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1.2 Abstract

This paper will review and compare five multivariate CUSUM techniques.
Two of these are proposed by Crosier (1986), the multivariate CUSUM and the
CUSUM of T (COT). It will also compare two proposed by Pignatiello (1986), the
multivariate CUSUM #1 (MCl) and the multivariate CUSUM #2 (MC2). The fifth
method which will be compared is the multivariate Shewhart method. A
discussion of the method of computation and a comparison of results of all the
above methods using the same data set will be included. Additionally, a short
commentary on the cusum method by Woodall and Ncube is enclosed. Graphical

interpretation is also provided to make differences more readily apparent.
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_2. _INTRODUCTION

The Cumulative Sum (CUSUM) chart is used to maintain control of a
process. It is generally more advantageous to use than an ordinary Shevhart
chart since it can be equally effective at less expense. It has the ability to
pick up a sudden or persistent change more quickly than a comparable Shewhart
chart and it can also be more precise as to vhen the change took place in the
process.

When several variables are involved, with correlation existing betveen
them, it is applicable to use multivariate cusum control charts. Recently,
some schemes have been developed that take this correlation into account and
vhich exhibit greater control than the past use of several univariate cusum
charts. A measure of the pover of a CUSUM procedure is Average Run Length
(ARL), or the average number of sample pointe that will be plotted before a
control scheme picks up a specific change in the process.

This thesis will involve the comparison of some multivariate CUSUM schemes
by means of looking at some specific ARLS and associated plots of control
ellipses to visually demonstrate the different schemes powver in comparison to
each other. This analysis will be based on two variables for simplicity at
Type I error of .005 and vill be done at several different levels of

correlation to viev differences in control.

Multivariate CUSUM methods to be compared are the following:

1. Multivariate CUSUM #1 (MC1) and Multivariate CUSUM #2 (MC2) by Joseph J.

Pignatiello, Jr. (1986).



2. Multivariate CUSUM and the CUSUM of T with and without Fast Initial

Response (FIR) feature by Ronald B. Crosier (1986).

3. A comment on two schemes, by William Woodall and Matoteng M. Ncube (1985),
one basically involving use of univariate cusum and the other involving

principal components.

_3. _Hotelling’'s_T_Square_Statistic

Control charts, first developed by Walter Shewhart, are one of the most
powerful and commonly used tools in statistical process control. The standard
chart ie usually used to detect esignificant shifts of the process level from a
standard. Most charts are based on dealing with single variables. Hovever,
charts involving two or more characteristics measured on a process can also be
used. One of these such charts that is known is the Hotelling's T square
procedure developed by Harold Hotelling (1931).

The purpose or advantage in using multivariate control is that rather than
having a chart for each variable under study there is one chart and one answver
to the question of whether the process is in control or not. Furthermore, the
Type I error is maintained, possible correlations that may exist between the
variables under study are taken into account and lastly, should the process be
out of control multivariate control charts provide some insight into the
trouble or cause of the problem [see Jackson (1983)1].

The following equation is Hotelling’s T square:

T2 = (x -’ 8 (x-%)



vhere S™ 1is the inverse of the covariance matrix and x is an observation
vector. The T? distribution, derived by Hotelling, is a function of the
number of variables and the number of observations used in estimating the
covariance matrix. T2 is related to the F distribution and can be approximated
by the ChiSquare distribution vith p degrees of freedom ( for a reasonably
sized base period). For this reason, the chi square average run lengths are
used for the multivariate Shewhart method.

The multivariate Shevhart chart signals when T?* 2 SCL, the Shewhart
control limit being:

T2 = {p(n-1)/(n-p)1 F
P, n-p

4., UNIVARIATE CUMULATIVE_SUM_CHART

The Cumulative Sum chart was first proposed by a British statistician,
E.S. Page (1954). The CUSUM chart, unlike the Shewhart chart vhich is based on
the just the last observation or subgroup, is based on all the data. 1Its
primary use is for maintaining the current flov of a process. The Cumulative
Sum chart, (CUSUM) advantages over the Shevhart chart are that it is usually
just as effective as a Shevhart chart at less expense. It is less expensive
because it detects sudden and persistent changes in the process average more
rapidly. The CUSUM typically has smaller average run lengths than the standard
control chart for detecting certain kinds of shifts in the process. Another
advantage of the cusum chart is that it can pinpoint the time the change

occurred more closely.

The method involves the use of a V mask vwhich is used to decide if a



significant change in the process has occurred at each sampling. The sum of

the deviations from some reference value are plotted sequentially:

t
S =L (x-a)
=1

S »the sum of the deviations, is calculated by computing the summation of the
t

differences from the aimed at target, a, and then plotted at time t on the
control chart.

The point zero on the V mask is placed on the last point plotted . If any
of the previous points plotted are outside the V mask, then the process is out
of control. For instance, if the lower part of the mask covers a point, then
the process has shifted upwards. If the upper part of the mask covers a point,
the process has shifted downwvards.

The V mask is based on tvwo parameters, d and 6. These parameters
determine the V mask’s shape. Both, are determined by the type of operating
characteristics desired for the control chart. The equations for these

parameters follow:

d= ( 2/32) 1ln((1-B)/a)

tan (D /2Kk)

<
n

Din/a

Qs
"

vhere o represents the Type I error, B8 the Type II error, k being a scale

factor and D being the shift from the process mean.



This method, due to Pignatiello (1986) uses the square of the sample mean

from the target value and then accumulates the values of Hotelling’'s statistic.

Using :

nix-al’ v/ x-a1

a
"

vhere n is the size of the subgroup.

The statistic is as follovs:
t
t = £ d ( S.1)

The statistic is zeroed out when At - t( p + A2/2) § @ vhere )\* is a specified
distance from the target value. Thus, the number for which one would use to
zero out is changing with each additional observation. This procedure will be

illustrated with the data set provided in Table 3 for p=2 variables along with

a covariance matrix of:

The subgroup size will be n=1.

The first computation is as follovs:



d =11(-1.19 .59 1’ v~'( -1.19 .59 1 = 3.29

1
t =L d=d = 3.29 which is just Hotellings T? in this

first case. Then the check to see if the statistic should be reset to zero is,

d -1(2+1/2) 5 @
1

using A = 1 for good ARL’s as suggested by Pignatiello in his paper. Then for

the next observation,

d =11 -.8619 .4273 1’ V~' ( -.8619 .4273 1 = .96

2
t =L d =d+ d=3.29 + .96 = 4.24
=1 i 1 2

Checking to see if ve need to zero out,

(d + d) -202+ x2/2) 50
1 2

(4.24 - 2(2.5)] < 0@

which is in fact less than zero and the statistic, t , becomes zero
2

and the t representing time is also zeroed out.

The advantages of the MC2 over the traditional multivariate Shevhart



chartg are :
1. It cumulates past information from previous data.

2. This method can be designed to detect a specific shift in

the process mean.

6. _CUSUM_OF_T_(CQOT)

6.1 The statistic.

Crosier (1986) proposes the CUSUM of T (COT) which is similar to MC2
except for the reference value k. k is defined as d/2 where d is the distance
from mean to the target value a. It also involves the use of Hotelling’s T?
statistic. The statistic is defined as follovs:

COT = max{(@, COT + T - k) (6.1)
i i-1 i

vhere COT 2 ® and k 2 @. The statistic signals vhen COT 2 h, the decision

1

parameter. This amounts to taking the square root of Hotelling’s T?,

subtracting some set constant k, and adding to previous COT letting this be
i-t

coT provided it is greater than zero, otherwise COT becomes reset to zero
i i

and then procedure continues with accumulating the T.

Using the same data as in the previous section,

for observation n=1, T2 = [ -1.19 .39 1’ vV’'e -1.19 .59 1 = 3.2884



Hence, T = 1.8134 and using k = 1.41 COT = .4034
1

Continuing on with the next observation group,

T =0.12 .90 1’ V™' [ .12 .90 1 = .9562

so that,
T = .9772 and then,
COT - max(@®, COT + T - k)
2 1 1
and COT =max(@, .4034 + .9772 - 1.41) < @ so that COT becomes
2 2
zero.

The advantages of the COT are the same as MC2 plus:
1. The ability to use the Fast Initial Response (FIR) feature by Lucas

and Crossier(1982a) which is discussed later in this paper.

2. This method can be used in conjunction with the Shewvhart method as a

combined Shewhart-COT easily.

3. Additionally, this method uses the reference value k.

The purpose of the FIR feature is to provide quicker detection of an
initial off-aim condition at start up. For the COT procedure, quicker detection

of an initial off-aim condition is obtained by starting with COT equal to h/2
(")



rather than zero. If the process is off aim, the CUSUM of T will signal more
quickly because of the headstart. If the process is not off-aim, the headstart
vwill probably be removed by subtraction of k at each observation. The use of

the FIR feature significantly reduces the ARLS as can be seen by referring to

Table 3.

7.1 The statistic.

MCl differs from MC2 in that instead of the statistic being based on

accumulated squared distances, MCi is based on, T the square of the
t

distance of the accumulated sample averages from a.[ see Pignatiello (1986)1.
Let:

n
€C =t [ x -al
=1

Then:

I =n/t (C*V'C ) vhich is the test statistic and
t t t

represents the square of the distance of the accumulated average vector from

the target value. n, again represents the subgroup size. The test statistic,

I' is zeroed out every time that
t

I - (p+A/2)50
t

vhere A? is a specified distance from the target value as in section 5.1.



Using p=2, n=1, and A? = @ since Pignatiello recommends it in his paper.

For the data in Table 3, the statistic I would be zeroed out at:

t
r -(2+0/6)<0orTl < o.
t t
7.2 _Example.
C = [x-al)=1[-1.19 .59 ]
1 1
r = 1/1 € -1.19 .59 1’ v*/ [ -1.19 .59 1 = 3.29

then for the next group of observations,

€C =rLlx-al=1+-1,19 .59 1 + [ .12 .90 ]
2 i=1 i

[ -1.07 1.49 )

1/2 I x -a)’ V' [x al=1/2C Vv'c=23.31
t 2 2

-
(1]

Thus far, it has not been necessary to zero out the statistic. The procedure

vould continue on in this fashion. Further computation can be reviewed in

Table 3.

Thig method can have an added advantage over the previously discussed

methods in that it has a directional nature providing some indication of vhere



the mean has shifted. It tends to have better ARLs since the method allows
observations in the opposite direction from the target value to cancel each

other out. This cancelling occurs more frequently as the process mean is on

target.

The calculation involves the following:

C =+ (IS + x -al v'gs +x -al) =, 5
i i-1 i i-1 i

wvhere S =0 if C Sk, S =0, k 2 @ and
i i "]

S =1(8§ +x-al(l1l-ks/C )if C 2 k.
i i-1 i i i

The test statistic iz § * V' S vhich signals when it is greater than some
i i

specified H, being the decision interval. C represents the length of
i

(S + x -a), where a is the target
i-1 i

value, S is the standard deviation, and x repregent the observation for two
i i

variables.

Again, using the data from Table 3, first calculate:



C based on S =S = 0.
C =(Ix -al’"V'iix -ail) =.5
1 1

([ -1.19 .59 1" v/ -1.19 .59 1) =+ .5

1.813 vhich greater than k =.5, k being some reference value.

Next,

S =158 +x-all-k/sC)
1 o 1 1

( -1.19 .59 1 (1 - .57/ 1.813)

( -.8619 .4273 1 and finally the test statistic being:

[ -.8619 .4273 1" ¥~'/ [ -.8619 .4273 1 = 1.3134 vwhich is less than h=

5.50 so that process is in control so far.

(C°.8619 .4273 1 +( .12 .92 1 -(0@ @ 11" v~/
2 ([ .8619 .4273 1 + [ .12 .90 1 - [ @ @1 1 #+.5

Next, compute C

2.096 vwhich is greater than k=.5 and hence

(samel ( 1 - .5 / 2.096 )

n
1]

[ .565@ 1.0108 1]

and test statistic i8 S ' V™/ S = 1.5966 less than h = 5.5@ and process is
2 2

still in control.



This method as much the same advantages of MC1 over the previous methods
discussed. In addition it has the added advantage of being able to design
schemes to detect specific shifts in mean vectors. It can use the FIR feature
vhich makes it better than MC1 in comparison of ARLs. It alsc provides insight

into the origin of the shift from the target value.

For Crosier’s CUSUM, using the FIR requires running the COT method
simultanecusly in order to obtain the value for H which is the parameter that
is used to provide the early detection.

H is the specified decision interval which is determined by it giving an
acceptable on target ARL. When the FIR feature is used in this case H = H/2
and thereafter

H = min {H, H + max (@ , kr - Ti)l for i=1,2,3....
i i-1

k* is the k value for the COT procedure designed to detect the same deviation
as the multivariate CUSUM scheme. It can be seen be seen by looking at table 5
of Crosier’s paper that the ARL’s are significantly reduced using the FIR
feature. It has been stated that if the process is indeed off target that the
FIR is very effective in the early detection of it. However, should the
process not be off-aim, the ARL’s are increased slightly. This can be

compensated for by using a slightly bigger H value. The effect of the FIR on

CUSUM can be seen in Table 1.



Another multivariate CUSUM procedure has been proposed by Woodall and
Ncube (1985). This method essentially obtains univariate CUSUM procedures for
each variable separately and uses Bonferroni bounds for the results. They also
did this for principal components of the original variables with generally
smaller ARL’s. A comparison of these results with the others would require a
series of simulations vwhich is beyond the scope of this thesis. Crosier(1986)
has done some vork along these lines and has concluded for his examples that
the ARL’s of the multivariate CUSUM were less or equal to those of Woodall and

Ncube.

To compare the methods, it is necessary to be able to obtain the ARLs for
any specific distance from the aim for any procedure. These vwere vwere obtained
by using polynomial interpolation, a numerical analysis technique, and
graphical interpolation to determine distances based on tables provided by
Pignatiello (1986) and Crosier (1985) wvhich they arrived at by simulation.
These are summarized in Table 1. Then, using appropriate covariance matrices

depending on which correlation was be investigated, an equation for an ellipse

vas derived.

m-m31 (V'3 tm-m1=4d>
1 2 1 2

m and m representing the values of the variables.
1 2



Multiplying the above out led to a quadratic equation which wvas solved by
supplying values for one of the unknowns. After the roots vere obtained these
vere plotted to form the graph of the ellipses. For example, using r=.5 meant

that the covariance matrix wvas as follovs:

(1]

After getting the inverse of the covariance matrix and substituting in the

L1
1

above equation the following was obtained.

4/3 m® -4/3mm + 4/3m =d°
1 12 2

If we set m =k and solve for m the equation looks
2 1
like:

4/3m -4/3mk +4/3 k -d =0
1 1

vhere a = 4/3, b = -4 /3 k and ¢ = 4/3 k - d*for use in the quadratic formula.

Points were then plotted for each ellipse with r = @, .5, and .9 and
corresponding d values for the different ARLS of 5, 10, 20, and 50. Since it
wvas clear from onset that Crosier’s CUSUM and COT wvere considerably better with
the use of the FIR feature, both were graphed vwith the FIR feature in comparing
MC1 and MCZ2.

Figure 1 through 9 are graphs of CUSUM w/FIR, COT w/FIR, MCl, MC2, and
Multivariate Shevhart using different correlations and ARLs. Figure 1 has r=0

and a ARL=10, figure 2 has r=0 and ARL=20 and figure 3 has r=0 and ARL-=50.



Figure 4 has r=.5 and ARL=10, figure 5 has r=.5 and ARL=2@ and figure 6 has
r=.5 and ARL=5@. Figure 7 has r=.9 and ARL=10, figure 8 has r=.9 and ARL=20
and figure 9 ha r=.9 and ARL=50. Figure 10 through 12 are all graphs of the
CusuM w/FIR for r=@, r=.5 and r=.9 respectively.

After revieving the graphs, it can be observed that Crosier’s CUSUM is
consistently the best of all the methods followed by Pignatiello’s MCl,
Crosier s COT, Pignatiello’s MC2 and then the multivariate Shewhart for these
ARLS that vere investigated.

In comparison of these four methods, Polynomial Interpolation was used to
get more exact ARLs for specific ARLs desiring to avoid simulation but allowing
the ability to compare the pover of the methods to each other. However, it was
necessary to adjust some of these numbers by locking at graphs as the numerical
analysis was not accurate enocugh for values on the ends of the interval.
Specifically, the ARL = S wvas a problem and is clearly on the tail of the
interval vhich is 1.2 to 20@ approximately based on charts accompanying the
papers. There probably could be some contention in a few cases about which
method proved better than another but the only way to know would to be to use
gimulation or perhaps find a better numerical analysis method to do the

interpolation. Regardless, there was no doubt which method gave best results

and vhich the worst.

All four methods, the CUSUM of T, CUSUN, MC1, and MC2 use a = .005 for the
Type I error in these comparisons which procludes an ARL of 200 vhen the

process is on aim. All methods incorporate a distance formula of the type:



lx-al1’'"Vv'[(x-a3i

In the case of MC2 and COT, it is the these distances which are accumulated and
in the case of MC1 and the multivariate CUSUM, the observation vectors are
summed prior to computing the distance. This is the preferred method. Within
these pairs, Crosier’s techniques are alvays slightly better in terms of ARL’s
than Pignatiello’s. With the use of FIR, these differences are more
pronounced. Although Crosier’s multivariate CUSUM with FIR has the smallest
ARL’'s, it is also has the most complex formula but the use of a computer will
make these differences in complexity negligible.

All method’s ARLS are dependent on the mean vector and the covariance

matrix V only through the noncentrality parameter:

d +I[x-al1"V'[x-a1l=#*.5

In addition to losing pover because it works with each observation vector
separately, the multivariate Shevhart has the disadvantages of it lacking
robustness and it being sensitive to multivariate outliers. It does a fair job
for detecting larger departures from the target value but the ARLS for smaller
shifts are not very good, especially, vhen one compares the CUSUM/FIR to it.
See Tables 1 and 2.

The final consideration should be the ease of the method and the amount

of control or pover being awarded for this ease or visa versa.
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d____lchisguare_ __MC2_ _____ Cot____Cot/FIR____MC1_____ Cusum__Cusum/FIR
i
i
0.00 | 200.00 202.25 201.00 182.00 203.89 200.00 183.00
.50 | 115.28 90. 26 84. 40 71.80 30.98 28. 80 22.90
1.00 t  41.49 25.78 22.10 15.90 9.67 9.35 6.62
1.50 | 15.87 9.74 9.33 5.99 4.94 5.94 3.80
2.00 | 7.02 4.81 5. 47 3.41 3.15 4.20 2.42
2.50 | 3.63 2.94 3.81 2.38 2.25 3.26 1.92
3.00 | 2.20 2.03 2.93 1.84 1.74 2.78 1.57
4.00_1| 1.23 1.27 2.08 1.29 1.22 2.10 1.20



COT___COT/FIR__CUSUM_CUSUM/FIR MC1 MC2

|
|
| 2.145 1.75 1.75 1.30 1.489  1.972
10 1 1.452 1.30 .969 .8345 .9782  1.4824
| 1.047 .9123 .6163 .537 .6427 1.1073
| .6831 .6146 .3676 .326 .3659  0.7409
100 | .4375___.385 .2103__. 175 .1848____0.4542




1 -1.19 .39 3.29
2 0.12 0.90 0.96
3 -1.69 0.40 4.92
4 0.30 0.46 0.22
S 0.89 -0.75 2.7@
6 0.82 0.98 1.11
7 -0.30 2.28 7.96
8 .63 1.75 3.14
9 1.56 1.58 3.29
Q 1.46__3.05__9.31

Criteria for signal:

H for
CusunM CUSUM w/
T _MC2 COT__COT/FIR____MCl w/vo_FIR__FIR
1.81 3.29 0. 40 2.42 3.29 1.31 2.75
.98 0.00 0. 00 1.99 3.31 1.60 3.20
2.22 4.92 .81 2.80 7.29 3.20 3.20
@.47 5.14 0. 00 1.86 5.79 2.83 4.40
1.64 7.84 .23 2.09 2.01 .69 4.40
1.05 o0.00 .00 1.73 2.03 .89 4.70
2.82 7.96 1.41 3. 14 5.68 3.13 4.70
1.77 11.1 1.77 3. 50 7.77 4.33 4.70
1.81 14.4 2.18 3.91 8.75 S. 144+« 4.70
3.05__23.7 3.82 9.95+___13.85+ 7.682%x  4.70
SCL Chisq H H Chisq Hes
df=tp df=2
3.2552 none 4. 04 4.04 l10.6 3.5
out

=+ CUSUM vw/o use of FIR

e CUSUM vw/FIR
* COT/FIR

It should be noted that
one value for the CUSUM

H changes vith each nevw

note: The data is based

H, the criteria for determining if the CUSUM is out is

w/o FIR, 5.5. Hovever,

observation.

Hence,

the last column.

on unit variation and correlation of r=.S5.

The population mean is ( @,@ ) for the first five observations

and then ( 1,2 ) for the last five observations (Crosier, 1986).

vith the use of the FIR feature
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