(3,6,3, (2m−2 − 4) terms of 3’s) (occurs once)

b) ψr(C2m−2) < ψr(C2m−1)

Proof. We will prove by induction. We begin with base cases: we know from

earlier in this paper that it is true for ψr(C14) < ψr(C15) and ψr(C21) <

ψr(C22). Furthermore from earlier work, we know that C15 has only seven

possible cases, and same goes for C31. Also, we know that ψr(C30) <

ψr(C31).

Now, due to the counting lemma, we can focus uniquely on the structure

of the partitions of flanking numbers and determine the construction from

there. From previous works, we know that for C15 and C31 there are only

seven arankings for both up to permutation of the top three labels.

Now we move on to the induction part of the proof. First, we assume

that all of the listed statements in the theorem is true for m = i, and we

want to prove for m = i + 1. This means that ψr(C2m−2) < ψr(C2m−1) is

true, and we only desire to work from C2m−1 since it is our goal to maximize

the arank number for all cyclic graphs.

Looking at partitions with (14), (11, 2), or (5, 8) component, (2m−2 − 4)

partitions of size 3 will require (2m−1 − 8) vertices to dominate all such

partitions. This gives us a partition structure of (2, 2) for each (3) partition.

This implies that we will need another (2m−1 − 8) insertions of vertices,

bringing us to a total of (2m − 16) vertices insertions just to dominate the

particular set of partitions through both expansions. Since we are interested

in determination of arank number of C2m+1−2, and (2m − 16) vertices are

inserted into C2m−1 to dominate all partitions of size 3, we are left with 15
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more vertices needed to dominate the partition (14),(11, 2) or (5, 8) in order

to reach C2m+1−2. Also observe that an equal number of vertices is used

for both expansions, which has the effect of limiting us to an insertion of

seven vertices into the partition (14), (11, 2) or (5, 8) for the first expansion,

and an insertion of eight vertices for the second expansion. However, by the

Exhaustion Lemma for all three partitions, we cannot insert eight vertices

in the second expansion and expect to get a minimal cyclic graph. Note

also that if we attempt to insert eight vertices, we still will not be able to

reach an aranking of C2m−1 with these partitions, thanks to the Exhaustion

Lemma regarding (14), (11, 2), and (5, 8).

Now suppose we try to put one more vertex into one partition of size

three, which will give us a partition structure of (1, 1, 1). This implies that

we will need three vertices to dominate the partition instead of two ver-

tices, which has the eventual effect of making it clear that we cannot get to

the arankings of C2m+1−2 from the arankings of C2m−1 under assumptions

that ψr(C2m+1−2) = ψr(C2m−2) + 2. Furthermore, this shows that we can-

not reach ψr(C2m+1−2 with cases with partitions with (14), (11, 2) or (5, 8)

component.

Let us focus on the last case, (3,6,3, (2m−2 − 4) terms of 3’s). This case

is slightly different, but we begin in the same way. We begin by including

the two partitions with size three from (3, 6, 3) with all the other partitions

with size of three, and dominate them all by inserting (2m−1 − 4) vertices

to produce (2m−1 − 4) partitions of size two. These partitions will require

another (2m−1 − 4) insertions of vertices to dominate all partitions of size

two. Now since we have inserted (2k−8) vertices into C2m−1, and our goal is

to prove for cases of C2m+1−1, we only can insert eight more vertices through

two expansions. Now we focus on the last remaining partition, which is of

size six. This presents us two possible strategies: insert three vertices in

the first expansion, and then five vertices in the second expansion; or four

vertices in the first expansion and four vertices in the second expansion.

We apply Exhaustion Lemma (6) to see that we can get the partition

(9) with an insertion of three vertices, or partition (2, 4, 2) with an insertion

of four vertices. Also, by the Exhaustion Lemma (9), partition (9) requires
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five additional vertices to dominate all vertices with flanking number 0, and

partition (3, 6, 3) requires four additional vertices insertions to dominate all

vertices with flanking number 0. Finally, by Exhaustion Lemma (9) with five

vertices insertions, we get the partition structure (14), (11, 2), (8, 5), (5, 8),

(2, 11), or (14), establishing six cases with arankings of C2m+1 − 1. Finally,

we insert four vertices to dominate all vertices with flanking number 0 into

(2, 4, 2), and we note that such domination is unique, and we get partition

structure of (3, 6, 3). Now we tack on other (2m−1 − 4) partitions of size

three to all seven partitions to get:

(14, (2m−1 − 4) terms of 3’s) (occurs twice)

(2,11, (2m−1 − 4) terms of 3’s) (occurs twice)

(5,8, (2m−1 − 4) terms of 3’s) (occurs twice)

(3,6,3, (2m−1 − 4) terms of 3’s) (occurs once)

This completes the proof of distinctiveness of structure in C2m−1. For

the next component of the theorem, note that all of these are a result of

smallest domination possible, and there is no way of constructing C2m+1−2,

since the number of insertions which are forced by the need to dominate all

vertices with the flanking number 0 are (2m−1−4)+(2m−1−4)+3+5 = 2m

or (2m−1 − 4) + (2m−1 − 4) + 4 + 4 = 2m, and thus never can be less

than this value. It is impossible to reach C2m+1−2 from C2m−1 with arank

rankings. Since it is possible to reach C2m+1−1 from C2m−1 with arank

ranking, ψr(C2m+1−2) < ψr(C2m+1−1), thus completing the proof.

Corollary 8.3. ψr(Cn) = blog2(n+ 1)c+ blog2(
n+2
3 )c+ 1 for all n > 6

Proof. Since the ordering of arankings is included in the previous two theo-

rems, this corollary is derived directly from that ordering and the fact that

two expansions are needed between m and m+1 cases, according to the rules

of the ordering of arankings. Furthermore, it should be noted that the the-

orem proving the order of arank numbers do not include early cases, but

fortunately, those are well covered by the theory of flanking numbers.
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It should be emphasized that the above corollary closed the open problem

of determining the arank number of all cyclic graph. Furthermore, as astute

readers may have noticed, the fact that the collection of arankings of C2m−1

has a very distinctive character – that there are only seven of them, up

to permutation of top three labels! This result should come across as very

surprising to many, especially when we go into large cyclic graphs, one would

think that the number of possible arankings would increase quickly.

9 Future Directions

Now that all of the open cases of ψr(Cn) have been resolved, we turn toward

potential future fields of study. For instance, it might be interesting to rein-

terpret the results of ψr(Pn) in terms of flanking numbers. Also, one might

try to extend the application of the ideas behind flanking numbers to differ-

ent families of graphs. Before doing so, observe that in non-cyclic graphs,

it is possible to generate a graph where two adjacent vertices could both

have flanking number 1, which will complicate the application of flanking

numbers to the analysis. Also, it might be worth to attempt to characterize

all families of graphs where the flanking numbers of two adjacent vertices

are not 1.

One could attempt to count the number of all possible arankings for a

given cyclic graph of length n. As we have seen, we have seven possible

arankings, ignoring permutations of the top three labels for cases of C2k−1

for k > 3. Now suppose we include permutations of the top three labels:

how many distinct arankings do we have? How many arankings do we have

for C2k−2? At first glance, it appears that this problem is trivial, but with

due consideration of the number of ways to construct arankings of a cyclic

graph with a given length, this problem can quickly turn nontrivial.
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