TSV placement optimization for liquid cooled 3D-ICs with emerging NVMs

Sundararaman Mohanram

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation
TSV Placement Optimization for Liquid Cooled 3D-ICs with Emerging NVMs

by

Sundararaman Mohanram

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering

Supervised by

Dr. Dhireesha Kudithipudi
Department of Computer Engineering
Kate Gleason College of Engineering
Rochester Institute of Technology
Rochester, New York
2 2013

Approved by:

Dr. Dhireesha Kudithipudi, Associate Professor
Thesis Advisor, Department of Computer Engineering

Dr. Satish Kandlikar, Professor
Committee Member, Department of Mechanical Engineering

Dr. Sonia Lopez Alarcon, Assistant Professor
Committee Member, Department of Computer Engineering
Thesis Release Permission Form

Rochester Institute of Technology
Kate Gleason College of Engineering

Title:

TSV Placement Optimization for Liquid Cooled 3D-ICs with Emerging NVMs

I, Sundararaman Mohanram, hereby grant permission to the Wallace Memorial Library to reproduce my thesis in whole or part.

__
Sundararaman Mohanram

__
Date
Dedication

To my family, for their constant love and support
Acknowledgments

I would like to thank my thesis advisor Dr. Dhireesha Kudithipudi for her guidance, encouragement and support during the course of my thesis work. I am grateful to Dr. Satish Kandlikar and Dr. Sonia Lopez Alarcon for taking time out of their busy schedules to serve as committee members. Finally, I would also like to thank my colleagues David Brenner, Cory Merkel and Ganesh Khedkar from Nanocomputing Research Lab for their help and support during my thesis work.
Abstract

Three dimensional integrated circuits (3D-ICs) are a promising solution to the performance bottleneck in planar integrated circuits. One of the salient features of 3D-ICs is their ability to integrate heterogeneous technologies such as emerging non-volatile memories (NVMs) in a single chip. However, thermal management in 3D-ICs is a significant challenge, owing to the high heat flux ($\sim 250 \text{ W/cm}^2$). Several research groups have focused either on run-time or design-time mechanisms to reduce the heat flux and did not consider 3D-ICs with heterogeneous stacks. The goal of this work is to achieve a balanced thermal gradient in 3D-ICs, while reducing the peak temperatures. In this research, placement algorithms for design-time optimization and choice of appropriate cooling mechanisms for run-time modulation of temperature are proposed. Specifically, an architectural framework which introduce weight-based simulated annealing (WSA) algorithm for thermal-aware placement of through silicon vias (TSVs) with inter-tier liquid cooling is proposed for design-time. In addition, integrating a dedicated stack of emerging NVMs such as RRAM, PCRAM and STTRAM, a run-time simulation framework is developed to analyze the thermal and performance impact of these NVMs in 3D-MPSocS with inter-tier liquid cooling. Experimental results of WSA algorithm implemented on MCNC91 and GSRC benchmarks demonstrate up to 11 K reduction in the average temperature across the 3D-IC chip. In addition, power density arrangement in WSA improved the uniformity by 5%. Furthermore, simulation results of PARSEC benchmarks with NVM L_2 cache demonstrates a temperature reduction of 12.5 K (RRAM) compared to SRAM in 3D-ICs. Especially, RRAM has proved to be thermally efficient replacement for SRAM with 34% lower energy delay product (EDP) and 9.7 K average temperature reduction.
Nomenclature

1T1R One transistor one resistor

3D-IC Three dimensional integrated circuit

3D-MPSoc Three dimensional multiple processor system on-chip

CMOS Complementary metal oxide semiconductor

CPD Cumulative power distribution

CTTM Compact transient thermal model

DA Density arrangement

DVFS Dynamic voltage frequency scaling

EDP Energy delay product

FP Footprint

HPD Highest power density

HPWL Half perimeter wire length

MLC Multi-level cell

NVM Non-volatile memory

PCRAM Phase change random access memory

PDA Power density arrangement

RRAM Resistive random access memory
SA Simulated annealing
SRAM Static random access memory
STTRAM Spin-transfer torque random access memory
TSV Through silicon vias
WSA Weight-based simulated annealing
Contents

Dedication .. iii

Acknowledgments .. iv

Abstract .. v

1 Introduction and Background ... 1
 1.1 Three Dimensional Integrated Circuits ... 1
 1.2 Design-Time TSV Placement .. 4
 1.2.1 Through Silicon Vias (TSVs) .. 4
 1.2.2 Meta-Heuristic Algorithms ... 6
 1.2.3 Thermal-Aware TSV Placement ... 7
 1.3 Liquid Cooling .. 8
 1.4 Emerging Non-Volatile Memories ... 9
 1.5 Contributions ... 12

2 Related Work and Contributions ... 14
 2.1 Thermal-aware Placement of TSVs .. 14
 2.2 Liquid Cooling ... 16
 2.3 Emerging Non-Volatile Memories ... 17
 2.4 Summary ... 18

3 Weight-Based Simulated Annealing (WSA) .. 19
 3.1 Description of WSA Algorithm .. 19
 3.2 Weight-Based TSV Planning .. 20
 3.3 Cost Function ... 23
 3.4 Power Density Arrangement (PDA) ... 24
 3.5 Interconnect Length (L_{wire}) .. 25
 3.6 TSV Rearrangement .. 26
 3.7 Summary ... 26
List of Tables

4.1 Floorplan and Thermal analysis parameters used in the simulation of 3D-ICs 30
4.2 MCNC’91 and GSRC benchmark attributes used in the simulation of 3D-ICs 33
4.3 Physical Characteristics of NVMs 34
4.4 Cell size of SRAM and 1T1R NVM cell 36
4.5 Architectural description of 3D MPSoC used for the investigation of emerging NVMs 40
4.6 Parameters used in thermal simulation of emerging NVMs in 3D-MPSoC 40
4.7 PARSEC benchmarks used for the investigation of emerging NVMs in 3D-MPSoCs 42
List of Figures

1.1 A 3-tier liquid cooled 3D-IC where inter-tier connections are achieved using TSVs ... 2
1.2 A 3-tier 3D-IC where inter-tier networks are connected using TSVs ... 5
1.3 A 2-tier liquid cooled 3D-IC implemented using micro-channels, a pump and a heat exchanger ... 9
1.4 A metal-insulator-metal RRAM cell structure. The switching occurs by the drift of oxygen vacancies between high and low oxygen vacancy concentration regions. ... 10
1.5 A chalcogenide PCRAM cell. The switching between crystalline and amorphous state occurs due to application of heat by the heater. ... 11
1.6 A magnetic tunnel junction of STTRAM cell. The switching achieved by passing high current in the free layer. ... 11

2.1 Design-flow of TSV placement used to reduce the peak temperature in 3D-ICs adapted from [18] ... 15

3.1 Flowchart of Weight Simulated Annealing (WSA) used for the TSV placement in 3D-ICs ... 21
3.2 Flowchart of weight-based planning in WSA algorithm ... 22
3.3 Interconnect Length Calculation using (a) HPWL (b) TSV height and TSV to pins (TSV-PH) ... 25

4.1 Design-time TSV placement framework ... 29
4.2 Compact Transient Thermal Model (CTTM) (a) solid thermal cell (b) liquid thermal cell ... 31
4.3 Stack configuration of 3-tier 3D-IC used in TSV placement ... 32
4.4 Generic 1T1R Architecture Representation ... 36
4.5 Generic NVM L_2 Cache Organization adapted from [25] ... 37
4.6 PCRAM SET and RESET operation adapted from [25] ... 38
4.7 Design-flow of Run time simulation framework used for the investigation of emerging NVMs in 3D-MPSocs ... 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Stack configuration of 3D-IC used for the investigation of thermal impact of emerging NVMs</td>
<td>41</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of area of 3D-ICs obtained using SA and WSA algorithm in the TSV placement</td>
<td>44</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of interconnect length measurement in 3D-ICs using HPWL and TSV-PH</td>
<td>45</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of interconnect length of 3D-ICs before and after TSV rearrangement</td>
<td>46</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of average temperature of 3D-ICs with and without Liquid Cooling</td>
<td>46</td>
</tr>
<tr>
<td>5.5</td>
<td>Temperature profile of 3D-ICs with ami33 benchmark comparing (a) without liquid cooling (b) with liquid cooling (c) PDA with liquid cooling</td>
<td>47</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of different parameters of WSA algorithm on area, interconnect length and temperature of 3D-ICs</td>
<td>48</td>
</tr>
<tr>
<td>5.7</td>
<td>EDP of L_2 cache (normalized to SRAM EDP) simulating different PARSEC benchmarks for 4-tier 3D-MPSOCs</td>
<td>49</td>
</tr>
<tr>
<td>5.8</td>
<td>Average temperature of SRAM and NVMs L_2 cache in 4-tier 3D-MPSOCs for different PARSEC benchmarks</td>
<td>50</td>
</tr>
<tr>
<td>5.9</td>
<td>Average temperature of 3D-MPSOCs with air-cooling for different PARSEC benchmarks (a) 2-tier (b) 4-tier</td>
<td>51</td>
</tr>
<tr>
<td>5.10</td>
<td>Average temperature of 4-tier 3D-MPSOC with liquid-cooling for different PARSEC benchmarks</td>
<td>53</td>
</tr>
<tr>
<td>5.11</td>
<td>Average temperature of 3D-MPSOC with different cache size (based on NVM density) simulating different parsec benchmarks (a) EDP (b) overall average temperature</td>
<td>54</td>
</tr>
<tr>
<td>5.12</td>
<td>Number of Read, Write and Miss in 4-tier 3D-MPSOC (a) Ferret (b) Blacksholes</td>
<td>55</td>
</tr>
<tr>
<td>5.13</td>
<td>Average temperature of L_2 cache in 4-tier 3D-MPSOC for ferret and blacksholes benchmarks</td>
<td>55</td>
</tr>
<tr>
<td>5.14</td>
<td>Temperature profile of 3D-MPSOC simulating blacksholes benchmark (a) SRAM L_2 cache (b) RRAM L_2 cache (c) PCRAM L_2 cache (d) STTRAM L_2 cache</td>
<td>57</td>
</tr>
<tr>
<td>5.15</td>
<td>Temperature profile of 3D-MPSOC simulating ferret benchmark (a) SRAM L_2 cache (b) RRAM L_2 cache (c) PCRAM L_2 cache (d) STTRAM L_2 cache</td>
<td>58</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction and Background

In the past few decades, the demand for high performance and improved functionality in planar integrated circuits is achieved through scaling the transistor sizes. As the transistors scaled down, the interconnects become a limiting factor to the performance of the planar integrated circuits. Three dimensional integrated circuits (3D-ICs) is emerging as a promising solution to the performance bottleneck by providing higher bandwidth through shorter interconnect length. In addition, 3D-ICs offer improved functionality, reduced power consumption and reduced form factor compared to the planar integrated circuits.

1.1 Three Dimensional Integrated Circuits

3D-ICs stack multiple dies vertically as shown in Figure 1.1. Each die consists of an active layer placed on the silicon substrate and a metal layer for interconnection within the die. The dies are bonded using dielectric glues and interconnected using through silicon vias (TSVs). TSVs use micro-bumps for interconnection in the bonding layer between the dies. Figure 1.1 shows 3D-IC with liquid cooling mechanism integrated between the tiers. A fluid pipe runs through the stack ¹ vertically to supply coolant between the tiers. All the dies are vertically stacked on the package substrate.

Vertical stacked 3D-ICs offer number of advantages compared to planar integrated cir-

¹Stack and tiers are used interchangeably throughout this document. Stack denotes the vertical arrangement of dies in 3D-ICs. Tiers represents the group of dies in 3D-ICs.
cuits. 3D-ICs provide higher performance and reduced power consumption by shortening the interconnect length between the functional units. In addition, 3D-ICs supports heterogeneous integration of different technologies such as emerging non-volatile memories (NVMs), RF, MEMS, analog and optical systems [64] in a single chip. 3D-ICs have high package density and small form factor with reduced footprint and weight [67]. Moreover, 3D-ICs reduce the cost for large designs (more than 100 M gates) compared to planar integrated circuits [24]. For large designs, the reduction in the cost of metal layers overcomes the cost due to increased die area of 3D-ICs.

Despite these advantages, one of the major problem in 3D-ICs is the high chip temperatures [54], due to increased power density (∼ 250 W/cm²) per unit surface area of the stack. The high power density is caused by vertical stacking of active devices and poor thermal conductivity of the bonding dielectric used between the tiers of 3D-ICs. For instance, the thermal conductivity of epoxy used as dielectric between the tiers is very low (1.7 W/mK) compared to the thermal conductivity of copper (400 W/mK) and silicon (150 W/mK) [73]. The overall power density of a 3D-IC stack will be \(\sqrt{N}\) times the...
power density of corresponding 2D die (where N is the number of stacks and the dies are assumed to be homogeneous with equal power density) [32]. The power density can be further exacerbated with heterogeneous integration.

The high temperature effects the performance, power, reliability and life span of 3D-ICs [19]. At high temperature, the speed of the transistors is reduced due to the degradation in mobility of the carriers. The performance of clock buffers degrades (1.2%-1.32% for every $10\ K$ increase [64]) and the resistivity of the metal interconnects increases with temperature. The leakage power of 3D-ICs also varies linearly with temperature. For instance, every $30\ K$ increase in temperature increases the leakage power by 30% [62]. Moreover, the reliability of 3D-ICs exponentially depends on temperature. For example, the mean time to failure is reduced by a factor of 10 with every $30\ K$ rise in temperature [63]. It is also estimated that 10%-15% increase of temperature causes 50% reduction in the life span of the device. Furthermore, hotspots can permanently damage the 3D-ICs.

Therefore, thermal management plays a pivotal role in controlling the temperature of 3D-ICs. Design-time and run-time thermal management techniques are used for mitigating the high heat dissipation in 3D-ICs [57]. Design-time thermal management aims at achieving a thermal-aware 3D-IC floorplan design using methods such as floorplanning, TSV and thermal-via placement [16, 17]. Run-time thermal management involves continuous monitoring and controlling of the temperature during the run-time. Methods such as task scheduling, task migration and dynamic voltage frequency scaling (DVFS) and, cooling mechanisms such as air-cooling and liquid cooling are used for run-time thermal management [54]. In addition, the temperature can be reduced in 3D-ICs by exploiting the heterogeneous integration and inherent capability of emerging non-volatile memories (NVMs). Emerging NVMs such as such as resistive random access memory (RRAM), phase change random access memory (PCRAM) and spin-transfer torque random access memory (STTRAM) which have low static power can be integrated with 3D-IC to reduce
the overall power density and thereby the associated thermal gradient. In this work, the focus is on using design-time thermal management techniques for controlling the temperature in 3D-ICs. A detailed overview of these techniques are discussed below.

1.2 Design-Time TSV Placement

The design-time TSV placement utilizes the heat dissipating capability of TSVs to reduce the temperature in 3D-IC stack. TSVs with their vertical interconnection and high thermal conductivity are capable of dissipating heat from the tiers of 3D-ICs. The characteristics, types and thermal-aware placement of TSVs are comprehensively discussed in this section.

1.2.1 Through Silicon Vias (TSVs)

TSVs are vertical interconnects placed between the tiers in 3D-ICs. A 3-tier 3D-IC where inter-tier networks are connected using TSVs is shown in Figure 1.2. Polysilicon, copper and tungsten are most commonly used TSV materials [56]. As shown in Figure 1.2, dielectric oxide is used for the isolation between TSV and silicon substrate. The micro-bumps are used to connect TSVs in the bonding layer between the tiers.

Based on the purpose, TSVs are classified into power, signal and thermal vias. TSVs used for the power distribution in the 3D-IC stack are called power TSVs, while TSVs used for inter-tier networks are called signal TSVs. The size of power TSVs are larger than the signal TSVs to reduce the voltage drop and meet the current density requirements [33]. For instance, Lee et al. [37] used the 40 μm and 10 μm size for the power and signal TSVs in a 45 nm technology. In addition, TSVs used specifically for the heat dissipation are called thermal vias. The size of the thermal vias depends on the implementation and maximum temperature of the 3D-ICs. It is estimated that thermal vias consume 10% - 20% of the chip area for a maximum temperature reduction of 47% [28, 44]. On the other hand, based on
the fabrication, TSVs are classified using via-first and via-last technologies. In via-first approach, TSVs are fabricated before/during the bonding of dies. While in via-last approach, TSVs are fabricated after the bonding of dies. The size of the TSVs varies between the via-first and via-last technology, due to the aspect ratio requirement corresponding to the thickness of the wafer used in these technologies [71]. For instance, the dimension of the TSVs range from 1 \(\mu m \) to 90 \(\mu m \) in via-first to via-last technologies respectively [71].

These TSVs occupy a large area between the functional units in 3D-ICs. For instance, 90000 signal TSVs of 5 \(\mu m \) dimension occupy an area equal to one million gates of 1.5 \(\mu m \) [34]. In addition, TSVs induce stress in the surrounding regions due to the difference in the co-efficient of thermal expansion between TSVs and the silicon substrate. Hence, TSVs require a minimum distance (pitch size) from other TSVs and functional units. The pitch of the TSVs ranges from 10 \(\mu m \) to 200 \(\mu m \) [65] in via-first to via-last technologies.
respectively. Furthermore, the cost of fabrication of these TSVs are very high using current technologies [42]. Hence, the placement of the TSVs are extremely important in reducing the temperature of 3D-ICs. Meta-heuristic algorithms offer good floorplanning solutions for the placement of TSVs.

1.2.2 Meta-Heuristic Algorithms

Meta-heuristic algorithms use an iterative process to optimize a combinational problem and improve the solution through successive iterations. In practice, the combinational problems such as arrangement, grouping, ordering or selection [51] have a very large solution space. An exhaustive search to find the most optimal solution to these problems requires extremely large amount of time and is sometimes infeasible [55]. Hence, these meta-heuristic algorithms use randomness in the search process to find the optimal or near optimal solution for the combinational problems. Meta-heuristic algorithms are not problem specific and contain mechanism to escape from the local optimum to settle at the global optimum. Some of the most commonly used meta-heuristic algorithms are simulated annealing, genetic algorithm, tabu search, ant colony optimization and iterated local search [55].

Simulated annealing (SA) is a simple meta-heuristic algorithm and widely used approach to find global optimum in a large solution space. SA algorithm uses annealing process of metals, which assume low energy equilibrium when slowly cooled from high temperatures [55]. The pseudo code for SA algorithm is shown in Algorithm 1 [2]. SA algorithm consist of current (S), temporary (S_{temp}) and best (S_{best}) solutions. The current solution is updated at each iteration using random assignment. The temporary solution is updated when it finds a lower cost or with a probability to escape from local minimum. The best solution stores the lowest cost solution. SA algorithm iterates till the current solution reaches the value of the threshold. When the current solution reaches the threshold, the best solution gives the optimized result of the combinational problem.
SA algorithm has smaller simulation time and uses less computational resources compared to other general optimization methods [1]. In addition, SA algorithm is capable of scaling with the problem size [7]. However, the SA algorithm heuristic has to be tuned for fast and efficient convergence to the global optimum [26].

The TSV placement is a large solution space problem in which the meta-heuristic algorithms such as SA is used to narrow down to global optimum solution. The TSV placement is a multi-objective problem, where in addition to the temperature other parameters of the chip such as area, interconnect length etc should be considered for optimization.

1.2.3 Thermal-Aware TSV Placement

Thermal-aware placement of TSVs uses meta-heuristic algorithm to place the TSVs between the functional units (macro-blocks) such that the entire arrangement results in reduced temperature. Meta-heuristic algorithm uses an iterative method for placing TSVs near potentially high temperature regions (hotspots).

TSV placement begins with the placement of macro-blocks in the tiers of 3D-ICs. After the placement of macro-blocks, TSVs are placed to form the inter-tier networks. The meta-heuristic algorithm iterates through the placement of TSVs and evaluates the floor-plan using a cost function. The cost function evaluates the TSV placement by considering

Algorithm 1 pseudo code for Simulated Annealing algorithm

```
initialize $S, S_{\text{temp}}, S_{\text{best}}$

while $S > \text{threshold}$ do
    $S = \text{random-assignment}(S_{\text{temp}})$
    if $\text{cost}(S_{\text{temp}}) > \text{cost}(S)$ then
        $S_{\text{temp}} = S$
    else if $\text{probability}((\text{cost}(S_{\text{temp}}) - \text{cost}(S))/T) < \text{random}())$ then
        $S_{\text{temp}} = S$
    end if
    if $S_{\text{best}} > S$ then
        $S_{\text{best}} = S$
    end if
end while
```
multiple objectives such as area, interconnect length, temperature etc. Meta-heuristic algorithm iterates for a specified number of iterations and analyzes the temperature of the floorplan. When the temperature of the floorplan reaches the threshold, the best solution in the meta-heuristic algorithm gives the optimized TSV placed floorplan.

Although the thermal-aware placement of TSVs minimizes the temperature of 3D-ICs, the number of TSVs is limited by its large area and cost of fabrication. Hence, inter-tier liquid cooling is considered in design-time to achieve a better temperature reduction in 3D-ICs.

1.3 Liquid Cooling

Liquid cooling is a cooling mechanism in which fluid coolant is passed through microchannels / pin-fins, integrated between the tiers of 3D-ICs. Various cooling mechanisms have been considered to alleviate heat generated in the 3D-IC stack. Cooling mechanisms such as conventional heat sink and micro-channel cold plates are inadequate to dissipate large heat from 3D-ICs [61]. While TSVs are limited in number due to their cost of fabrication and large area, inter-tier liquid cooling is an efficient cooling mechanism capable of removing high heat dissipated in a 3D-IC stack [61].

A generic schematic of a liquid cooling system used for a 2-tier 3D-IC is shown in Figure 1.3 [58]. The heat sinks are embedded between the tiers of the 3D-IC stack. The fluid coolant moves through the heat sink and absorbs the heat from the tiers. The liquid cooling system needs one or more fluid pump to control the pressure of the fluid, flowing through the heat sink in the 3D-ICs. The heated coolant is cooled by passing through the heat exchanger. The coolant is recirculated again through the heat sink by the fluid pump.

The amount of heat removed from the tiers depends on the incoming temperature of the coolant, flow rate of the coolant and placement of functional units near the inlet of the
Figure 1.3: A 2-tier liquid cooled 3D-IC implemented using micro-channels, a pump and a heat exchanger coolant. By managing the above three parameters the heat flux as high as $3.9 \, kW/cm^3$ can be extracted from the tiers of the 3D-IC stack [53]. However, sufficient amount of energy is spent in the fluid pump and heat exchanger for controlling the pressure and temperature of the coolant respectively. Hence, the liquid cooling mechanism is used with other temperature reduction methods in order to maintain the energy efficiency of the 3D-ICs. The temperature in 3D-ICs can also be reduced by exploiting the heterogeneous integration and inherent nature of emerging NVMs which is discussed in detail in the next section.

1.4 Emerging Non-Volatile Memories

Heterogeneous integration in 3D-ICs offers integration of novel technologies such as emerging NVMs in a single chip. Emerging memory technologies such as RRAM, PCRAM and STTRAM are being actively researched in the recent times [70, 59, 6]. Compared to the
SRAM, these emerging technologies are non-volatile, requiring a little/zero power to maintain the stored state. Due to the reduced static power consumption, these NVMs can be used to reduce the power density and thereby, overall thermal gradient of the 3D-IC stack. Semiconductor companies such as HP, Toshiba and Samsung are exploring the possibility of replacing conventional SRAM on-chip memory with these emerging NVMs in the near future [66].

Different NVMs use different mechanisms to store the data. RRAM uses resistive switching in thin film memristors to store the data in high and low resistance states. The schematic of an RRAM cell is shown in Figure 1.4. RRAM memory cell consist of oxide layer sandwiched between two metal electrodes, forming a metal-insulator-metal (MIM) structure. The oxide layer is divided in to high and low doping oxygen concentration regions. The switching process is described by drift of oxygen vacancies in the oxide region. Several metal oxides are used for the fabrication of RRAM such as hafnium oxide (HfO$_x$), titanium oxide (TiO$_x$), copper oxide (CuO$_x$), aluminium oxide (AlO$_x$), nickel oxide (NiO$_x$) etc. [68].

PCRAM switches between crystalline and amorphous state in phase change material (PCM) on the application of heat. The schematic of phase change material used with

![Figure 1.4: A metal-insulator-metal RRAM cell structure. The switching occurs by the drift of oxygen vacancies between high and low oxygen vacancy concentration regions.](image-url)
MOSFET access device is shown in Figure 1.5. The phase change material used is a chalcogenide glass \((Ge_2Sb_2Te_2)\) which is alloys of germanium, antimony and tellurium [30]. The crystalline phase and amorphous phase shows low resistivity and high resistivity respectively. A heater is placed below the PCM for applying the heat for switching. The crystalline state is achieved by heating the PCM above crystallization temperature. While, amorphous state achieved by heating and quenching the PCM.

STTRAM stores the data in parallel and anti-parallel orientation in magnetic tunnel junction (MTJ). The schematic of STTRAM is shown in Figure 1.6. MTJ consists of two ferro magnetic layers separated by a dielectric layer. The ferro magnetic layer which has
the fixed magnetization direction forms the hard layer. While, the ferro magnetic layer that can change the direction of magnetization on passing sufficient current through the layer is called free layer. The relative magnetization between the hard layer and free layer determines the resistance of the MTJ.

The above emerging NVMs offer high density compared to the conventional SRAM. In addition, these NVMs have relatively greater thermal performance compared to conventional SRAM. Furthermore, these NVMs have good compatibility in integration with CMOS technology. Despite these advantages, these NVMs are characterized by high read/write latencies compared to conventional SRAM. Hence, the performance impact of these NVMs should be analyzed with their thermal impact in 3D-ICs.

1.5 Contributions

The goal of this thesis work is to achieve uniform temperature profile in 3D-ICs, while reducing the peak temperatures. Specific contributions of this thesis work are

- A WSA algorithm is proposed to optimize the TSV placement for a balanced thermal gradient in 3D-ICs with inter-tier liquid cooling.
- The performance and thermal impact of 3D-MPSoC with emerging NVMs are investigated and compared with SRAMs. In addition, the impact of liquid cooling in reducing the temperature of 3D-IC at run-time is analyzed.
- Design-time and run-time thermal simulation frameworks are custom-developed in this work for investigating different 3D-IC configurations.

The rest of the document is organized as follows: The related work of this thesis are discussed in Chapter 2. Chapter 3 describes the proposed WSA algorithm used for the TSV placement. The architecture and characteristics of NVMs are discussed in Chapter 4. The
simulation framework and methodology used for the TSV placement and investigation of thermal profile of NVMs are presented in Chapter 5. Simulation results and analysis are presented in Chapter 6. The conclusions and future work are presented in chapter 7.
Chapter 2

Related Work and Contributions

Thermal management is a significant constraint in 3D-ICs owing to the high temperature of the chip. Many research groups have focused on design-time placement optimizations and integration of cooling solutions to reduce the temperature of 3D-ICs. In addition, emerging NVMs can be integrated to the 3D-ICs to reduce the temperature of the stack. In this chapter, the related work corresponding to these design-time techniques are discussed in detail.

2.1 Thermal-aware Placement of TSVs

Several groups have explored the design-time thermal management using TSV placement in 3D-ICs. Different approaches such as partitioning-based methods, multi-level placement were used with the meta-heuristic algorithms to place TSVs in 3D-ICs. A multi-objective cost function was used in these meta-heuristic algorithms to optimize parameters such as area, interconnect length, number of TSVs in addition to temperature.

Cong et al. [17] developed a multi-level TSV planning framework with integrated adaptive lumped resistive thermal model. The design flow of the multi-level TSV planning framework is shown in Figure 2.1. The multi-level TSV planning framework is tested using MCNC’91 and GSRC benchmark suites. The macro-blocks from the benchmarks are initially assigned to the tiers of 3D-ICs through floorplanning. The TSVs are formed from the inter-tier networks and distributed between the macro-blocks. A maze search algorithm is used for the TSV placement which iterates through TSV distribution, assignment and
adjustment between the macro-blocks. The peak temperature of 3D-IC is reduced to 85° C with 80% lesser thermal vias and a trade off of 2% increase in the interconnect length.

Goplen et al [27] proposed an multi-level analytical and partition based TSV placement approach to explore the trade off between the interconnect length, via count and temperature. The placement of TSVs is carried out in three stages: global placement, coarse legalization and detailed legalization. The global placement is focused on initial placement of TSVs and macro-blocks in 3D-ICs with an objective to minimize interconnect length, via count and temperature. While coarse legalization is used for shifting, moving and swapping of the TSVs and macro-blocks to improve the objective function. Detailed legalization
removes the overlap by placing the TSVs in the nearest free space that has minimal impact on the objective function. The temperature of 3D-ICs is reduced by 20% with a trade off of 1% increase in interconnect length and 10% higher TSVs.

The meta-heuristic algorithms used in the above mentioned research works contain randomness in determining the position of TSVs. In addition, they use half perimeter wire length (HPWL) which does not consider the height and position of the TSVs in calculating interconnect length. Furthermore, as the TSVs and thermal vias are restricted due to large area and fabrication cost, the above works do not consider any cooling mechanism such as liquid cooling with the placement of TSVs.

In this work, a WSA algorithm that replace the randomness with a weight-constraint is proposed. In addition, a new interconnect length calculation TSV-PH which considers the height and position of TSVs is introduced in this work. A power density estimate is also added to the cost function to achieve a balanced thermal gradient throughout the 3D-IC stack. Furthermore, the effect of liquid cooling with TSV placement is analysed in this work.

2.2 Liquid Cooling

Several research groups focused on implementation of liquid cooling in 3D-ICs to reduce the peak temperatures. Lee et al [37] analysed the thermal effect of liquid cooling on 3D-IC stack using ISPD 2006 benchmark suite. In addition, various physical, electrical and thermo-mechanical requirements of power, signal and thermal TSVs are evaluated with liquid cooling. They suggested that 2.5% of the routing area is occupied by power TSVs, 50% by micro-channel liquid cooling and the remaining 47.5% can be used for the placement of TSVs. In addition, they reduced the peak temperature of 3D-IC to 85° C using micro-channel liquid cooling with coolant temperature of 20° C and 70 kPa pressure drop.
Later, Lee et al [38] focused on the reliability analysis and optimization of various design parameters of TSVs with inter-tier liquid cooling.

On the other hand, Sridhar et al [61] have proposed a flexible compact transient thermal model (CTTM) for inter-tier liquid cooling using micro-channels and enhanced cavity pin-fins. The CTTM model offers a significant speed up of simulation time with a small error rate.

Although the above works focused on reducing the peak temperature using liquid cooling, the TSVs are not considered as a heat dissipating element with liquid cooling implementation. In this work, the heat dissipation of TSVs are considered with liquid cooling implementation. In addition, the thermal impact of emerging NVMs in 3D-ICs are also analyzed with inter-tier liquid cooling.

2.3 Emerging Non-Volatile Memories

Several research groups have focused on optimizing the energy and read/write latencies of the emerging NVMs. Yoon et al. [70] used a large PCRAM last level cache to reduce the off-chip traffic with a little effect on power consumption. They explored different cache hierarchies using SRAM, DRAM and PCRAM and concluded that large PCRAM last-level cache is very efficient for cache-friendly and memory intensive applications. Smullen et al. [59] explored the trade off between energy delay product (EDP) and non-volatility of STTRAM cache. The area of the cell is reduced to minimize the write energy of STTRAM cell. A cache model is developed to explore the trade off between the non-volatility, latency and energy in STTRAM. They achieved more than 70% reduction in energy delay product by using STTRAM L_2 and L_3 caches.

On the other hand, Brenner et al. [6] from our research group evaluated run-time thermal management policies in 3D-MPSoCs with RRAM and SRAM L_2 cache. They investigated
thermal and performance impact of RRAM and SRAM in 3D-MPSoCs. Additionally, the thermal effect of liquid and air cooling were also studied in 3D-MPSoC with RRAM and SRAM. They concluded that RRAM based caches lowered the overall maximum temperatures by 24 \(K\) compared to SRAM based caches in 3D-MPSoC with inter-tier liquid cooling.

Most of the above research works focus on improving the functionality, performance or energy in NVMs. A detailed analysis and comparison of performance and thermal impact of NVMs has not been addressed so far. In this work, The performance, power and thermal impact of emerging NVMs such as RRAM, PCRAM and STTRAM in 3D-MPSoC is analyzed and compared with conventional SRAM memory.

2.4 Summary

The meta-heuristic algorithms used for TSV placement in previous research works have randomness in the placement of TSVs. In addition, these works uses HPWL which ignores the TSV height and position for the calculation of interconnect length. Furthermore, a comprehensive analysis on the performance and thermal impact of emerging NVMs in 3D-MPSoCs is not addressed so far. In this work, a WSA algorithm which replaces the randomness in SA algorithm with a weight-constraint is proposed. A wholistic interconnect length calculation is introduced in the cost function of WSA algorithm which considers the position and height of TSVs. Also, the performance and thermal characteristics of emerging NVMs in 3D-MPSoCs is analyzed in detail. Furthermore, the thermal impact of liquid cooling in 3D-ICs is analyzed in this work.
Chapter 3

Weight-Based Simulated Annealing (WSA)

WSA algorithm uses a weight constraint for the placement of TSVs in 3D-ICs. Simulated annealing (SA) algorithm used in previous works [16, 41] contains randomness in the placement of TSVs. WSA algorithm replaces the randomness in SA algorithm by a weight constraint, to reduce the free space created on inserting TSVs in the floorplan. WSA algorithm proposed in this work for the TSV placement is discussed in this chapter.

3.1 Description of WSA Algorithm

The inputs and constraints used in WSA algorithm for the TSV placement problem are described by the following statement.

Problem Statement: The input to the WSA algorithm is a set of macro-blocks M_i with width W_i, height H_i and power P_i. The macro-blocks are interconnected by the networks N_j. The TSVs are identified from the inter-tier network and grouped together as *via groups* V_l. *via group* represents a cluster of TSVs. The constraints on the placement of *via groups* are a) *via groups* should not overlap with each other; and b) *via groups* should be enclosed within the footprint of the chip. The goal of the TSV placement is to find an optimized floorplan with minimum footprint FP, interconnect length L_{wire} and power density arrangement PDA.

The general flow of WSA is shown in Figure 3.1. The placement of the macro-blocks in 3D-ICs is given as a input to the WSA algorithm. TSVs are identified from the inter-tier
networks and are grouped together as *via groups*. The *via groups* are placed between the macro-blocks using WSA algorithm to achieve an optimized floorplan. The WSA algorithm iterates over perturbation of the macro-blocks and weight-based planning of the *via groups*, to achieve a minimum cost floorplan. In each iteration, the floorplan is evaluated using a cost function F_{cost} after the placement of the *via groups*.

The WSA algorithm keeps track of temporary and permanent solutions to narrow down the optimum TSV based floorplan. The temporary floorplan is updated whenever it finds a lower cost through weight-based TSV planning. In addition, the temporary floorplan is also updated with a probability (based on incremental cost) to a higher cost to escape from the local minimum. The best floorplan stores the lowest cost solution of the entire WSA iterations. The WSA algorithm iterates till a specified number of iterations and checks whether the current temperature of the floorplan is below the threshold temperature.

The WSA approach can be described by the following equation

$$
\begin{align*}
\text{minimize } F_{\text{best}} \\
\text{subject to } T < T_{\text{threshold}} \\
F_{\text{best}} \leq (F_1, F_2, \ldots, F_n)
\end{align*}
$$

where T and $T_{\text{threshold}}$ represent the current and minimum threshold temperature of the 3D-IC respectively. F_{best} is the best floorplan and F_1, F_2, \ldots, F_n are the new floorplans generated during the iterations.

3.2 Weight-Based TSV Planning

The general flow of weight-based TSV planning is shown in Figure 3.2. The weight based TSV planning is carried out by either modifying the aspect-ratio or the position of the *via groups* in the floorplan. The weight used in placement of *via groups* is calculated based on
the free space created from changing the position of the via groups. The weight of the via groups is given by the following equation

$$W_i = \sum_{i=1}^{n} \sum_{j=1}^{m} [(x_i - X_j) \cdot (y_i - Y_j)]$$ (3.2)
where, W_l denotes the weight of the via groups v_l. The co-ordinates of the via groups are x_l and y_l. The co-ordinates of the pins in the macro-blocks are represented by X_j and Y_j.

WSA verifies the overlap between the via groups, after satisfying the weight constraint. Via groups v_l and v_m overlap each other, if at least one of the following conditions is not satisfied [40]

\[
\begin{align*}
 x_l + w_l & \leq x_m \\
 x_l & \geq x_m + w_m \\
 y_l + h_l & \leq y_m \\
 y_l & \geq y_m + h_m
\end{align*}
\]

(3.3)
where, \(w_l, w_m \) and \(h_l, h_m \) represents the width and height of the via groups \(v_l \) and \(v_m \) respectively. The via groups are enclosed within the boundary of the chip with the following constraints [40]

\[
\begin{align*}
x_l & \geq 0 & x_l + w_l & \leq FP_{\text{width}} \\
y_l & \geq 0 & y_l + h_l & \leq FP_{\text{height}}
\end{align*}
\]

(3.4)

where \(FP_{\text{width}} \) and \(FP_{\text{height}} \) are the width and height of the footprint of the 3D-IC respectively. When all the above constraints are satisfied, the via positions are updated in all tiers of the 3D-IC. The cost function is used for evaluation of the placement is discussed in next section.

3.3 Cost Function

WSA algorithm uses the cost function to evaluate the TSV based floorplan. The cost function of WSA is given by the following equation

\[
\text{cost} = \alpha \cdot FP + \beta \cdot L_{\text{wire}} + \gamma \cdot PDA
\]

(3.5)

where, \(\alpha, \beta \) and \(\gamma \) are weight factors. The weighting factors are chosen such that all the parameters have equal contribution towards the cost function of WSA. \(L_{\text{wire}} \) represents the interconnect length measurement, which is calculated as the sum of inter-layer and intra-layer wire length. \(PDA \) denotes the power density arrangement in the cost function, which signifies the uniform power density distribution on all the tiers of 3D-IC. \(FP \) represents the footprint of the 3D-IC stack. \(FP \) is calculated using the following equation

\[
FP = W_{\text{max}} \cdot H_{\text{max}}
\]

(3.6)

where \(W_{\text{max}} \) and \(H_{\text{max}} \) represent the maximum width and height among all the tiers respectively. \(PDA \) and \(L_{\text{wire}} \) used in the cost function are discussed in the following sections.
3.4 Power Density Arrangement (PDA)

PDA is added in the cost function to achieve a uniform temperature profile through the arrangement of macro-blocks in 3D-IC stack. The power density arrangement is calculated by the following equation

$$PDA = \delta \cdot DA + \epsilon \cdot HPD + \zeta \cdot CPD$$ \hspace{1cm} (3.7)

where δ, ϵ and ζ are the weighting factors.

Density arrangement DA denotes the arrangement of macro-blocks based on the power density. At the inlet of the heat sink, the coolant is at the lowest temperature. Therefore, the thermal gradient between the coolant and the macro-blocks is high. When the liquid flows through the chip, the temperature of the coolant is increased due to the absorption of the heat from the tiers. Hence, the coolant absorbs more heat near the inlet than in any other region [53]. The density arrangement DA is a measure that quantifies the density of high power macro-blocks near the inlet.

CPD represents the cumulative power distribution. It ensures that the high power functional units are surrounded by low-power functional units to maintain a uniform temperature profile. The tiers in the 3D-IC stack are divided into cubic grids. CPD is the maximum value of the power density matrix grid, where each value is calculated as the sum of current grid value and the neighbouring grid values.

HPD is the highest power density. It denotes the highest power grid in the grid matrix, that contributes to the maximum temperature of the 3D-IC stack.
3.5 Interconnect Length (L_{wire})

Prior work [29, 16, 43, 11] in TSV placement used half perimeter wire length (HPWL), to calculate the interconnect length in 3D-ICs. The interconnect length calculation using HPWL is shown in Figure 3.3(a). HPWL is sum of half-perimeter width and height of the farthest placed macro-blocks in the tier. HPWL does not consider the impact of TSV position and height while calculating the interconnect length. One of the problems with this approach is that the placement of the macro-blocks in the floorplanning stage might actually underestimate the interconnect length.

This work considers the interconnect length from each pin of the macro-blocks in the network to the TSVs. Furthermore, the interconnect length also takes into account of the TSVs height between the tiers of 3D-ICs. The interconnect length calculation with TSV-PH is shown in Figure 3.3(b). The interconnect length is calculated using the following equation.

$$L_{wire} = \sum_{l=1}^{p} \sum_{m=k}^{q} \sum_{n=1}^{r} [(x_l - P_{x_n}) + (y_l - P_{y_n})]$$

(3.8)

where l, m and n represents the number of the TSVs, position of the tier of the TSV, and pins connected to the TSV, respectively. k and q are the layers interconnected by the TSV.
and P_{x_n} and P_{y_n} represents the coordinates of the pins connected to the TSV.

3.6 TSV Rearrangement

The interconnect length in the optimized floorplan is further optimized by interchanging the TSVs between the *via groups*. Algorithm 2 shows the pseudo code for the TSV rearrangement.

The interconnect length is calculated for each TSV corresponding to all the *via groups,* connected to the same tiers. Based on the estimate, the TSVs are compared between the *via groups.* If a lower interconnect length is identified when TSVs are connected to the same tiers, the TSVs are rearranged between the via groups.

Algorithm 2 pseudo code for TSV Rearrangement used in the optimized 3D-IC floorplan

```plaintext
for all $i$ in TSVs do
    for all $j$ in via groups do
        if $i$ and $j$ connect the same tiers then
            calculate interconnect length
            save via cost
        end if
    end for
end for
for all $i$ in TSVs do
    for all $j$ in via groups do
        if ($i$ not in $j$) and ($i$ and $j$ connect the same tiers) then
            if change cost < current cost then
                rearrange the TSVs
            end if
        end if
    end for
end for
```

3.7 Summary

This chapter presents the WSA algorithm for the thermal-aware placement of TSVs. WSA algorithm achieves the optimized TSV placement with minimized interconnect length, area
and temperature. A power density arrangement is used in the cost function of WSA algorithm to promote uniform temperature profile in 3D-ICs. A new interconnect length calculation which takes into account of TSV position and TSV height is introduced in the cost function. TSVs are rearranged in the optimized floorplan to further minimize the interconnect length.
Chapter 4

Design-Time and Run-time Simulation of 3D-ICs

In this chapter, design and run-time thermal simulation framework developed for the investigation of different 3D-IC configurations are presented. The parameters and assumptions of 3D-ICs used in the simulation frameworks are also discussed in this chapter.

4.1 Design-time Simulation of Thermal-aware Placement of TSVs

Design-time framework incorporates WSA algorithm for the TSV placement in 3D-ICs with inter-tier liquid cooling. The framework and simulation methodology used for the TSV placement are discussed in this section.

4.1.1 Framework

The general flow of design-time TSV placement framework is shown in Figure 4.1. The framework (developed in C++) integrates a customized floorplanning tool (3DFP) [29] and thermal simulator (3D-ICE) [60]. The framework uses macro-blocks, TSV definition, netlist and design information to generate an optimized TSV placed floorplan for 3D-ICs. The initial placement of macro-blocks is achieved in 3DFP by using a multi-objective cost function to optimize area and interconnect length in 3D-IC stack. 3DFP uses SA algorithm for the floorplanning and B-tree algorithm for enclosing the macro-blocks in 3D-IC
stack. 3DFP is modified to incorporate the WSA algorithm for TSV placement. A TSV rearrangement module is added as a wrapper to the 3DFP to rearrange the TSVs between the via groups in the optimized floorplan. In addition, 3D-ICE is integrated to 3DFP as a customized software thermal library for the thermal analysis of optimized 3D-IC floorplan.

3D-ICE is a thermal emulator library that supports inter-tier liquid cooling in 3D-ICs.

The parameters used in the thermal analysis are shown in Figure 4.1. The floorplan and stack configuration of 3D-ICs generated from 3DFP are given as inputs to the 3D-ICE for thermal analysis. 3D-ICE uses compact transient thermal model (CTTM) to simulate the thermal profile of 3D-ICs and solve the resulting equation matrix using SuperLU [20], a
Table 4.1: Floorplan and Thermal analysis parameters used in the simulation of 3D-ICs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSV size</td>
<td>20µm X 20 µm</td>
</tr>
<tr>
<td>Number of layers</td>
<td>3</td>
</tr>
<tr>
<td>silicon thickness</td>
<td>50µm</td>
</tr>
<tr>
<td>layer thickness</td>
<td>2µm</td>
</tr>
<tr>
<td>pin-fin cavity height</td>
<td>100µm</td>
</tr>
<tr>
<td>pin-fin diameter</td>
<td>50µm</td>
</tr>
<tr>
<td>pin-fin pitch</td>
<td>100µm</td>
</tr>
<tr>
<td>silicon thermal conductivity</td>
<td>130 W/m.K</td>
</tr>
<tr>
<td>coolant thermal conductivity</td>
<td>4.172 W/m.K</td>
</tr>
<tr>
<td>coolant incoming temperature</td>
<td>300</td>
</tr>
<tr>
<td>pin distribution</td>
<td>inline</td>
</tr>
<tr>
<td>Average coolant darcy velocity</td>
<td>1.1066 m/s</td>
</tr>
</tbody>
</table>

sparse linear system solver. The CTTM model for the solids and liquids used in the simulation are shown in Figure 4.2(a) and 4.2(b) [60] respectively. The six resistances of the thermal cells represent the conduction of heat from their respective directions, and capacitance represents the heat stored in the thermal cell [60]. The temperature controlled heat source in the liquid thermal cell denotes the convective heat transfer to the liquid flowing between the tiers of 3D-IC.

4.1.2 Simulation Methodology

The 3-tier 3D-IC configuration used for the TSV placement is shown in Figure 4.3. The architecture was tested using MCNC‘91 (ami33, ami49, hp and xerox) and GSRC (npu and ncpu2) benchmarks. The initial placement of the macro-blocks is achieved using SA algorithm with operations such as swap, move, rotate, inter-layer swap and inter-layer move. The placement of the macro-blocks is given as an input to the WSA algorithm for the TSV placement. The TSVs are identified from the inter-tier networks of the initial placement and grouped together as via groups. A maximum of 10 TSVs are used to form a via group.
The *via groups* placed in the floorplan using the WSA algorithm discussed in the previous chapter. The WSA algorithm uses a maximum of 15 perturbation moves and 400 iterations for the optimized placement of TSVs.

The thermal analysis of 3D-IC floorplan is performed for every specific number of iterations in WSA algorithm. The stack configuration used for the thermal analysis of 3D-ICs is shown in Figure 4.3. The steady state analysis is performed on the 3D-IC with enhanced cavity pin-fin liquid cooling. The initial temperature of thermal simulation is set to 300 K. A 20 μm length and 20 μm width cubic cell is used in the thermal analysis of 3D-ICs.

The area, interconnect length and temperature of 3D-ICs obtained from the simulations are analyzed to investigate the efficiency of WSA algorithm. Additionally, the thermal impact of liquid cooling in 3D-ICs with TSV placement is also analysed. MCNC’91 and GSRC benchmarks used for the above simulation are discussed in the following section.
Figure 4.3: Stack configuration of 3-tier 3D-IC used in TSV placement

4.1.3 MCNC’91 and GSRC Benchmarks

Microelectronics center for North Carolina (MCNC) benchmark suite [35] were published at the MCNC’91 workshop on the logical synthesis. MCNC’91 benchmarks (ami33, ami49, hp and xerox) are collected from the industry which ranges from simple circuit to advanced circuit. Giga scale system research center (GSRC) released similar cpu benchmarks (ncpu and ncpu2) which differs in size of macro-blocks and power consumed. Both MVNC’91 and GSRC benchmarks contain definition of the macro-blocks, description about the pins connecting the macro-blocks and the inter-network between the macro-blocks. These benchmarks are given as an input to 3DFP tool in YAL file format. The macro-blocks and netlist details of the MCNC’91 and GSRC benchmarks is shown in Table 4.2.

The MCNC’91 and GSRC benchmarks are used in the design-time TSV placement framework to achieve a optimized 3D-IC floorplan. In addition to the TSV placement, the emerging NVMs are integrated to 3D-IC design to reduce the temperature. The investigation of these NVMs are discussed in the next section.
Table 4.2: MCNC’91 and GSRC benchmark attributes used in the simulation of 3D-ICs

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Blocks</th>
<th>Nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>ami33</td>
<td>33</td>
<td>123</td>
</tr>
<tr>
<td>ami49</td>
<td>49</td>
<td>408</td>
</tr>
<tr>
<td>hp</td>
<td>11</td>
<td>83</td>
</tr>
<tr>
<td>xerox</td>
<td>10</td>
<td>203</td>
</tr>
<tr>
<td>ncpu</td>
<td>34</td>
<td>171</td>
</tr>
<tr>
<td>ncpu2</td>
<td>34</td>
<td>171</td>
</tr>
</tbody>
</table>

4.2 Investigation of Thermal Performance of NVMs in 3D-MPSOcs

The characteristics of different NVMs used in this work are presented in this section. In addition, the architecture, framework and simulation methodology used for the investigation of different NVMs are also discussed in this section.

4.2.1 Characteristics of NVMs

Table 1 summarizes the characteristics of NVMs based on the data collected from [69, 21, 45, 25, 48, 46, 14, 12]. RRAM provides high storage capacity due to smaller cell size. In addition, RRAM offers low operating voltage and multi-level cell (MLC) storage. A 40 nm 3-bit/cell and 2-bit/cell RRAM operation was demonstrated by Macronics [15]. They achieved a endurance of 10^3 with operating voltage of 0.4 V. In addition, RRAM has a simple metal-insulator-metal structure for fabrication compared to multiple magnetic structure in STTRAM and combination of different sized components such as heaters for PCRAM [10]. Unity semiconductor demonstrated the largest test array of 0.13 μm 64 MB multi-layered RRAM using conductive metal oxide technology [10, 13]. Furthermore, RRAM has the ability to withstand a very high temperature. For instance, RRAM withstanding the temperature up to 200° C was demonstrated by Lee et al. [36]. They achieved an endurance of greater than 10^6 cycles and 10 years of data retention at 200° C. However, RRAM has the problem of limited endurance (10^5-10^{10} cycles).
PCRAM has low static power and MLC storage. IBM, Qimonda and Macronix jointly demonstrated the operation of PCRAM of 4-bit/cell and 2-bit/cell [48]. They tested a 10x10 array structure of 4-bit/cell for 3x10^9 read cycles and 32 kB page of 2-bit/cell for 10^9 read cycles. In addition, Samsung has demonstrated a 512 MB PCRAM array with a write endurance of 10^5 cycles with a data retention time of 10 years at 85°C [49]. The thermal performance of PCRAM is limited by its crystallization temperature, as switching is achieved through heating the PCM [10]. For instance, Pellizer et al. [52] demonstrated the thermal performance of 110°C with 10 years of data retention time.

STTRAM has relatively very high endurance of greater than 10^{16} cycles, compared to RRAM and PCRAM. In addition, STTRAM has low static power and MLC storage. For instance, a 2-bit/cell STTRAM operation using MgO-based MJT was demonstrated by Seagate technology [46]. Furthermore, STTRAM has fast access time compared to RRAM and PCRAM [23]. Hitachi and Tohoku university jointly demonstrated a 1.8 V 0.2 µm 2 Mb STTRAM using MgO tunneling barrier and demonstrated a cell efficiency of 40% [31]. Moreover, STTRAM has a good thermal performance among the NVMs. For instance, STTRAM withstanding a temperature of 150°C with 10 years of data retention was demonstrated by Ono et al. [50]. However, STTRAM has a large cell size which leads to lower storage capacity compared to RRAM and PCRAM.

<table>
<thead>
<tr>
<th>Property</th>
<th>RRAM</th>
<th>PCRAM</th>
<th>STTRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1T1R Cell size</td>
<td>20F^2</td>
<td>36F^2</td>
<td>50.67F^2</td>
</tr>
<tr>
<td>Density</td>
<td>high</td>
<td>medium</td>
<td>low</td>
</tr>
<tr>
<td>Static power</td>
<td>very low</td>
<td>very low</td>
<td>very low</td>
</tr>
<tr>
<td>Dynamic power</td>
<td>low</td>
<td>high</td>
<td>very high</td>
</tr>
<tr>
<td>Endurance</td>
<td>10^n - 10^{10}</td>
<td>10^n - 10^9</td>
<td>> 10^{16}</td>
</tr>
<tr>
<td>Retention (at 85°C)</td>
<td>10+ years</td>
<td>10+ years</td>
<td>10+ years</td>
</tr>
<tr>
<td>Multi-level cell storage</td>
<td>3-bit/cell</td>
<td>4-bit/cell</td>
<td>2-bit/cell</td>
</tr>
<tr>
<td>Thermal performance</td>
<td>high</td>
<td>low</td>
<td>medium</td>
</tr>
</tbody>
</table>

Table 4.3: Physical Characteristics of NVMs
Although, PCRAM and STTRAM has low leakage power, the dynamic power consumption is high in these NVMs. PCRAM consumes a high dynamic energy due to the high current required to switch between crystalline and amorphous states [9]. In addition to high dynamic energy, PCRAM also requires a minimum distance between the cells to avoid undesirable heating (thermal cross talk) from the neighbouring cells. While, STTRAM requires a high current to change the direction of the magnetic layer during the write operation [72]. On the other hand, RRAM consumes a very low dynamic energy compared to the PCRAM and STTRAM [50]. Despite the above challenges, the advantages such as low static power, relatively high thermal performance compared to SRAM and possibility of MLC storage makes the NVMs to be considered as a thermal efficient replacement of SRAM in this work. The architecture used in this work to integrate these NVMs in 3D-MPSoCs is discussed in the following section.

4.2.2 Architecture of NVMs

NVMs such as PCRAM, STTRAM and RRAM use one-transistor one-resistor (1T1R) structure for one-bit memory cell. The generic 1T1R architecture used for NVM L_2 cache block is shown in Figure 4.4. Each one-bit NVM cell is composed of a single NMOS transistor and a single NVM element.

One-bit cell sizes of 6T SRAM and 1T1R NVMs used in this work is listed in Table 4.4. The RRAM has the lowest 1T1R cell size of $20F^2$ which is $\sim 7X$ improvement over the SRAM $146F^2$ cell size. While, PCRAM and STTRAM have $\sim 4X$ and $\sim 3X$ improvement over SRAM respectively. The small cell sizes of these NVMs provide an opportunity to integrate higher cache density (compared to SRAM) in 3D-ICs.

The L_2 cache is organized in three hierarchical levels bank, mat and sub-arrays. The organization of L_2 cache is shown in Figure 4.5 [25]. The bank is the top-most memory hierarchy. The L_2 cache is split in to multiple banks. Each bank contains multiple mat
blocks. The mat blocks are interconnected through a H-tree structure. Each mat block consists of multiple sub-arrays. Each sub array consists of 1T1R NVM array structure (as shown in Figure 4.4) and, the peripheral circuitry such as input/output drivers, row decoder, column multiplexer and sensing amplifier.

The read and write operations is different in different NVMs. During read and write operations, the word line(WL) for the specific memory cell is held high as shown in Figure 4.4. The following sections describe the read and write operations of each NVMs.

Figure 4.4: Generic 1T1R Architecture Representation

<table>
<thead>
<tr>
<th>Memory</th>
<th>Cell size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>$146F^2$</td>
</tr>
<tr>
<td>RRAM</td>
<td>$20F^2$</td>
</tr>
<tr>
<td>PCRAM</td>
<td>$36F^2$</td>
</tr>
<tr>
<td>STTRAM</td>
<td>$\sim 51F^2$</td>
</tr>
</tbody>
</table>

Table 4.4: Cell size of SRAM and 1T1R NVM cell
Read and Write Operation of RRAM

RRAM 1T1R cell store logic ‘0’ and logic ‘1’ in LRS and HRS respectively [22]. During the read operation, a small voltage is applied on the bit line (BL) of the 1T1R RRAM cell. The read voltage is maintained typically small, to ensure the read operation does not disturb the value of the RRAM cell. A current or voltage sense amplifier detects the state of RRAM cell [6].

During write operation, a positive voltage is applied on the BL to store high resistance state in RRAM cell. While, a negative voltage is applied on the BL to store a low resistance state in RRAM cell [47].

Read and Write Operation of PCRAM

PCRAM represent logic ‘1’ and logic ’0’ as crystalline and amorphous states respectively in PCM [8]. Read operation involves application of a small positive voltage on the BL and a current sense amplifier is used to sense the data in PCRAM cell. The PCM is heated by passing the electric current to switch between crystalline and amorphous state. During the write operation, a moderate current passed through the PCM for longer duration to achieve amorphous state. While, a high current is passed to heat the PCM above crystallization
temperature and quenched suddenly to achieve crystallization state. The temperature and pulse duration for crystalline and amorphous state is shown in Figure 4.6. [25]

![Figure 4.6: PCRAM SET and RESET operation adapted from [25]](image)

Read and Write Operations of STTRAM

STTRAM uses parallel and anti-parallel state to represent logic '0' and logic '1' respectively [3]. Read operation involves the application of very small negative voltage across the BL and source line (SL) line. The value of current through the MJT is determined by its resistance. A current sense amplifier is used to sense the current and identify the state of MJT. During write operation, a positive voltage or negative voltage is applied on the BL. The current required is passed through the cell to write the data.

A run-time simulation framework that supports the above NVMs L_2 cache architecture in 3D-MPSoC is developed in this work. The following section discuss the run-time simulation framework in detail.

4.2.3 Framework

The run-time simulation framework integrates different NVMs as L_2 cache in 3D-MPSoCs. The framework uses architectural description and benchmark characteristics as inputs to simulate the power, performance and thermal profiles of 3D-MPSoCs. The general flow of
The run-time thermal and performance simulation framework developed in this work is shown in Figure 4.7. Gem5 [5] is used as an architectural simulation platform for the proposed 3D-MPSoC architecture. The architectural configuration and cache access latencies used in the simulation are shown in Table 4.5. The cache access latencies of SRAM and NVMs are generated using performance and energy simulator, NVSim [25].

The performance statistics from gem5 are parsed and provided as an input to the Mc-

![Diagram](image.png)

Figure 4.7: Design-flow of Run time simulation framework used for the investigation of emerging NVMs in 3D-MPSoCs

PAT power simulator. McPAT [39] models dynamic power, sub-threshold leakage and gate leakage power for 3D-MPSoC architecture. NVM power tracer calculates the NVM L_2 cache power using the power values obtained from McPAT and NVSim.

3D-ICE uses CTTM model to generate the thermal profile of 3D-MPSoCs with inter-tier liquid cooling. The properties of liquid coolant and the stack material used for the thermal simulation are shown in Table 4.6. The entire flow of run-time simulation framework is controlled through a python script.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cores</td>
<td>8, 16</td>
</tr>
<tr>
<td>Voltage</td>
<td>1.25 V</td>
</tr>
<tr>
<td>L₁ instruction cache</td>
<td>16KB</td>
</tr>
<tr>
<td>L₁ data cache</td>
<td>8KB</td>
</tr>
<tr>
<td>L₁ I and D cache line size</td>
<td>64 B</td>
</tr>
<tr>
<td>Clock</td>
<td>1.4 GHz</td>
</tr>
<tr>
<td>L₂ cache size</td>
<td>4MB (8-core), 8MB (16-core)</td>
</tr>
<tr>
<td>L₂ cache access latencies</td>
<td>33.05 ns for SRAM, 72.4 ns for RRAM, 61.4 ns for STTRAM and 77.31 ns for PCRAM</td>
</tr>
<tr>
<td>L₂ cache line size</td>
<td>64 B</td>
</tr>
<tr>
<td>Issue width</td>
<td>2</td>
</tr>
<tr>
<td>Issue</td>
<td>out of order</td>
</tr>
<tr>
<td>Functional unit</td>
<td>2 IntAlu, 2 IntMulDiv, 1 FpAlu, 1 FpMult-Div and 1 load/store</td>
</tr>
<tr>
<td>main memory</td>
<td>1 GB SDRAM</td>
</tr>
</tbody>
</table>

Table 4.5: Architectural description of 3D MPSoC used for the investigation of emerging NVMs

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon thickness</td>
<td>50 µm</td>
</tr>
<tr>
<td>Layer thickness</td>
<td>2 µm</td>
</tr>
<tr>
<td>Metal layer thickness</td>
<td>10 µm</td>
</tr>
<tr>
<td>Heat transfer co-efficient (air cooling)</td>
<td>$10^{-4} \text{ W/µm}^2\text{K}$</td>
</tr>
<tr>
<td>Liquid coolant flow rate</td>
<td>42 ml/min</td>
</tr>
<tr>
<td>Liquid coolant incoming temperature</td>
<td>300 K</td>
</tr>
<tr>
<td>Liquid coolant volumetric heat capacity</td>
<td>4.172 W/m.K</td>
</tr>
</tbody>
</table>

Table 4.6: Parameters used in thermal simulation of emerging NVMs in 3D-MPSoC

4.2.4 Simulation Methodology

The architecture used in this work is loosely based on 65 nm UltraSPARC T2 processor. The 2-tier and 4-tier configurations are used for thermal analysis of NVMs in 3D-MPSoCs. The 2-tier configuration which has 8-cores and 4 L_2 cache blocks is shown in Figure 4.8. While, the 4-tier configuration (with 16-cores and 8 L_2 cache blocks) is assembled in a similar manner. The multi-threaded PARSEC benchmark is used as the target workload for the 3D-MPSoC architecture. The eight-threaded out-of-order CPU model is used for the full system simulation (Linux OS) of the target workload in 3D-MPSoC architecture. A 4 MB cache block is used for SRAM and NVMs for the purpose of comparison in 3D-MPSoCs.
In addition, equivalent high density NVM L_2 cache size (32 MB RRAM, 16 MB PCRAM and 16 MB STTRAM) relative to 4 MB SRAM L_2 cache are also studied.

NVM L_2 cache power is calculated from the McPAT power values and ratio R obtained from the simulation of NVSim. The configuration parameters used in the NVSim simulation are derived from [21, 45, 69]. The power values calculated from NVM power tracer are merged with the floorplan (shown in Figure 4.8) and given as an input to the thermal simulation. 3D-ICE generate the thermal profile of 3D-MPSoCs using the stack configuration shown in Figure 4.8. Micro-channel liquid cooling is chosen as it is scalable with the number of tiers in 3D-MPSoCs.

The efficiency of NVM L_2 cache with high latency and low power is calculated using energy delay product (EDP). In addition, the temperature profile of these NVMs L_2 cache are analyzed and compared to study their overall thermal impact in 3D-MPSoCs. The EDP and temperature profile are calculated for 2-tier and 4-tier configuration for the multi-threaded PARSEC benchmarks.
4.2.5 PARSEC Benchmarks

The multi-threaded PARSEC benchmarks [4] was jointly developed by Intel and Princeton university. The PARSEC benchmarks are developed from real-time application such as computer vision, engineering, animation etc. The PARSEC benchmarks are cross compiled and executed in the Linux system using gem5 on the proposed architecture. The PARSEC benchmarks offer many sizes of input such as test, simdev, simsmall, simmedium, simlarge and native. simsmall is used in this work as they are suited for micro-architectural studies. The parallelization, working set, application and data sharing of PARSEC benchmarks used in this work is shown in Table 4.7.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Application</th>
<th>Parallelization</th>
<th>Working set</th>
<th>Data sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>blackscholes</td>
<td>Financial Analysis</td>
<td>data-parallel</td>
<td>small</td>
<td>low</td>
</tr>
<tr>
<td>bodytrack</td>
<td>Computer vision</td>
<td>data-parallel</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>Fluid Animate</td>
<td>Animation</td>
<td>data-parallel</td>
<td>large</td>
<td>low</td>
</tr>
<tr>
<td>Ferret</td>
<td>Similarity search</td>
<td>pipeline</td>
<td>unbounded</td>
<td>high</td>
</tr>
<tr>
<td>Facesim</td>
<td>Animation</td>
<td>data-parallel</td>
<td>large</td>
<td>low</td>
</tr>
<tr>
<td>Freqmine</td>
<td>Data mining</td>
<td>data-parallel</td>
<td>unbounded</td>
<td>medium</td>
</tr>
</tbody>
</table>

Table 4.7: PARSEC benchmarks used for the investigation of emerging NVMs in 3D-MPSocS

4.3 Summary

The frameworks used for the simulation of different 3D-IC configurations are presented in this chapter. Design-time TSV placement framework incorporates WSA algorithm to achieve a optimized TSV placed floorplan. In addition, run-time simulation framework is used for investigation of the performance and thermal impact of NVMs in 3D-MPSocS.
Chapter 5

Result and Analysis

In this chapter a detailed discussion of the results from the TSV placement and WSA optimization algorithm run on different benchmarks is presented. Also, the thermal profiles of emerging NVMs as L2 caches when running different PARSEC benchmarks are extensively studied.

5.1 Design-Time Optimization of TSV Placement

WSA algorithm is simulated and tested for the TSV floorplanning using the simulation framework presented in the previous chapter. The impact of the TSV placement using WSA algorithm on interconnect length, area and temperature is presented in this section. All the results of MCNC’91 and GSRC benchmarks are taken from an average of 50 independent simulations.

The WSA algorithm replaced the randomness in the SA algorithm with a weight constraint. The area of the 3D-IC floorplan achieved using WSA and SA algorithm is compared in Figure 5.1. It is observed that the WSA algorithm is more efficient in optimizing the area of 3D-ICs compared to SA algorithm. The WSA algorithm reduced the area from 2% to 16% across the benchmarks compared to the SA algorithm. The decrease in area using WSA algorithm depends on the number of TSVs and free space created while inserting the TSVs. Furthermore, the reduction in area scales with the size and number of macro-blocks in 3D-ICs.
A new interconnect length calculation (TSV-PH) is introduced in the cost function of Figure 5.1: Comparison of area of 3D-ICs obtained using SA and WSA algorithm in the TSV placement. Figure 5.2 shows the difference between interconnect length calculated using HPWL and TSV-PH. In general, the TSV-PH enhanced the estimation of interconnect length over the MCNC’91 and GSRC benchmarks. A maximum and minimum difference of 1053 mm and 148 mm is observed between HPWL and TSV-PH. HPWL ignores the TSV height, position of TSVs and number of pins in the interconnect length calculation. This results in lower values for interconnect length and thereby, affecting the accuracy of the optimized floorplan.

After achieving the optimized floorplan using WSA algorithm, the TSVs are rearranged between the via groups to reduce the interconnect length without affecting the area and temperature. The interconnect length before and after TSV rearrangement is compared in Figure 5.3. In general, TSV rearrangement reduced the interconnect length throughout the benchmarks. A maximum of 33% interconnect length reduction is achieved using TSV rearrangement. The decrease in interconnect length using TSV rearrangement depends on the number of inter-tier networks and, the distance between the TSV and macro-blocks in
the 3D-IC floorplan. For instance, a 5% decrease in interconnect length is observed in \textit{hp} due to fewer interconnects, and a 33% decrease is observed in \textit{xerox} due to large number of interconnects.

Liquid cooling is implemented with the TSV placement to achieve a reduced temperature in 3D-ICs. The difference between the average temperature of 3D-IC with and without liquid cooling is shown in Figure 5.4. As expected, liquid cooling implementation has reduced the temperature across the benchmarks. Both \textit{ami33} and \textit{ncpu2} benchmarks demonstrate a higher reduction (8 \textit{K}) in temperature with implementation of liquid cooling. The decrease in temperature depends on the flow rate of the coolant, temperature of the coolant and the placement of the macro-blocks.

A case study on \textit{ami33} is performed to investigate the thermal impact of liquid cooling and PDA of WSA algorithm. Figures 5.5(a), 5.5(b) and 5.5(c) shows the temperature profile of 3D-IC stack for \textit{ami33} benchmark without liquid cooling, with liquid cooling and liquid cooling with PDA respectively. From Figure 5.5(a) and Figure 5.5(b), it is observed that liquid cooling reduced the temperature of the functional units and the number
Figure 5.3: Comparison of interconnect length of 3D-ICs before and after TSV rearrangement

Figure 5.4: Comparison of average temperature of 3D-ICs with and without Liquid Cooling of hotspots in the 3D-IC stack significantly. The temperature reduction of 8 k is observed with liquid cooling implementation. In addition, the temperature profile (Figure 5.5(c)) shows more uniformity with fewer hotspots by using PDA in WSA algorithm. The average
temperature of 3D-IC is reduced further by 3 K using PDA in WSA algorithm.

From the above results, it is observed that different parameters of WSA algorithm such as weight constraint, PDA, TSV-PH and TSV rearrangement has impact on the optimized 3D-IC floorplan. A comprehensive analysis on the impact of these parameters on interconnect length, area and temperature of 3D-ICs is presented in the next section.
5.1.1 Effect of Different Parameters of WSA on Area, Interconnect length and Temperature

The impact of different parameters of WSA algorithm on area, interconnect length and temperature of 3D-ICs is shown in Figure 5.6. The weight constraint of WSA algorithm reduce the area and thereby, interconnect length of 3D-ICs. However, the temperature of 3D-ICs increases as the placement of the macro-blocks are close to each other with weight constraint. On the other hand, PDA of WSA algorithm improves the temperature uniformity across the 3D-IC stack. PDA controls the placement of the macro-blocks and hence, the interconnect length and area may increase or decrease depending on the placement.

The proposed interconnect length calculation TSV-PH considers TSV position and

<table>
<thead>
<tr>
<th>WSA Algorithm</th>
<th>Area</th>
<th>Interconnect length</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Constraint</td>
<td>![down]</td>
<td>![down]</td>
<td>![up]</td>
</tr>
<tr>
<td>PDA</td>
<td>![up]</td>
<td>![up]</td>
<td>![down]</td>
</tr>
<tr>
<td>TSV-PH</td>
<td>Accurate Cost Calculation</td>
<td>![up]</td>
<td>Accurate Cost Calculation</td>
</tr>
<tr>
<td>TSV Rearrangement</td>
<td>—</td>
<td>![down]</td>
<td>—</td>
</tr>
</tbody>
</table>

Figure 5.6: Effect of different parameters of WSA algorithm on area, interconnect length and temperature of 3D-ICs

height to improve the interconnect length in 3D-ICs. TSV-PH provide more accurate interconnect length measurement for the TSV placement and thereby, improving the optimization of TSV placement. On the other hand, the TSV rearrangement decrease the interconnect length by rearranging the TSVs between the via groups. The TSV rearrangement does not affect the area and the temperature, as the position of via groups and macro-blocks are not affected during the rearrangement. The integration of above optimization parameters
in WSA algorithm results in increased simulation time for the TSV placement.

From the above results, it is observed that the proposed WSA algorithm reduced the overall area, interconnect length and temperature of 3D-IC design. In addition to optimization of TSV placement, the emerging NVMs are integrated in to 3D-ICs to reduce the temperature of 3D-ICs. The performance and temperature impact of emerging NVMs is presented and analyzed in the next section.

5.2 Investigation of Emerging NVMs

The run-time framework that supports different NVMs in 3D-ICs is simulated using PARSEC benchmark suite to investigate the performance and thermal impact of NVMs in 3D-ICs. The EDP and temperature profile of these NVMs in 3D-ICs is analyzed and compared with SRAMs in this section.

The EDP of NVMs as an L_2 cache (normalized to SRAM EDP) for 4-tier 3D-MPSoC
Figure 5.8: Average temperature of SRAM and NVMs L_2 cache in 4-tier 3D-MPSoCs for different PARSEC benchmarks.

...is shown in Figure 5.7. It is observed that SRAM L_2 cache demonstrate a higher EDP compared to NVMs, due to its high static power consumption. Among the NVMs, RRAM has lower EDP than PCRAM and STTRAM. This is attributed to the low static power and dynamic energy of RRAM. Although, STTRAM has minimum access time, the high dynamic energy resulted in higher EDP than other NVMs. A maximum EDP difference of 18% is observed between RRAM and PCRAM, and 34% is observed between PCRAM and STTRAM.

The average temperature of SRAM and NVMs L_2 cache for 4-tier 3D-MPSoC is shown in Figure 5.8. STTRAM L_2 cache has higher temperature among the NVMs. The reason is attributed to high dynamic energy of STTRAM. Specifically, in benchmarks such as ferret with high cache accesses, STTRAM L_2 cache demonstrates a high temperature, with a temperature difference of 1.4 K than SRAM. On the other hand, RRAM L_2 cache demonstrates low temperature than SRAM and other NVMs. For instance, RRAM L_2 cache has reduced the temperature to a maximum of 11 K compared to SRAM and 9.7 K compared
to STTRAM.

The above temperature reduction in NVMs L_2 cache affects the overall average temperature of 3D-MPSoCs. The overall temperature of 2-tier and 4-tier 3D-MPSoC with air
cooling for different NVMs L_2 cache is shown in Figure 5.9(a) and 5.9(b) respectively. From the simulations, NVMs L_2 cache has lowered the overall average temperature of 2- and 4-tier 3D-MPSocS. It is observed that there is an increase of temperature reduction from 2-tier to 4-tier 3D-MPSocS. For instance, RRAM has reduced the temperature to a maximum of $2.5 \, K$ in 2-tier to $12.5 \, K$ in 4-tier 3D-MPSocS. The temperature reduction is attributed to the low static power consumption of these NVMs. However, the overall average temperature for 4-tier is still higher, demanding additional cooling mechanisms and associated cost. The cooling mechanism consumes considerable amount of energy in the form of pump and heat exchanger.

Liquid cooling is implemented in 3D-MPSoc with NVM L_2 cache to reduce the high temperatures. The overall average temperature of 4-tier 3D-MPSoc with liquid cooling is shown in Figure 5.10. It is observed that liquid cooling reduced the overall average temperature of 4-tier 3D-MPSocS. A maximum difference of $37 \, K$ is observed in 4-tier 3D-MPSocS. The decrease in temperature depends on the flow rate of the coolant, placement of the functional units and incoming temperature of the liquid coolant.

Emerging NVMs has higher density compared to the conventional SRAM memory. The thermal impact of these high density NVMs is analyzed in 3D-MPSocS. The L_2 cache size of 32 MB RRAM, 16 MB PCRAM and 16 MB STTRAM were used equivalent to 4 MB SRAM. The EDP of 4-tier 3D-MPSoc (with L_2 cache size based on NVM density) is shown in Figure 5.11(a). The EDP of NVMs varies with the number of write accesses in the benchmark. For benchmarks such as blackscholes with fewer cache access, PCRAM has lower EDP compared to the RRAM and STTRAM. The reason is due to the increase in leakage power of RRAM and high dynamic energy consumption of STTRAM. On the other hand, for benchmarks such as ferret with high write accesses, the RRAM has lower EDP than PCRAM and STTRAM. The high write accesses in these benchmarks resulted in high dynamic energy for PCRAM and STTRAM.
The overall average temperature of 4-tier 3D-MPSoCs with L_2 cache size based on the NVM density is shown in Figure 5.11(b). In general, SRAM has higher average temperature than RRAM and PCRAM. A maximum difference of 6 K is observed between RRAM and SRAM and, 9 K is observed between PCRAM and SRAM. The difference between SRAM and STTRAM varies with the number of write accesses in the benchmarks. Among the NVMs, PCRAM has lower temperature compared to RRAM and STTRAM. This is due to the increase in leakage power consumption of RRAM L_2 cache. A maximum difference of 3.7 K is observed between RRAM and PCRAM. The temperature difference between RRAM and STTRAM varies with the number of write access in L_2 cache.

PCRAM and STTRAM has high dynamic energy due to high write current required for switching. Hence, the energy consumed by PCRAM and STTRAM depends on the number of write access in the benchmarks. A case study on *ferret* (high write accesses) and *blackscholes* (fewer write accesses) is performed in the following section to study the relationship between number of write access in the benchmark and the temperature.
5.2.1 CASE STUDY: Ferret and Blackscholes

The normalized value of number of reads, writes and misses in L_2 cache in 4-tier 3D-MPSoC for *ferret* and *blackscholes* benchmarks is shown in Figure 5.12. The *ferret* benchmarks has 93% higher reads and 97% higher writes compared to *blackscholes*. From the
Figure 5.12: Number of Read, Write and Miss in 4-tier 3D-MPSoC (a) Ferret (b) Blackscholes

Figure 5.13: Average temperature of L_2 cache in 4-tier 3D-MPSoC for ferret and blackscholes benchmarks

Figure 5.12, It is observed that ferret benchmark has higher number of write accesses in the L_2 cache. Furthermore, the execution time of *ferret* and *blackscholes* also varies in the proposed 3D-MPSoC architecture. For instance, RRAM L_2 cache takes 0.05 s for blackscholes and 0.5 s for ferret benchmarks.

The average temperature of SRAM and NVMs L_2 cache in 4-tier 3D-MPSoCs for *ferret*
and blacksholes benchmarks is shown in Figure 5.13. From the simulations, it is observed that the difference in temperature between NVMs is higher in ferret benchmark. The reason is due to the higher number of write access in the ferret benchmark. A difference of 2.7 K is observed between RRAM and PCRAM, and 7 K is observed between PCRAM and STTRAM. On the other hand, blacksholes due to fewer write accesses, demonstrate a smaller temperature variation between the NVMs. The temperature difference between RRAM and PCRAM is 0.6 K and for PCRAM and STTRAM is 1.36 K for blacksholes benchmark.

The temperature profile of SRAM and NVMs in 3D-MPSoC with air-cooling for blacksholes and ferret benchmarks are shown in Figure 5.14 and Figure 5.15 respectively. For blacksholes benchmarks, it is observed that 3D-MPSoC with NVMs show reduced temperature with fewer number of hotspots. The reason for the small variation between NVMs is due to fewer write accesses in blacksholes benchmark. On the other hand, the variation in temperature and number of hotspots in 3D-ICs with NVMs is very high in ferret benchmark. For instance, RRAM due to low dynamic and static energy consumption has reduced temperatures and fewer number of hotspots. While, STTRAM with high dynamic energy has high temperatures with large number of hotspots.

On the whole, NVMs can outperform SRAM cache with better temperature profile and low static power consumption. Specifically, RRAM demonstrated a low EDP and average temperature among the NVMs. Additionally, RRAM offers high density with little impact on the EDP and temperature. The temperature reduction with RRAM is further enhanced by implementing liquid cooling in 3D-ICs.
Figure 5.14: Temperature profile of 3D-MPSoc simulating blackscholes benchmark (a) SRAM L_2 cache (b) RRAM L_2 cache (c) PCRAM L_2 cache (d) STTRAM L_2 cache
Figure 5.15: Temperature profile of 3D-MPSoc simulating ferret benchmark (a) SRAM L_2 cache (b) RRAM L_2 cache (c) PCRAM L_2 cache (d) STTRAM L_2 cache
5.3 Summary

The proposed WSA algorithm for the TSV placement reduced the area, interconnect length and temperature of 3D-ICs to a maximum of 16%, 33% and 8 K respectively in MCNC’91 and GSRC benchmark suite. In addition, integration of emerging NVMs has reduced the temperature in 3D-ICs to a maximum of 12.5 K (RRAM) compared to SRAM. Especially, RRAM has proven to be thermally efficient replacement of SRAM with 34% lower EDP and 9.5 K average reduction in temperature among the NVMs.
Chapter 6

Conclusions and Future work

6.1 Conclusions

The conclusions of this thesis are as follows:

- Design-time TSV placement using the proposed WSA algorithm reduced the area, interconnect length and temperature by 16%, 32% and 8 K respectively.

- PDA used in the WSA algorithm reduces the difference between maximum and minimum temperatures by 5% and improves the uniformity (1%-5%) across the 3D-IC stack.

- TSV-PH introduced in the WSA algorithm improved the interconnect length estimation compared to HPWL by considering TSV position and height. TSV-PH has improved the estimate to a maximum of 1053 mm compared to HPWL.

- Investigation of emerging NVMs showed that RRAM has a maximum reduction of 12.5 K in average temperature compared to other NVMs. In addition, Liquid cooled RRAM L_2 cache reduced the average temperature of 3D-MPSocs to a maximum of 41 K.

- RRAM has proved to be thermally efficient replacement of SRAM cache with 34% lower EDP compared to the other NVMs. In addition, RRAM provides high density of 32 MB L_2 cache compared to 16 MB PCRAM and STTRAM with a maximum of 3.7 K increase in temperature.
6.2 Future Work

Future work could explore thermal via placement with different cooling mechanisms integrated in 3D-IC. In addition, the thermal impact of different materials such as carbon nanotubes, copper etc., can be investigated for thermal vias. Furthermore, the performance of different meta-heuristic algorithms with different micro-channel models can be analyzed to improve the convergence rate and reduce the execution time for the TSV placement with inter-tier liquid cooling.

The thermal and performance characteristics of different NVMs are investigated in this work. The modeling, simulation and analysis of MLC storage property of NVMs can be investigated. In addition, the thermal and performance impact of NVMs can be analyzed by extending NVM to L_3 cache and on-chip main memory. Furthermore, the performance and thermal impact of different NVMs in L_2 cache, L_3 cache and on-chip memory can be investigated.
Bibliography

