1-21-2016

Automatic Speech Recognition Systems as Tools to Enhance Spoken Communication in the Workplace

Linda Gottermeier
Bonine L. Bastian
Carol De Filippus
Raja Kushalnagar

Follow this and additional works at: http://scholarworks.rit.edu/other

Recommended Citation
Gottermeier, Linda; Bastian, Bonine L.; De Filippus, Carol; and Kushalnagar, Raja, 'Automatic Speech Recognition Systems as Tools to Enhance Spoken Communication in the Workplace' (2016). Accessed from http://scholarworks.rit.edu/other/839

This Presentation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Presentations and other scholarship by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
Automatic Speech Recognition Systems as Tools to Enhance Spoken Communication in the Workplace

Linda Gottermier, AuD • Bonnie Bastian, MS • Carol L. De Filippo, PhD • Raja Kushalnagar, JD · LLM

BACKGROUND

The workplace presents many challenges for individuals with hearing loss. Communication on the job involves written or spoken English about 80% of the time, whether with or without sign (Kelly et al., 2015). Job-related demands cause even more difficult communication situations for those who are deaf compared to those who are hard-of-hearing (Boutin & Wilson, 2009). To gain upward mobility, a wide array of flexible strategies is essential for communicating with people who have typical hearing (Foster & Walter, 1992).

OUR QUESTIONS

Given the spoken-language communication requirements of the workplace, to what extent does current speech recognition technology, especially as available in mobile apps, enhance access by deaf and hard-of-hearing individuals?

Are speech recognition apps usable tools to enhance exchanges between deaf or hard-of-hearing persons and individuals who have typical hearing, whether it be a coworker or a boss?

OUR TRIALS AND PARTICIPANTS

To investigate the capabilities of newer Automatic Speech Recognition (ASR) applications/software as tools to support auditory access of spoken communication, we asked deaf and hard-of-hearing college students to use a variety of applications and software in everyday, job-related and social settings and to provide evaluative feedback on their experiences.

Participants were undergraduate and graduate students enrolled in one of these courses or activities:

Fall 2013
• Group 1 = 15 students tested in quiet settings
• Office meetings with professors
• Computer Help Desk

Spring 2015
• Group 2 = 11 students tested in crowded group settings
• Classroom
• Career Fair

Fall 2015
• Group 3 = 21 students tested in a variety of day-to-day settings
 • 1:1 and group social conversations with friends & family

A CLOSER LOOK AT ASR APP RATINGS

<table>
<thead>
<tr>
<th>Group 3 DATA</th>
<th>Siri (in Notes app) M = 3.7</th>
<th>Google Now (in Memo app) M = 4.0</th>
<th>Ava (BETA app) M = 3.4</th>
<th>Ava (BETA app) M = 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of use</td>
<td>Rated 3.5-6.0 M = 4.6</td>
<td>Rated 2.5-3.0 M = 3.0</td>
<td>Rated 3.0-5.5 M = 4.2</td>
<td>Rated 2.5-3.0 M = 3.6</td>
</tr>
<tr>
<td>Latency or lag time</td>
<td>Rated 2.5-3.0 M = 3.6</td>
<td>Rated 2.5-3.0 M = 3.6</td>
<td>Rated 1.0-3.5 M = 2.6</td>
<td>Rated 1.0-3.5 M = 3.2</td>
</tr>
<tr>
<td>Accuracy of the text when deaf users spoke</td>
<td>Rated 3.0-3.5 M = 3.3</td>
<td>Rated 2.5-3.0 M = 2.5</td>
<td>Rated 3.5-4.0 M = 3.4</td>
<td>Rated 2.5-3.5 M = 3.0</td>
</tr>
</tbody>
</table>

Students who relied on ASL:

• Found key word reception to be an "amazing" and "awesome" benefit of ASR.
• Ava performed "Better than Google. Helped me a lot."

Students who relied on Spoken English:

• Found issues with accuracy and latency, especially in noise.
• Even though many had highly intelligible speech, Ava/built-in ASR failed to recognize all deaf users’ speech.

FUTURE DIRECTIONS

• Improve algorithms for increased accuracy and decreased latency, especially in noise and when experiencing poor internet connectivity.
• Investigate directional and Bluetooth microphones to improve performance in noise.
• Improve recognition of deaf talkers’ speech.
• Develop user training in the area of persuading hearing individuals to use ASR apps.
• Explore the possibility of using Ava/built-in ASR to support video transcription.

ADDITIONAL APP RESOURCES

REFERENCES

