
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

1989

A SQL front-end semantic data model A SQL front-end semantic data model

Marc Richard Lodico

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Lodico, Marc Richard, "A SQL front-end semantic data model" (1989). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/747?utm_source=repository.rit.edu%2Ftheses%2F747&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

ROCHESTER INSTITUTE OF TECHNOLOGY

SCHOOL OF COMPUTER SCIENCE AND TECHNOLOGY

SQLSDM

nA SQL Front-End Semantic Data Model-

by

Marc Richard Lodico

A thesis, 8ubmitted to

The Faculty of the School of Computer Science and Technology

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science.

Approved by:

Dr. William Stratton

/I!~/~
Dr. Andrew Kltchen

November 9, 1989

1. Title of thesIs SQLS, 'll11 _
\" A s~ L ~'F~ ON. - £ ~ b" ~ IS Mil tJ"(,, I)A..L-:LA:..:.-_

,.l!18b/i L" r "ereby grent perm1ss1on to the

Wallace Memorial L1brary of RIT to reproduce my thesis in whole or in part. Any

reproduction w1ll not be for commercial use or pront.

Date-ll j" If f

SQLSDM

"A SQL FRONT END SEMANTIC DATA
MODEL"

A MASTER'S THESIS

BY

MARC RICHARD LODICO

ABSTRACT

SQLSDM is a "front
end"

semantic data model to a SQL

relational database management system (RDBMS). SQLSDM

provides a more semantically complete RDBMS through the

implementation of a Domain and Relational Integrity scheme.

SQLSDM provides integrity definition functions and a

sub-system to interpret SQL corr.r.ands . Integrity system

tables are created through the use of SQLSDM
'
s domain

definition command and SQL
'
s "CREATE

TABLE"

command. As

SQL database update commands are interpreted, SQLSDM uses

these integrity tables to enforce domain and referential

integrity. SQLSDM operates virtually transparent to the user

and provides for greater database consistency and semantic

control. Furthermore, SQLSDM is designed and engineered to

be a portable
"front-end"

that may be implemented on any SQL

relational database management system.

ACKNOWLEDGEMENT

Many thanks to Dr. William Stratton whose foresight and

understanding of the subject matter were invaluable to

the success of this thesis. His patience and kindness

is very much appreciated.

Thanks also go out to Dr. Andrew Kitchen who served as a

faithful committee member and to Professor Henry Etlinger

who sat in at the defense.

Special thanks to my wife Bernadette whose continual

support helped me through all the difficult times.

Table of Contents

1 . 0 INTRODUCTION and BACKGROUND 1

1.1. PROBLEM STATEMENT 1

1.2. PREVIOUS WORK 4

1.2.1. RELATIONAL DATABASE AND SEMANTICS 4

1.2.2. EVOLUTION OF THE RELATIONAL MODEL 5

1.2.3. SEMANTIC DATA MODELS 10

1.2.4. IMPROVEMENTS ON THE RELATIONAL MODEL 17

2.0. PROJECT DESCRIPTION 25

2.1. FUNCTIONAL SPECIFICATION 25

2.1.1. FUNCTIONS PERFORMED 25

2.1.2. LIMITATIONS AND RESTRICTIONS 34

2.1.3. USER INPUTS 36

2.1.4. USER OUTPUTS 40

2.1.5. SYSTEM FILES 43

2.2. SYSTEMS SPECIFICATION 45

2.2.1. SYSTEMS ORGANIZATIONAL CHART 45

2.2.2. SYSTEMS DATA FLOW CHART 4 5

2.2.3. EQUIPMENT CONFIGURATION 4 5

2.2.4. IMPLEMENTATION TOOLS 45

2.3. VERIFICATION AND VALIDATION 46

2.3.1. DELIVERABLE ITEMS 46

2.3.2. MILESTONE IDENTIFICATION AND SCHEDULE 47

3.0. CONCLUSIONS

4.0. QUALIFICATIONS 48

4.1. PERSONAL BACKGROUND 50

4.2. COURSES TAKEN 51

4.3. PROGRAMS WRITTEN 53

5.0 GLOSSARY 54

6.0 BIBLIOGRAPHY 67

7.0 APPENDIX 69

7.1 Al - SYSTEM STRUCTURE CHART 69

7.2 A2 - SYSTEM DATA FLOW DIAGRAM 70

1.0. INTRODUCTION AND BACKGROUND

1.1. PROBLEM STATEMENT

The objective of this thesis is to further the

development of a more semantically complete relational

database management system (DBMS) by implementing a

"semantic data
model"

that supports two semantic integrity

rules proposed by Date [DATE2]:

(1) Ppmain Inte_g.ri.ty and (2) Relational Integrity.

Furthermore, this will be implemented as a portable "front

end"

to a target relational DBMS, operating independently of

that DBMS.

Specifically, the Domain Integrity rules (constraints

stating that the values of a specific attribute are required

to belong to the set of values constituting the underlying

domain) to be implemented are of the form:

domain-definition ::= DOMAIN domain-name [PRIMARY]

constraint

terminator

domain-name ::= substr (domain-name , 1 , 1) = alpha

and substr (domain-name , 2 , x)
=

alpha |
'_'

|
-'

|
'#'

and 2 >= x <= 8

constraint : : = data-type [(data-spec)] [predicate
'

data-type ::= /*
any std. SQL data type [DATE4] */

data-spec ::= /* integer x, where 1 <= x <= 40 */

predicate ::=
condition [logop condition]

condition ::=
valuel relop value2

relop : := < | > | i |<=!>=|=

logop : := AND | OR

terminator : := ;

value ::= /*
any alpha numeric characters */

Relational Integrity (constraints that govern the

admissability of a given tuple as a candidate for insertion

into a given relation, or the relationship between tuples of

one relation and those of another) embodies the two rules of

Ent
.

ity_I n tegr i ty and R.e fer;.ent i a 1_.....Integrity . Entity Integrity

states that no attribute participating in the Pjpjjnary Key

(PK) of a base relation is allowed to accept null values.

Referential Integrity says that if a base relation R2

includes a FOREIGN KEY (FK) matching the PK of some base

relation Rl
, then every value of the FK in R2 must either be

(a) equal to the value of PK in some tuple Rl or (b) be

wholly null

(i.e., each attribute value participating in that FK value

must be null) .

Specifically, Entity Integrity is implemented by not

allowing NULL values to be entered into the proposed system

as a PK or FK value. Referential Integrity is implemented

through the use of system tables. These tables record the

relations in which Referential Integrity is to be enforced

as specified by the user or database administrator.

In the present study, these integrity rules will be

implemented as a
"front-end"

to a predefined relational

database management system. This "semantic data
model"

enhancement is attractive from a number of practical

standpoints. First, it preserves ail of the advantages and

technology reflected in relational features of the target

database package. Secondly, it can be applied to any DBMS

that supports the pre-defined features. Third, it is in line

with the current approach of careful packaging and tooling

of software (e.g., [SCHUL]).

1-2. PREVIOUS WORK

1-2.1. RELATIONAL DATABASE AND SEMANTICS

Since the introduction of the Relational Model by Codd

in 1968 [C0DD1], relational DBMSs have become increasingly

more popular, both academically and commercially. Many

relational DBMSs now available (e.g., INGRES [ST0NE1], and

DB2 [DATE1]) are considered by some to be
"state-of-the-art"

[ST0NE1] .

However, significant research in the area has shown

that these systems suffer from a lack of sufficient semantic

control [TSUR, ST0NE1 , WILSON, DATE3]. Indeed, at least one

author asserts that the lack of sufficient semantic control

prevents relational schemas from completely and expressively

modeling the natural relationships and mutual constraints

among entities [ST0NE1]. This lack of semantic control of

the relational model has been the subject of much

controversy (e.g., 1974 ACM SIGFIDET "The Great Debate")

[RUSTIN] and has stimulated significant research activity

(e.g. , CEEN, SandS) .

1.2.2. EVOLUTION OF THE RELATIONAL MODEL

The popularity of the Relational Model [C0DD1] over

other proposed models (e.g., the Hierarchical model, the

DBTG network model) lies in its theoretical elegance and

simplicity. Data is described by tables; there are no

additional structures superimposed for the purpose of

machine representation. The network model [DATE1],

represents relationships and entities via nodes and links.

However, in the Relational Model, there is no explicit

representation of relationships; relationships among

entities are created through the application of relational

operators. Data independence (defined as the immunity of

applications to change in storage structure and access

strategy) is a major objective of database management

systems [DATE1]. The simple table structure of the

Relational Model allows for greater data independence

between programs and machine representation and the

organization of data than found in the network and

hierarchical models [C0DD1].

The Relational Model is based on the concrete and well

tested principles of Set Theory. These principles are

applied in the Relational Algebra of the model, and in

Normalization theory.

Relational Algebra, the data manipulation language of

the Relational Model, has operators such as JOIN, SELECT,

and PROJECT which are derived from the Set operators (e.g.

UNION, INTERSECT) .

The second application of Set Theory, normalization, is

the process of systematically eliminating such anomalies as

data redundancy and inconsistency [DATE1], by reducing a

relation into equivalent separate relations resulting in a

more desirable form. Three levels of normalization were

defined in the original Relational Model [C0DD1] : First

Normal Form (INF), Second Normal Form (2NF) and Third Normal

Form (3NF), where each successive level of normalization

includes all the properties of the preceding normal forms. A

relation is in 3NF if it has all its non-key attributes

mutually independent of one another, and fully dependent on

the relation's candidate keys. A non-key ajttribute does not

participate in any candidate key of the relation. Two or

more attributes are
.mutua.lly_

independent if none of the

attributes concerned are functionally dependent on any of

the others. Functional dependence refers to an X and Y value

pair in a relation, where one specific value of Y is always

determined by a specific value of X and no other Y value may

be associated with that X value [DATE1], If a relation is in

3NF, redundancy (multiple occurrences of the same

attribute/value pairs replicated in more than one tuple in a

relation), a property not recognized in Set Theory, is

eliminated. As shown by Date [DATE1] and others (e.g., Codd

[C0DD1]) redundancy car. lead to inconsistencies within a

database for various reasons. For example, if a relation is

in 2NF (all underlying domains contain atomic values only

and every non-key attribute is fully dependent on the

primary key) , then that relation may contain tuples where a

non-key attribute is transitively dependent (its value is

determined by another non-key attribute) on some other
non-

key attribute. Thus, if there is redundancy between multiple

tuples, one of these non-key attributes could be updated in

one tuple but not in the others, in turn creating an

inconsistent state in the database [DATE1]. However, through

normalization to 3NF, the transitive dependencies of this

relation are eliminated, thereby preventing occurrences of

this type of anomaly.

The Relational Model is recognized as simple and

theoretically sound, but a number of scholars assert that

the relational model suffers from semantic inadequacies

[DATE1, DATE2, TSUR, CHEN, SandS]. One of the first papers

addressing this concern was presented at the 1975 ACM SIGMOD

International Conference of Data by Schmid and Swenson

[SandS] . These authors state that questions of a semantic

nature can't be answered by the highly mathematical

relational model. Specifically, the Relational Model gives

no indication of the way in which real world data is to be

represented by a collection of relations. They also

demonstrated that functional dependencies are inadequate for

expressing certain kinds of knowledge. For example,

if R.b -> R.c (where
'->'

is taken to mean that attribute c

is functionally dependent on b in relation R) , and R.a !->

R.b, (b is not functionally dependent on a), and there is a

"real world"

requirement that a is related to c, then this

requirement can't be expressed as a functional dependency.

Schmid and Swenson note also that if there is an

inter-relational transitivity of functional dependencies,

then another semantic shortcoming occurs. For example, if a

JOIN on MGR# was performed between relation EMP_MGR, where

EMP_MGR.emp# -> EMP_MGR . mgr#
, and relation MGR_SALARY, where

MGR_SALARY.mgr# -> MGR_SALARY. salary the resulting relation

would contain the attributes emp#, mgr#, and salary. Without

proper user knowledge, the salary of a tuple could assumed

to be the employee's salary, although it would be erroneous.

Thus, due to the lack of semantic control, the theoretically

valid application of a JOIN command resulted in a

meaningless "real
world"

relation.

Chen also criticized the semantic inadequacies of the

Relational Model ("The Entity-Relationship Model Toward a

Unified View of
Data"

presented by Chen [CHEN] at the

Association for Computing Machinery in 1975). Chen describes

the Entity-Relationship Model (E/R) that in his view

incorporates all the positive features of the Network Model,

the Relational Model and the Entity Set Model [CHEN], while

eliminating the shortcomings of each. The E/R Model

separates the information about entities from the

information about relations by organizing data based on an

Entity-Relationship diagram. This diagram is used to develop

a semantically rich data description by separating entities

from relationships and distinguishing between l:n, m:n, and

1:1 mappings. Chen asserts that the Relational Model does

not include this type of information and therefore is

semantically inadequate [CHEN] .

1.2.3. SEMANTIC DATA MODELS

Scholars in the field of Database management realize

both the advantages of the Relational Model (e.g., data

independence, the power of relational algebra, and its "user

friendly"

interface) and the need to incorporate greater

semantic control into the model. This need has sparked

investigations [e.g., DATE1 , TSUR, ST0NE1 , WILSON, DATE3]

into "semantic data modeling"

(the task of capturing more of

the meaning of data [DATE4]). As Codd points out, "semantic

data modeling."

is important because it can bring greater

understanding and order into the field of database design.

In addition, a meaning-oriented data model stored in a

computer should enable it to respond to queries and other

transactions in a more intelligent manner [DATE4].

One such "semantic data model",

Passiye Error-Detection (COPE) , was designed as a system tc

represent and apply semantic integrity knowledge to detect

semantic integrity errors (a state of the database which

causes one or more assertions about the database to be

false) [WILSON]. The COPE architecture follows that

suggested by the ANSI/SPARC [CODASY] guidelines, where three

different views or schemes of the database are established.

They are (1) the internal schema (how data is physically

stored), (2) the external schema (the logical view the user

has of the database), and (3) the schema

(enforces consistency and provides a mapping between the

10

internal and external schemas) . While other DBMSs embody

some form of the internal and external views, most of these

support only a minimal conceptual view, and usually not

separate from the other two views. Therefore, in these DBMSs

it is extremely difficult for the semantic integrity of a

database to be checked and maintained by the DBMS [WILSON] .

However, COPE's conceptual model component embodies the

ANSI/SPARC conceptual model of the DBMS, in that it contains

the "real world
knowledge"

about the database coupled with

the ability to monitor the integrity of the existing

database state or transitions between states [WILSON] .

COPE's conceptual model consists of four major

components :

1. Structure Description -

provides a mapping

between COPE's view of the database and the structures of

the underlying database.

2. Relational Templates -

a relational representation of

the underlying database used for checking integrity

constraints .

3. Semantic Network - which maps the relational

templates to the appropriate portions of the database

maintained by the DBMS, along with specifying some integrity

constraints .

4. Constraint Rules - rules representing the major

specifications of the conditions for semantic integrity to

be imposed on the database.

11

Each of the components are described by a specialized

language cal led the InjternalmConc_eptual Model script ion

Language (ICMDL). The ICMDL is a declarative language based

on a combination of first order predicate logic, set theory,

and semantic networks [WILSON] .

There are essentially four steps to the integrity

checking process of COPE. First, the data or update to be

checked is translated into COPE's own internal form. The

corresponding constraint rules to be checked are then

selected. Each rule is then deciphered to obtain the

specific checks required for the data contained in the

database and the data of the proposed update. Finally, COPE

performs the checks and takes the appropriate action

specified in the constraint rules.

The COPE system, due to its conceptual model component,

provides many important features that include greater DBMS

i..n.dependence ^qqpe does not depend upon special capabilities

of the DBMS), specialization (it is functionally independent

of the DBMS , allowing COPE to be tailored to the job of

semantic integrity checking rather than performing DBMS

tasks) and versatility (COPE acts as a independent "front-

end"

filter, it can be used with any target DBMS) [WILSON].

RM\T is another "semantic data
model"

[C0DD2]. Codd

defined RM\T in an effort to incorporate more semantic

control into the basic Relational Model. In this model, two

types of relations are defined to represent all entities in

a database: E-
relations and P-relations. E-relations record

the existence of the all the entities within the database.

P-relations record the properties of those entities. A

formal catalog structure which defines all the various

relationships that exist among the different entities is

also included. The system uses this catalog of relationships

to enforce the various integrity constraints implied by the

existence of such relationships [DATE1]. High level

operators provide for the manipulation of these RM/T objects

(E-relations , r-relations and the catalog structure). Three

types of entities exist in this model: kernal ,

associative enti t_i.es , and character i_sjt._^._enjti ties . A kernal

entity is one that can exist independently of any other

entity (e.g., suppliers, parts or employees). Associative

entijties are functions that represent many-

to-many (or many-

to-many-to-many, etc.) relationships among two or more

otherwise independent entities (Independent entity meaning

that none of the entities concerned is existence-dependent

on any of the others. A characteristic
...entity

describes

other entities, either kernal, other characteristic or

associative entities. In a given application, any of these

three entity types car. be specified as a designatiye entity

or an entity in a many-to-one relationship with at least two

otherwise independent entities [DATE2]. Entities are also

categorized as subtypes, super types or both; the "type

hierarchy"
that results for this categorization 'is used to

classify entities by property categories. For example, if

entity E is a subtype of entity F, then F is a supertype of

E and E inherits all the properties of entity F. This entire

entity classification scheme is used largely to impose some

structure on what would otherwise be an unstructured

collection of information, thereby introducing some

discipline into the integrity enforcement scheme [DATE1].

RM/T also introduces six new integrity rules in

addition to the (1) Entity integrity and (2) Referential

integrity rules of the basic relational model.

These rules are [DATE2]:

3 Entity Integrity in RM/T..: E-relations accept

insertions and deletions but not updates.

4. Proper t.y Integrity: If a tuple appears in a

P-relation P, then the key (defined

shortly) or primary key value of t must appear

in the E-relation corresponding to P.

5- Characjtejrist i.e...Integrity.:.A characteristic entity

cannot exist in the database unless the entity it

most immediately describes is also in the database.

6. Association Integrity.: Let A be an associative

entity type, and let E be the set of E-at tributes

(attributes defined on the E-domain, which is the

14

domain of all possible surrogate values)

whose function is to identify the participants in A.

Then a given instance of A can exist in the database

only if, for that instance, each E-attribute in E

either (a) has the value E-null, or (b) identifies

an existing entity of the appropriate type.

7. pes.ignat.iye Integrity: Let D be a designative
entity-

type, and let E be the set of E-attributes repre

senting designations by D. Then a given instance of

D can exist in the database only if, for that

instance, each E-attribute in E either (a) has the

value E-null, or (b) identifies an existing entity

of the appropriate type.

8. Subtype Integrity: Whenever a surrogate key (say e)

belongs to the E-relation for an entity of type E, e

must also belong to the E-relation for each entity

type for which E is a subtype.

Surrogate keys, an important aspect of the RM/T model,

are system generated primary keys used and known internally

by the system and not by the user. They eliminate potential

problems of user-generated primary keys. For example, if the

value of primary key needs to be changed, it involves

considerable effort to implement that change, whereas with

surrogate keys no change to the primary key or foreign keys

is necessary- Another potential problem of user-defined keys

is their inability to record the possible "real
world"

15

existence of an entity that doesn't have a primary key. For

instance, consider an employee who left a company but is

entitled to certain benefits; he no longer has an employee

number, but still must be kept on the records [DATE].

Surrogate keys provide a mechanism for this type of

situation.

The RM\T relational model hasn't been implemented

[DATE2], but it theoretically incorporates many of the

previously mentioned features that are designed to address

many of the criticisms aimed at the original relational

model. (For a more detailed explanation of RM/T model see

[C0DD2] and [DATE2]) .

16

1.2.4. IMPROVEMENTS ON THE RELATIONAL MODEL

A number of noted scholars (e.g., Date [DATE2]; McLeod

[MCLEOD]; Fagin [FAGIN]) and others have expanded on

existing concepts (e.g., higher forms of normalization and

Relational Integrity) and introduced new ones (e.g., Domain

Integrity [DATE2]), to incorporate greater semantic control

into Codd's original Relational Model.

Two researchers have attempted to replace the

definition of 3NF with a stronger definition [DATE2]. This

definition known as the Boyce/CpddJWormal Form. (BCNF) is

conceptually simpler than 3NF, in that it makes no explicit

reference to first and second normal forms, nor the concepts

of full and transitive functional dependence [DATE1]. It

simply states that a relation R is in BCNF, if and only if

every is a candidate key. A determinant is any

attribute on which some other attribute is fully

functionally dependent. BCNF was introduced primarily

because redundancies and update anomalies occur when a

relation in 3NF possesses two or more composite and

overlapping candidate keys (see reference [DATE1] for

detailed examples). A composite key is a candidate key that

consists of more than one attribute. Overlapping candidate

keys are composite candidate keys that have a common

attribute among them.

Fagin defined a 4.NF relation in which a set of

project ions (vertical subsets of a given relation obtained

17

by selecting specified attributes in a specified
left-to-

right order, and eliminating duplicate tuples within the

attributes selected) are derived from a relation in BCNF.

This in turn eliminates any multivalued dependencies that

are not also functional dependencies. (A multivalued

dependence in relation R with attributes A, B, C, holds in R

if and only if the set of B-values matching a given
A-

value/C-value pair in R depends only on the A-value and is

independent of the C-value [DATE2]). This also eliminates

redundancies such as those identified by Schmid & Swenson

[SandS], that lead to update problems.

An even higher normal form, 5NF, has been identified

[DATE2]. However, Date notes that normalization to this

level should be treated as a guideline only, and that

normalizing to an extreme is sometimes to be avoided. He

asserts that it should be regarded primarily as a discipline

by which the database designer can capture some of the

semantics of the
"real-world"

enterprise that the database

represents [DATE2].

Another approach to further the development of a

semanticaliy complete DBMS was introduced by McLeod [DATE2].

He notes that violations of domain integrity rules occur

sufficiently often to justify a special facility to handle

them. (However, Date warns that few existing systems provide

much in the way of this support.) The facility proposed by

Mcleod [DATE2], requires a mechanism to define, store and

process domain integrity rules. The basic strategy involves

18

declaring a domain-de.f.i.nition which is comprised of a

domain-
name , a_constr.a.i.nt , and a_term.inatpr... A domain-name

is a label used to identify a domain that exists in a

database; where certain domains are used as a pool of values

for the primary keys of the database and must be declared as

such. A constraint is the set of rules or a condition that

the domain values must adhere to, if they are to be

considered to belong to that domain. This condition must at

least specify a data type and optionally a predicate

condition. A terminator is a specification describing the

action the system will take if a constraint is violated.

Such a violation is triggered by an update or insert of data

to the database. The action so taken may include simple

rejection (ideally, along with a message to the user),

correcting the invalid value and then allowing the update,

or failing the update and forcing a rollback (returning the

database to its last known consistent state) [DATE2]. This

definition constitutes a simple but important integrity rule

that should be applied when any update or insert is made to

the database [DATE2], thus realizing an important semantic

control for the database concerned.

Date has also expanded upon the concept of Relational

Integrity (the generic term for Entity Integrity and

Referential Integrity) to incorporate greater semantic

control into the Relational Model [DATE2]. Both the Entity

Integrity rule and the Referential Integrity rule apply

specifically to base tables. A base table is a relation

19

created via a CREATE (or similar) command and is physically

stored in a database.

The Entity integrity rule, introduced by Codd [C0DD1], in

his original model was not spelled out explicitly. The rule

states that no attribute participating in a primary key is

allowed to accept null values. The justification for

explicitly defining this rule is intuitively obvious. Base

relations correspond to "real
world"

entities. Entity

occurrences, by definition, are distinguishable by a unique

indentifier. In the relational model unique entity

occurrences are identified by primary keys. If a primary key

value is wholly null then that entity occurrence has no

identity. This is a contradiction in terms [DATE1].

Therefore, the rule of Entity integrity is a necessary one.

This rule also applies to partially null primary keys

[DATE1] .

Referential Integrity, introduced by Codd [C0DD1] as a

semantic improvement to his Relational Model, was originally

considered an "abstract
principle"

with several shortcomings

[ST0NE2]. However, Date proposed solutions to these

shortcomings. He also proposed a language for general

integrity constraints that may be used to express

referential constraints in a concrete manner.

Codd's original definition of referential integrity is

as follows:

Let relation Rl have a multi-attribute primary

key. If attribute A of that multi-attribute

20

primary key is defined on primary domain D

(a primary domain is any domain on which some

single-attribute primary key is defined), then,

at all times, for each value of k of A in Rl

there must exist a relation R2 in the database

with primary key k defined on D, such that k

occurs as a value of k in R2 [ST0NE2],

A relation such as Rl in this rule is a referencing

relation, a relation such as R2 is a referenced relation.

Attribute rl.A is a refere.nt.ial..at tribute [ST0NE2].

The three shortcomings of this definition, identified by

Date, become apparent by looking at a few examples.

First, consider a relation EMPLOYEE (EMP#,DEPT#) that

includes references to some DEPARTMENT relation (DEPT#,

MGR#, etc.) via its DEPT# attribute. Typically every value

of the DEPT# attribute in EMPLOYEE is required to appear as

the value of the DEPT# attribute in some tuple of the

DEPARTMENT relation . However, attribute EMPLOYEE . DEPT# is

not a component of the primary key of EMPLOYEE; this leaves

no means to enforce referential integrity when the

referential attribute is not part of the primary key.

Therefore, Date modified the original Referential Integrity

Rule to allow the referential attribute to be any attribute

that is defined on the primary domain, not just one that is

a component of a multi-attribute primary key [ST0NE2].

A second problem involves the definition of a primary

domain. For example, if a relation CITYTAX (CITY, TAX) where

CITY is the primary key, then, by definition of primary

domain, the domain LOCATION upon which CITY is defined, is

primary. This definition disallows a situation in which,

say, there is a legitimate reason that any tuple with a TAX

value of zero not be included in the relation CITYTAX. To

deal with this anomaly, Date modified the definition of

primary domain. This new definition states that a given

domain may optionally be designated as primary if and only

if there exists a relation in the database with a
single-

attribute, primary key defined on that domain. Under this

definition, in the example above, domain LOCATION would not

be designated as a primary domain. This would allow, for

example, some relation SUPPLIER (SUPP#. SNAME , CITY) to have

values of SUPPLIER . CITY that doesn't appear in referenced

relation CITYTAX [ST0NE2].

The third shortcoming is related to entity integrity.

Under the original definition, null values in the

referential attribute were disallowed because they could not

appear in the primary key of the referenced relation and

therefore violate the rule of entity integrity. However,

there are "real
world"

situations that require null values

to occur in a referential attribute. Consider the relations

EMPLOYEE (EMP#, DEPT#) where EMP# is a primary key and DEPT#

is a referential attribute, and DEPARTMENT (DEPT#, MGR_NAME)

where DEPT# is a primary key and the referenced attribute.

Here the requirement to keep all EMP# in the relation

EMPLOYEE even if that employee is not assigned to a DEPT#

(e.g., a tuple exists in relation EMPLOYEE with a null

DEPT#) is disallowed under the original definition. Date

accommodates this situation by allowing the referential

attribute DEPT# to take on null values (in the absence of

any explicit constraint to the contrary and if the

referential attribute is not a component of the primary key)

without the need to have corresponding null value in the

referenced relation DEPARTMENT [ST0NE2].

The three modifications give rise to Date's current

definition of Referential Integrity:

If a base relation R2 includes a foreign key(FK)

matching the PK of some base relation Rl , then

every value of the FK in R2 must either be

(a) equal to the value of a PK in some tuple Rl

or

(b) be wholly null(i.e., each attribute value

participating in that FK value must be null)

[DATE2] .

Date asserts that this current definition is too

theoretical and, while it is a necessary component of the

relational database model, it cannot in its theoretical form

address "real
world"

constraints [ST0NE2]. He states that

while the general rule insists that each referenced relation

have a single-attribute primary key (i.e.,
"references"

car.

23

be made only to relations having such a primary key) , today

many applications cannot realistically adhere to such a

constraint [ST0NE2]. The rule also relies on the notion of a

primary domain, a notion not supported in most current

implementations. The need for more additional rules

applicable only to specific situations is also necessary if

these, and other "real
world"

constraints, are to be

accommodated and enforced.

Because of these concerns Date defines a language for

expressing and implementing integrity constraints, and

proposes a more specific
"integrity"

subsystem to monitor

transactions (e.g., update operations), to detect violations

of integrity rules, and, in the event of a violation, take

appropriate action. The system proposed in the current paper

attempts to implement this
"integrity"

subsystem.

24

2.0. PROJECT DESCRIPTION

2.1. FUNCTIONAL SPECIFICATION

2.1.1. FUNCTIONS PERFORMED

The proposed system SQLSDM (structured query language

"semantic data model") supports Domain Integrity and

Relational Integrity rules proposed by Date [DATE2]. SQLSDM

is to be implemented as a portable "front
end"

to any target

relational database that supports the relational database

language SQL. SQL is a good choice for the target relational

database language of this system. SQL is the official

standard of the American National Standards Institute

(ANSI). In addition, many SQL based products are already

available in the marketplace [DATE4].

SQLSDM supports an interactive user interface where

the user may define Domain Integrity rules and perform

standard interactive SQL tasks using standard SQL commands

and syntax in order to build and manipulate a relational

database that supports both Domain Integrity Rules and

Relational Integrity Rules. A relevant set of domain

integrity rules is declared when construction of a

relational application on the underlying SQL DBMS is

undertaken. SQLSDM interprets these rules and stores them in

a system file called the Domain Integrity Table (DIT) .

Secondly, the user defines all the required table intensions

needed to implement the intended application's database.

SQLSDM stores the relevant information for each table in

another system file called the Relation Attribute Table

25

(RAT) . Referential integrity rules are derived by SQLSDM by

analyzing the DIT for a primary domain specification as each

relation is defined. These rules are stored in the system

file called the Referential Integrity Table (RIT) .

SQLSDM support for domain integrity and relational

integrity consists of two main functions:

I. Integrity Rules Definition

II. Integrity Enforcement

Domain Integrity

I. Integrity Rules Definition

The DIT is used to enforce Domain integrity. The DIT is

a table where all the domains in the underlying database are

defined. In order to create the DIT, the user must declare a

domain name, a data type , a data specification, an

optional PRIMARY specification, and/or an optional integrity

rule. For example:

DOMAIN S# PRIMARY NUMBER > 0 AND < 992;

is interpreted by SQLSDM and stored as a tuple within the

DIT. In this way, SQLSDM records that there exists a

domain called S# whose data type is a number. Optionally,

when the word PRIMARY follows the domain name it signals

SQLSDM to enforce referential integrity for any attributes

in the underlying database that draw their values from the

domain S#. Additionally, an optional domain integrity

predicate may follow and is recorded in the DIT to be

enforced by SQLSDM.

26

II. Integrity Enforcement

When the necessary domains and relevant domain

integrity rules have been declared, SQLSDM can enforce

Domain Integrity. Any SQL INSERT or UPDATE command

"triggers"
SQLSDM to compare each submitted attribute-value

with its corresponding domain definition in the DIT. If a

violation is detected (i.e., the value of the attribute is

not consistent with the domain integrity rule for the

domain it is drawn from) SQLSDM rejects the proposed INSERT

or UPDATE command with an appropriate error message.

SQLSDM also supports inter-domain comparisons

(e.g., the JOIN command, similar to a join via the SQL

SELECT command) . For instance, if two values, d and e,

drawn from two distinct domains, D and E, are compared,

SQLSDM will consider this a violation of domain integrity

and an appropriate error message will be displayed.

The ability to enforce domain integrity necessitates

the two SQLSDM deviation from standard SQL syntax:

first, the CREATE TABLE command will include the Domain

Name of the attribute defined rather than simply the

standard SQL data type and specification (e.g., CHARACTER(3)

or NUMBER) ; secondly, a JOIN command is used instead of the

SQL SELECT command for the join operation.

27

Relational Integrity

Relational Integrity embodies the two rules of Entity

integrity and RefjsrentX^ The rule of Entity

Integrity states that no attribute participating in the

E.r.i.mary... key (PK) of a base relation is allowed to accept null

values. The rule of Referential Integrity states that if a

base relation R2 includes a foreign key(FK) matching the PK

of some base relation Rl , then every value of the FK in R2

must either be (a) equal to the value of PK in some tuple Rl

or (b) be wholly null.

Entity Integrity is enforced throughout the SQLSDM

system (i.e., any attribute-value defined on a domain that

was declared PRIMARY may not accept NULL as a value) .

Enforcement of this rule occurs when a tuple is presented to

SQLSDM to be inserted or updated. Therefore, any null value

submitted as a PK or FK value is invalid and is rejected

upon submission to the system. (A further scheme for

handling nulls is complex and beyond the scope of this

system [DATE2]) .

28

Referential Integrity

I. Integrity Rules Definition

It is up to the database designer to choose the

relations in which referential integrity is enforced. This

is accomplished through the SQL CREATE TABLE command and the

use of the optional PRIMARY constant in the domain

declaration phase of the application's database. When SQLSDM

encounters the SQL CREATE TABLE command, it looks at each

domain from which each attribute is defined, and searches

the DIT table for a match. If a match is found, on any

attribute other than the first (assumed to be a PK) ,

and its domain is designated as PRIMARY, then referential

integrity is applicable to that attribute in the newly

created table. To record this, SQLSDM inserts a tuple

comprised of the relation name (designated the referencing i

relation), the referential attribute (acts as a FK) , and the

domain name (designated as PRIMARY) into the RIT. This logic

is applied to the subsequent create of all tables. In

addition, each time a new table is created, SQLSDM uses the

domain of the first specified attribute specified (assumed

to be the primary key of that relation) to search the RIT

for a match on the domain. If a match is found, then that

table is designated as the referenced relation and the

matching RIT tuple is updated with the referenced relation

name. After the CREATE TABLE phase is complete for the

entire database, the SQLSDM RITEND command is entered which

29

triggers SQLSDM to read through the RIT, flag any tuple that

does not have a value in its referenced relation attribute,

and generate an error message to the user. The user is

required to reconcile all such discrepancies before any SQL

data manipulation commands are processed. This is enforced

by requiring the user to create a new table to be used as

the referenced relation, or to delete the referencing

relation (therefore removing the corresponding RIT tuple).

Additionally, the CREATE TABLE command triggers SQLSDM

to record the intensional data of a newly created relation.

This data is stored in a system file called the Relation

Attribute Table (RAT), one of tables used to enforce

Referential Integrity. It records the relation name, the

relation's attribute names, the domain names on which those

attributes are defined, and an indicator designating the

Primary Key attribute.

This SQLSDM implementation suggests that to implement

an integrity scheme within the current standard SQL

framework would neccessitate a change to the current SQL

standard. Currently, there appears to be no way to define

domains or to specify the relations and attributes to

enforce referential integrity constraints upon. There is

the need to have a command to define domains, and the SQL

CREATE TABLE command must be modified to accept domain

names instead of the data type and length specification

required under the SQL standard.

30

II. Integrity Rules Enforcement

SQLSDM supports Referential Integrity for the

non-cursor SQL data manipulation commands: DELETE, UPDATE,

and INSERT [DATE4] .

DELETE

When a DELETE command is encountered, SQLSDM enforces

Referential Integrity by not allowing any set of one or more

tuples to be deleted when one or more foreign keys exist in

some other referencing relation that matched the set of

primary keys of those tuples targeted for the delete.

Specifically, when a DELETE command is entered, SQLSDM

reads the RIT is read to obtain all relations and

corresponding referential attributes, that reference the

relation to delete. For instance, consider relations, Rl and

R2 , their corresponding attributes Al and A2 , that reference

relation, RD , targeted for deletion. SQLSDM searches Rl and

R2 (by formulation of the appropriate standard SQL DBMS

calls) for any foreign key values equal to the primary key

of the tuples to delete from RD . SQLSDM accomplishes this by

reading the RD tuples targeted for delete, in the

application database, and by reading Rl and R2 for any

foreign key values that match the primary key values of the

RD tuples targeted for deletion. If any foreign key values

match the primary key values of the tuples targeted for

deletion, then SQLSDM rejects the DELETE command and issues

an appropriate error message.

31

UPDATE

SQLSDM enforces Referential Integrity for the SQL

UPDATE command as well. SQLSDM accomplishes this by ensuring

that if the new value to be updated is a foreign key in some

referencing relation(s), then there exists a matching

primary key value in its corresponding referenced relation.

Specifically, SQLSDM reads RIT to determine if the

relation to update is a referencing relation. The

referential attribute for this relation is compared to the

attribute that is targeted for the update. If they match, it

is a signal to SQLSDM to enforce referential integrity this

update operation; if they do not, then the command is passed

on to SQL DBMS for normal processing. If referential

integrity is to be enforced, SQLSDM reads the RAT using the

referenced relation name, and the corresponding primary

domain name, to obtain the attribute name that serves as the

primary key of the referenced relation. That referenced

relation is now searched, and SQLSDM formulates the

appropriate standard SQL DBMS calls to verify the existence

of a primary key value equal to the value of the attribute

to update in the referencing relation. If no primary key

value is found, SQLSDM rejects the update command with an

appropriate error message. If there is a matching primary

key value then SQLSDM passes the UPDATE command to the SQL

DBMS and normal processing continues.

INSERT

If the user attempts an SQL INSERT command on a

relation that appears as a referencing relation in the RIT,

SQLSDM enforces Referential Integrity.

The RIT is first read by SQLSDM to determine the

primary domain names of the referential attributes, and

their corresponding referenced relation names. If RIT

entries are found, SQLSDM uses the domain names of the

referential attributes to read the RAT to obtain all

referenced attribute names defined in their corresponding

referenced relations. SQLSDM then reads each referenced

relation by formulating SQL calls to the SQL DBMS. If the

values to insert exist as primary keys in their

corresponding referenced relation, then SQLSDM permits the

INSERT command and passes it on to the SQL DBMS. However, if

any value to insert has no corresponding primary key value

in its referenced relation, SQLSDM rejects the INSERT

command an issues an appropriate error message.

33

2.1.2. LIMITATIONS AND RESTRICTIONS

The initial goal of SQLSDM was to operate as a portable

"front end"

to any relational database system that supports

standard ANSI SQL [DATE4]. However, this intial goal has

not been proven at this time. SQLSDM was written using

ANSI defined "C to allow for portability, but the SQL

call interface is ORACLE specific. Although the ORACLE

SQL call interface appears to be generic it would most

likely require modifications if it were imported to

another system.

Support for NULL values are non-existent for

primary and foreign keys only, due to the complexity of

referential integrity enforcement needed to support such a

feature. Therefore, the NOT NULL option on the SQL CREATE

TABLE command is always be assumed.

SQLSDM is designed for interactive SQL only. However,

programs that enforce Relational Integrity and Domain

Integrity may be used, with minor interface changes, in an

application program designed for batch type processing.

To support Domain Integrity, SQLSDM requires a modified

syntax for the SQL CREATE TABLE command. A domain name must

be input instead of the standard data type specification

that normally accompanies this command. In addition, SQLSDM

will always assume that the first attribute named in the

CREATE TABLE command is a primary key. Another deviation

is that the SQL join operation, implemented by using the

34

SELECT command, may by implemented using the SQLSDM JOIN

command if inter-domain consistency is required.

Multiple attribute primary keys are not supported. To

add this support requires a method to differentiate betweer

an attribute that is to act as a primary key versus an

attribute intended to be a foreign key. Under the current

implementation, the first attribute specified in a

CREATE TABLE command must be from a primary domain

and assumed to be a primary key.

Finally, SQLSDM does not support Relational Integrity

or Domain Integrity for VIEWS.

2.1.3. USER INPUTS

SQLSDM accepts all user input through an on-line

source. Any valid ANSI standard SQL command will be

accepted, along with any valid SQLSDM data definition

command .

SQLSDM identifies each command input and compares the

command to an internal table of commands. If the command is

identified as an SQLSDM data definition command or a SQL

data manipulation command, then SQLSDM processes the command

accordingly. If the command is identified as a non-SQLSDM

command, then that command is passed directly to the SQL

DBMS.

SQLSDM DATA. DEFINITION COMMANDS :

CREATE TABLE relation-name attribute-name-1 domain-name-1 ,

attribute-name-2 domain-name-2 ,

/

attribute-name-n domain-name-n;

- This modified SQL command triggers SQLSDM to record

the relation being created in the RAT system file.

SQLSDM modifies the command by replacing each

domain-name with its corresponding data type and

specification (recorded in the DIT system file) .

SQLSDM then passes the modified command to the SQL

DBMS for normal processing.

36

DOMAIN domain-name [PRIMARY] constraint;

-

This SQLSDM command is used to define a domain.

SQLSDM records the domain information in the DIT

system file. It is used to enforce Domain Integrity,

and as a means to identify attributes on which

Referential Integrity will be enforced (see 5.1.1.

DOMAIN INTEGRITY RULES DEFINITION) .

DOMDEL domain-name;

- This SQLSDM command triggers SQLSDM to delete the

domain-name from the DIT system file. SQLSDM reads the

RAT to check for any relation that still uses that

domain, if none exists, SQLSDM will then delete

the domain from the DIT.

RITDEL relation-name;

- This SQLSDM command triggers SQLSDM to delete any

record that exists in the RIT system file for the

relation-name entered. This eliminates Referential

Integrity support for that particular relation.

RITEND;

- This SQLSDM is used when the user has CREATEd all the

the tables needed in the particular application. The

command triggers SQLSDM to
"reconcile"

the RIT system

file (i.e., all
"referencing"

relations in the RIT

must have a corresponding
"referenced"

relation) .

37

SQL PML COMMANDS [MTEJJ....THAT INTERACT WITH SQLSDM:

SELECT

- This command is used by SQL for "read
only"

access to

the database.

JOIN

- The JOIN command triggers SQLSDM to read the

DIT system file and verify that the attributes to

join on are drawn from the same domain

(see 5.1.1. Domain Integrity Enforcement). If both

attributes are from the same domain, then SQLSDM

replaces the
'JOIN'

literal with 'SELECT'
literal

and passes the command to the SQL DBMS for

processing .

INSERT

- This SQL command is used to add a new tuple to the

specified relation or table. It triggers SQLSDM to

enforce Domain Integrity and Referential Integrity.

However, Referential Integrity is only enforced if

the relation targeted for INSERT is recorded in the

RIT as a
"referencing"

relation. If all the values

to INSERT are valid (see 5.1. Domain
Integrity-

Enforcement) and Referential Integrity is maintained

(see 5.1. Referential Integrity Enforcement), then

SQLSDM passes the command to SQL DBMS for actual

execution.

38

UPDATE

- This SQL command changes values in the relation

specified. SQLSDM enforces Domain Integrity

and Referential Integrity for this command in the

same manner as the SQL INSERT command, except that

only values to be updated are verified (see 5.1.1.

Domain Integrity Enforcement and Referential

Integrity Enforcement).

DELETE

- The DELETE command is used to remove one or more

tuples from the specified relation. This command

triggers SQLSDM to enforce Referential Integrity.

SQLSDM allows for the removal of a tuple if and only

if its primary key value has no corresponding

foreign key value in a
"referencing"

relation

(see 5.1.1. Referential Integrity Enforcement).

39

2 . 1 . ^ . USER OUTPUTS

The two categories of SQLSDM output include

(1) SQL COMMANDS and (2) SQLSDM ERROR MESSAGES.

SQL COMMANDS

- SQLSDM examines each command input into the system.

If the command needs to be processed by SQLSDM

(i.e., Domain Integrity or Referential Integrity

Enforcement), then SQLSDM will formulate standard

SQL SELECT commands (to be passed to SQL) that are

used to retrieve records to determine if any

integrity constraints will be violated upon

execution of that input command by the SQL DBMS.

SQLSDM, after integrity has been verified or after

determining that the command input does not need any

SQLSDM processing, outputs that input command to the

SQL DBMS for processing.

40

SQLSDM ERROR MESSAGES

An SQLSDM ERROR MESSAGE is produced whenever SQLSDM

determines that execution of the entered SQL input

command, by the SQL DBMS, will lead to a database

state that violates the Domain and Relational

Integrity laws for that underlying database.

There are other instances when an ERROR MESSAGE is

output to the user. They occur when SQLSDM encounters

an erroneous or invalid input command. The error

are as follows:

EM_1_1 INVALID COMMAND SYNTAX

EM_1_2 INCOMPLETE COMMAND

EM_2_1 DOMAIN INTEGRITY VIOLATION -

"JOIN"

COMMAND

USES ATTRIBUTES FROM DIFFERENT DOMAINS

EM_2_2 ENTITY INTEGRITY VIOLATION - NULLS NOT

ALLOWED FOR INSERT OR UPDATE

EM_2_3 PRIMARY KEY NOT UNIQUE - INSERT REJECTED

EM_2_4 PRIMARY KEY VALUE DOES NOT EXIST IN

REFERENCED RELATION

EM_2_5 INVALID UPDATE ATTEMPTED ON A PRIMARY KEY

EM_2_6 INVALID UPDATE ATTEMPTED - VALUE TO UPDATE

IS A FK AND IS NOT A PK IN A REFERENCED

RELATION

EM_2_7 INVALID DELETE ATTEMPTED - PK VALUE EXISTS

AS A FK

EM_2_8 DOMAIN INTEGRITY VIOLATION - ILLEGAL VALUE

SUBMITTED

EM_3_1 DOMAIN ALREADY EXISTS

EM_3_2 DOMAIN IS STILL UTILIZED IN DB - CANNOT

DELETE IT

EM 3 3 TABLE NAME ALREADY EXISTS - CANNOT CREATE

41

EM_3_4 RIT RECONCILE ERROR - NO REFERENCED RELATION

FOUND IN RAT FOR RELATION:

EM_3_5 DOMAIN DOES NOT EXIST - CANNOT CREATE TABLE

EM_3_6 DOMAIN DOES NOT EXIST - NOTHING TO DELETE

EM_3_7 RELATION NAME NOT FOUND IN RIT - NOTHING TO

DELETE

EM_3_8 INVALID DOMAIN NAME

EM_3_9 INVALID SQL
DATA'

TYPE

EM_3_10 INVALID SQL DATA SPECIFICATION

EM_3_11 SQLSDM DATABASE ERROR ... CONTACT DBA

EM_3_12 INVALID SQL RELATION NAME

EM_3_13 INVALID ATTRIBUTE NAME

EM 3 14 DUPLICATE ATTRIBUTE NAMES

42

2.1.5. SYSTEM FILES

SQLSDM utilizes three system files: the RIT,

the RAT, and the DIT.

RIT

The Relational Integrity Table is used to record

all the relationships in which Referential Integrity

is to be enforced. The RIT is a relation with the

following attributes:

REL_NAME : The referencing relation name.

REF_ATTR : The attribute that acts as a foreign key

DOM_NAME : The domain name on which the REF_ATTR is

drawn from. Always a PRIMARY domain.

RFFD_REL : The referenced relation name.

NOTE -

all relation names and attribute names adhere

to the ANSI SQL standards [DATE4]. The SQLSDM

DOM_NAME is the same data type as a SQL

attribute .

RAT

The Relational Attribute Table records the existence

of all the relations and their attributes of the

underlying application database. The RAT consists of

RELATION : The relation name.

ATTR_NAME : The attribute name.

DOM_NAME : The domain from which the attribute is

drawn.

PRIMARY Indicates
'Y'

for a primary domain.

43

Blank otherwise. Character (1).

PIT

The Domain Integrity Table. Records the domain

information of all the domains in the underlying

application's database. The DIT consists of:

DOM_NAME The domain name. Where name is

substr (domain-name , 1 , 1) = alpha and

substr (domain-name, 2 ,x) = alpha or

or
'_'

or
'-'

or
'#'

and

4 >= X <= 8

DATAJTYPE : The ANSI SQL standard data types.

Character (8) .

DATA_SPEC : An Integer length if required, otherwise

0.

PRIMARY : Indicates a primary domain,
'y'

or blank

DI_RULE : A 30 character descriptor of the domain

Integrity rule to be enforced.

44

2.2. SYSTEMS SPECIFICATION

2.2.1. SYSTEMS ORGANIZATIONAL CHART

- (see APPENDIX Al)

2.2.2. SYSTEMS DATA FLOW CHART

- (see APPENDIX A2)

2.2.3. EQUIPMENT CONFIGURATION

- ANY IBM PC OR COMPATABLE WITH A MONITOR.

- AT LEAST 1.64 MEGABYTES RAM (required for ORACLE),

MINIMUM 10 MEGABYTE HARD DISK (required for ORACLE)

- PRINTER (NOT REQUIRED)

2 2.4. IMPLEMENTATION TOOLS

SQLSDM is implemented using the C programming

language and ORACLE SQL DBMS. ORACLE is a good choice as the

relational database management systems because it is one

of the few available relational DBMS that supports the ANSI

SQL standard. ORACLE also provides a programmable call

interface between the C and the SQL DBMS.

45

2.3. VERIFICATION AND VALIDATION

2.3 1. DELIVERABLE ITEMS

-

completed thesis proposal

- C program listings

- hard copies of system files before and after

the Phase I test suite. The Phase I test suite

includes a series of SQLSDM Data Definition Commands

designed to completely test the execution of such

commands on the DIT, RAT and RIT.

- hard copies of application files before and after

the Phase II test suite. The Phase II test suite

includes a series of SQL Data Manipulation commands

designed to completely test the Domain Integrity and

Relational Integrity aspects of SQLSDM.

-
"portability"

test. This includes hard copies of both

the SQLSDM system files and the SQL application

database before and after Phase I and Phase II test

suites using another DBMS that supports ANSI SQL.

Specifically, the Relational DBMS RBASE-V which

also supports SQL will be used to test "portability".

NOTE - This last deliverable is dependent upon the

availability, and licensing and copyright agreements

of RBASE-V.

46

2.3.2. MILESTONE IDENTIFICATION AND SCHEDULE

10/30/88 -

acceptance of Masters Thesis Proposal.

1/24/89 -

command parsing routines.

-

routines to execute SQLSDM Data Definition

commands .

4/25/88 - Phase I test suite.

-

routines to formulate SQL inquiry commands.

- Domain and Relational Integrity interfaces.

- Phase II test suite.

07/10/89 -

complete all testing and system integration

-

"portability"

test

10/30/89 - Masters Thesis Defense

47

3.0 CONCLUSIONS

SQLSDM functions as it was originally intended,

with one exception: portability. The portability aspect

of the system was not proven. Although the C code was

written using standard ANSI C to allow for portability,

the ORACLE SQL call interface has some ORACLE DBMS SQL

specific commands which may not be compatible with

the DBMS SQL call interface of other relational

database management systems .

The Domain Integrity scheme functions as was

originally intended, but a further scheme is required

in order to be more functional. There is the need to

be able to specify mathmetical constraints upon

domains. Constraints that specify the validity of

multiplying one domain by another to get a valid

value in a third domain is one example. There must

also be a way to enforce these constraints once

they are defined. Other domain integrity

improvements include: addtional data types, ordering,

and composite domains [DATE2].

Perhaps the most signifcant finding is the

apparent inadequacy of the ANSI SQL standard to

incorporate any commands to implement a domain or

referential integrity scheme. This inadequacy became

apparent during the system design phase of SQLSDM.

Therefore, it was necessary to include a command

46

to define domains and to modify the SQL CREATE TABLE

command.

49

4.0 QUALIFICATIONS

4.1. PERSONAL BACKGROUND

While working for Bausch & Lomb in Rochester, N.Y.

during the years of 1982 through 1984, I was extensively

involved in database

design and implementation on micro-computers.

For the past four years I have been working as a

Consultant in a Technical Analyst position at EASTMAN KODAK

I have been extensively involved in design and

implementation of IMS Database application systems.

50

4.2. COURSES TAKEN

PROGRAMMING LANGUAGES AND DESIGN

ICSP 305 ASSEMBLY LANGUAGE

ICSS 320 DATA STRUCTURE AND ANALYSIS

ICSS 709 PROGRAMMING LANGUAGE THEORY - C programming

was undertaken in this course.

ICSS 708 COMPUTER ORGANIZATION AND PROGRAMMING -

structure charts, data flow diagrams and

top-down design were investigated.

ICSS 730 MODELING AND SIMULATION I

P.ATAB.A.SE.S

ICSS 735 ON-LINE INFORMATION SYSTEMS

ICSS 738 DATA BASE CONCEPTS -

studied the relational

database model and designed and implemented

an application database.

ICSS 739 DATA BASE IMPLEMENTATION -

extensive

relational database investigation. Including

design and implementation, using UNIX and

C, of a Relational DBMS.

ICSS 846 INFORMATION STORAGE AND RETRIEVAL

COMPUTING THEORY

CTDS 230 DISCRETE STRUCTURE

ICSS 706 FOUNDATIONS OF COMPUTING THEORY

51

MISCELLANEOUS

ICSS 720 COMPUTER ARCHITECTURE

ICSS 740 COMPUTER COMMUNICATION NETWORKS

ICSS 770 FUNDAMENTALS OF COMPUTER GRAPHICS

52

4.4. PROGRAMS WRITTEN

I have written an SQL-like relational DBMS for

ICSS-739 "DATABASE IMPLEMENTATION". This

Relational DBMS was an on-line system that involved

interpretation and execution of SQL-like DDL and DML

commands. Including the ability to define and

manipulate indices for the application tables.

53

5.0. GLOSSARY

Associative Entities:

RM/T functions that represent many-to-many (or many- to.

many-to-many, etc.) relationships among two or more

otherwise independent entities.

Base Tables:

a relation or table created via a CREATE (or similar)

command and is physically stored in a database.

BCNF:

a relation is in Boyce/Codd Normal Form if and only if

every determinant is a candidate key.

Candidate key:

the set of attributes in a relation that satisfies the

two time-independent properties of Uniqueness and

Minimality .

Characteristic Entity:

an RM/T entity that describes other entities, either

kernal, other characteristic or associative entities.

Composite Key:

a candidate key that consists of more than one

attribute .

54

Conceptual Schema:

enforces consistency and provides a mapping between the

internal and external schemas.

Constraint:

a the set of rules or a condition that the domain

values must adhere to, if they are to be considered to

belong to that domain. This condition must at least specify

a data type and optionally a predicate condition.

Constraint Rules:

COPE's rules representing the major specifications of

the conditions for semantic integrity to be imposed on the

database .

COPE:

Cooperative Overt Passive Error-Detection, a system

designed to represent and apply semantic integrity knowledge

to detect semantic integrity errors in relational database

management systems.

Data Independence:

the immunity of applications to change in storage

structure and access strategy.

55

Database Structure Description:

provides a mapping between COPE's view of the database

and the structures of the underlying database.

Designative Entity:

an RM/T entity in a many-to-one relationship with at

least two otherwise independent entities.

Determinant :

any attribute on which some other attribute is fully

functionally dependent.

Domain definition:

a syntax to declare a domain to be used in a relational

database .

Domain Integrity Rule:

a constraint stating that the values of a specific

attribute are required to belong to the set of values

constituting the underlying domain.

Domain-name:

a label used to identify a domain that exists in a

database; where certain domains are used as a pool of values

for the primary keys of the database and must be declared as

such .

56

Entity Integrity:

a rule of the Relational Model that states that no

attribute participating in a primary key of a base relation

is allowed to accept null values.

E-relations:

in RM/T used to record the existence of the all the

entities within the database.

External Schema:

the logical view the user has of the database.

Foreign key:

an attribute (or attribute combination) in one relation

R2 whose values are required to match those of the primary

key of some relation Rl .

Functional Dependence:

refers to an X and Y value pair in a relation, where

one specific value of Y is always determined by a specific

value of X and no other Y value may be associated with that

X value .

57

Hierarchical Model:

a database model that consists of an ordered set of

multiple occurrences of a single type of tree. A tree type

consists of a single
"root"

record type, together with an

ordered set of zero or more dependent (lower level) subtree

types. A subtree type also consists of a single record type

- the root of the subtree type - together with an ordered

set of zero or more lower-level dependent subtree types

[DATE1] .

ICMDL:

Internal Conceptual Model Description Language is

COPE's declarative language based on a combination of first

order predicate logic, set theory, and semantic networks.

Independence :

a COPE feature that refers to the ability that COPE's

functionality does not depend upon special capabilities of

the DBMS.

58

Independent Entity:

an RM/t entity where none of the entities concerned is

existence-dependent on any of the others.

Internal Schema:

how data is physically stored.

Kernal Entities:

an RM/T entity that can exist independently of any

other entity.

Multivalued dependency:

a multivalued dependence in relation R with attributes

A, B, C, holds in R if and only if the set of B-values

matching a given A-value/C-value pair in R depends only on

the A-value and is independent of the C-value .

59

Mutually Independent:

two or more attributes are mutually independent if none

of the attributes concerned are functionally dependent on

any of the other attributes.

Network Model :

a database model that consists of two sets, a set a set

of records and a set of links. A set of multiple occurrences

of each of several types of records, together with a set of

multiple occurrences of each of several types of link. Each

link type involves two record types, a parent record type

and a child record type. Each occurrence of a given link

type consists of a single occurrence of the parent record

type, together with an ordered set of multiple occurrences

of the child record type [DATE1].

Non-key attribute:

an attribute that doesn't participate in any candidate

key of the relation.

60

Normalization:

the process of systematically eliminating such

anomalies as data redundancy and inconsistency , by reducing

a relation into equivalent separate relations resulting in a

more desirable form.

Overlapping candidate keys:

composite candidate keys that have a common attribute.

P-relations:

in RM/T used record the properties of entities.

Primary Domain:

a primary domain is any domain on which some single-

attribute primary key is defined.

Primary Key:

a designated candidate key.

Projections:

vertical subsets of a given relation obtained by

selecting specified attributes in a specified left-to-right

order, and eliminating duplicate tuples within the

attributes selected.

61

Redundancy :

multiple occurrences of the same attribute/value pairs

replicated in more than one tuple in a relation.

Referenced Relation:

a relation in which the primary key occurs as a foreign

key in some other relation (known as the referencing

relation) .

Referencing Relation:

a relation in which a foreign key is found.

Referential Attribute:

an attribute occurring in a referencing relation whose

value occurs in some referenced relation.

Referential Integrity:

states that if a base relation R2 includes a foreign

key(FK) matching the PK of some base relation Rl , then every

value of the FK in R2 must either be (a) equal to the value

of PK in some tuple Rl or (b) be wholly null(i.e., each

attribute value participating in that FK value must be

null) .

62

Relational Algebra:

the data manipulation language of the Relational

Model.

Relational Integrity:

the ability of a database system to adhere to

constraints that govern the admissability of a given tuple

as a candidate for insertion into a given relation, or the

relationship between tuples of one relation and those of

another) embodies the two rules of
.Entity .Integrity

and

Referential
..

Relational Model:

originally defined by Codd [C0DD1]. The model consists

of three major parts: a structural part, an integrity part,

and a manipulative part. The structural part consists

essentially of any n-ary relations (together with their

underlying domains). The integrity part consists of two

general integrity rules , namely "entity
integrity"

and

"referential integrity". Finally, the manipulative part

provides a set of algebraic operators for data manipulation

63

Relational Templates:

COPE's relational representation of the underlying

database used for checking integrity constraints.

RM/T:

a semantic data model Codd defined in an effort to

incorporate more semantic control into the basic Relational

Model.

Rollback:

the process which returns a database to its last known

consistent state.

Semantic control:

the ability for relational schemas to completely and

expressively model the natural relationships and mutual con

straints among entities.

Semantic Data Modeling:

the task of capturing more of the meaning cf dc

64

Semantic Network:used by COPE to map the relational

templates to the appropriate portions of the database

maintained by the DBMS, along with specifying some integrity

constraints .

Specialization:

a feature of COPE which allows COPE to be functionally

independent of the DBMS.

Subtypes, Supertypes:

in RM/T they are used to classify entities by property

category, if entity E is a subtype of entity F, then F is a

supertype of E and E inherits all the properties of entity

F.

Surrogate Key:

system generated primary keys used and known internally

by the system and not by the user.

Terminator:

a specification describing the action the system will

take if a constraint is violated.

Transitively Dependent:

a attributes value determined by another non-key

attribute .

Versatility:

a feature that refers to COPE's ability to act as an

independent "front-end"
filter to be used with any target

DBMS.

Views :

a
"virtual"

table. A table that does not exist in

physical storage, but looks to the user as if it did.

3NF:

a relation is in third normal form if and only if the

non-key attributes of that relation is "mutually

independent"

and "fully
dependent"

on the primary key of that relation.

4NF:

a relation R is in fourth normal form if and only if,

whenever there exists a "multivalued
dependency"

in R,

say A ->-> B, then all attributes of R are also

"functionally
dependent"

on A.

66

6. BIBLIOGRAPHY

CHEN P.P. Chen, "The Entity-Relationship Model -

Toward an Unified View of Data", ACM Trans.

Database Systems, Vol.1, No . 1 , 1976.

CODASY CODASYL Systems Committee, "Introduction to

'Feature Analysis of Generalized Data Base

Management Systems'", CACM, Vol.14, No . 5 ,

May 1971.

C0DD1 E.F. Codd, "A Relational Model of Data for Large

Shared Data Banks", CACM, Vol.13, No. 6,

June 1970.

C0DD2 E.J. Codd, "Extending The Database Relational

Model to Capture More Meaning", ACM TODS, Vol.4,

No. 4, Dec 1979.

DATE1 C.J. DATE , An ion to
..

Systems ,

Vol.1, 4th Edition, Addison-Wesley,

Reading, Mass., 1986.

DATE 2 C.J. DATE , An. ion... Dat abase... Systems ,

Vol.11, Addison-Wesley, Reading, Mass., 1985.

DATE3 CJ. Date, "Referential Integrity", Proc. 7th

International Conf . on Very Large Data Bases,

Cannes, Sept 1933.

DATE4 C.J. Date, A...Guide to The Standard,

Addison-Wesley, Reading, Mass., 1987.

FAGIN R. Fagin, "Normal Forms and Relational Database

Operators", Proc. 1979 ACM SIGMOD International

Conference on Management of Data.

MCLEOD D.J. McLeod, M.M. Hammer "Semantic Integrity

in a Relational Database System", Proc. 1st

Inter. Conf. on Very Large Data Bases. Sept 1975

RUSTIN R. Rustin, (Ed.) ,
"Data Models:

Data-Structure_Set versus Relational",

Workshop on Data Description Access And Control,

May 1-3, 1974, ACM SIGMOD

proceedings of "the great
debate"

between Codd

and Bachman.

67

SANDS H.A. Scmid, J.R. Swenson, "On The Semantics Of

The Relational Model", Proc. 1975 ACM SIGMOD

International Conf. on Mgmt . of Data, May 1975.

SCHUL G. Schulmeyer, J. McManus , Handbook of Software,

Quality, and..Assurance , Van Nostrand Reinhold,

n7y 7; n'."y 77"l 9i 87~.
"

ST0NE1 M. Stonebraker, E. Wong, P. Kreps , G. Held,

"The Design and Implementation of INGRES",

ACM Trans, on Database Systems, Vol.1, No . 3 ,

Sept. 1976.

ST0NE2 M. Stonebraker, "Implementation of Integrity

Constraints and Views by Query Modification",

Proc. ACM-SIGMOD Conf., San Jose, Ca. ,
1975.

TSUR1 S.Tsur, C.Zaniolo, "An Implementation of GEM -

supporting a semantic data model on a relational

back-end", CACM, Vol.8, No . 6 ,
1984.

WILSON G.A. WILSON, "A Conceptual Model For Semantic

Integrity Checking", Proc. 6th International

Conf. on Very Large Data Bases, Oct 1980.

68

APPENDIX

APPENDIX Al

SYSTEM STRUCTURE
CHAR"

69

jCTURE CHART SQLSDM: SQL SEMANTIC DATA MODEL {SQLSDM}

| ERROR IND

f CMD,

PARMS
MJ

VALIDATE

COMMAND

d) CMD, PARMS]
"

PARMS

-|RROR

tfND

CHECK FOR

VALID CMD

CMD

I

4VALID

iIND

COMPARE TO

CMD TABLE

EMl-lj

PROCESS

SQLSDM CMD

CMD,p

PARMS

* CMD,

, CREATE CMD, PARMS],

PARMS

PROCESS

SDM DDL

{SQLSDM1.1}

i

[ISSUE ERROR

IMSG

f
RROR IND

4CMD,

j/fARMS

ENFORCE

REL INTEG

{S0LSDM1.2}

SQL n

CMD, |

- 1
-

yCTURE CHART SQLSDM: SQL SEMANTIC DATA MODEL {SQLSDM1.1}

* ERROR IND

I
I SQL CREATE

A CMD

tREATE

[able

i i ^DOM DATA,

EM3-3,

EM3-5

X<

READ DIT

Mh n IM3-3

n

READ RAT

CMD

CREATE

DOMAIN

{SQLSDM1.1.A}

CMD.r,

DOM

DATA

PROCESS

SDM DDL

! +

CMD

DELETE

DOMAIN

{SQLSDM1.1.B}

n

4-SQL CREATE CMD,

CMD DOM DATA

W

REFORMAT

CREATE CMD

UPDATE

SYS. FILES

CMD,

DOM DATA?

CMD
f

RROR IND

RECONCILE

RIT

n

1

CMD, ,;;,

DOM DATA

WRITE RAT

TUPLE

WRITE RIT

TUPLE

CMD f,
T

1

RIT ENTRY

DELETE

{SQLSDM1.1.C} {SQLSDM1.1.D!

EM3 -3,

EM3-5

ISSUE

ERROR

- 2

IUCTURE CHART SQLSDM: SQL SEMANTIC DATA MODEL {SQLSDM1.1.A}

DOM NAME 1

y
EM3-J

CHECK FOR

DUP DOM NM

0

DOM NAME + DUP

IND

CREATE

DOMAIN

CMD DATA
0

WRITE DIT

TUPLE

EM3-1

3
-

ICTURE CHART SQLSDM {SQLSDM1.1.B}

DOM o

NAME I
t EM3-2,

0 EM3-6

CHECK FOR

DOM USAGE

DOM Q
NAME I

EM3-2,

3-6

Itn

ii EM

READ RAT

DOM

NAME

4 EM3-2

U

READ DIT

DELETE

DOMAIN

DOM

NAME

DELETE

DIT TUPLE

EM3-2,

EM3-6

- 4
-

jCTURE CHART SQLSDM {SQLSDM1.1.C}

RIT 0
DATA

4CM3-4,

NF

Apntr,
NF TBL

GET REF'D

REL NAME

REF'D NMq
REL NM I

NF TBL.o

EM3-4n NF ERROR

1 L IND I
W F T

UPDT RIT

W/REF'D REL

ISSUE ERROR DISPLAY NF

TABLE

DISPLAY
RE-

CONCLE MNU

NAME , n

I DOM I

REL 0

fREF'D REL NAME!

XfWE

4NF TBL

i
i i

NOT FOUND

TBL WRITE

nf n

CNTR

fNF

JJPNTR

INCR NF

CNTR BY +1

k RIT(S RIT DATA

READ RIT

- 5

DICTURE CHART SQLSDM {SQLSDM1.1.D}

REL ,:

NAME I tfM3-7

ii

CHECK FOR

EXISTENCE

REL Q
NAME I 4NF IND

i

READ RIT

RIT ENTRY

DELETE

REL f,

NAME I

DELETE RIT

TUPLE

v

{SQLSDM1.1.C}

EM3-7f,

^

ERROR MSG

EM3-7

{SQLSDM1.1.C}

6
-

UCTURE CHART SQLSDM {SQLSDM1.2}

ENFORCE

REL INTEG

! +

1

+ f

SELECT CMD

DELETE CMDf& DATA n WATCH INSERT CMD,-; 4RR UPDT CMDf, 4RR fFND

I &IND & DATA 1 4lND & DATA I @IND & DATA 1 jjJND

, V T w

ENFORCE DOM ENFORCE REF ENFORCE REF ENFORCE REF

INT ON JOIN INSERT INT UPDATE INT DELETE INT

{SQLSDM. 2. A} {SQLSDM1.2.B} r

CMD,

DATA,

REF'G

4fND

1 4lND

in &DOM NM DOMn

0 NMSI

<*MATCH f. REL NMS,

I flND EM2-ll ATTR NMS
i=

< . v ^

FIND FK'S

MATCH PK'SEAD RAT COMPARE ISSUE ERROR

DOMAINS

1 1

REF'D f

REL NMj
& DATA

4-PK

Aval ues

i 0

0

REF'G REL Q 4FND EM2~7|
NM,ATTR NM |?IND

& DATA, i

?

PK VALUES

READ REF'D 1?EAD REF'G ISSUE ERROR

REL FOR PKs 1?EL FOR FK

RE F'D p. REF'G

REL NM], MEL NMS,

T

jjATTR NMS

READ RIT

- 7
-

IUCTURE CHART SQLSDM {SQLSDM1.2.A}

ATTR n

DATA J
VALUES

<WULL

.41ND

ENFORCE REF

INSERT INT

REL NM, f,

ATTR I
RROR IND

ENFORCE

ENTITY INT

[I DATAqI

LUES l|

4NULL EM2-2

REL NM, f,

ATTR I
VALUES

44DUP IND

AipK VALUES

CHK FOR PK

uai -

fk VAL

S EM2-4 T

UlND fl

|ECK FOR

III values

ISSUE ERROR

REL NM, (j

ATTR

VALUES

GET REF'D

RELATIONS

t

440UP IND

i^EF'D REL NMS,

"ATTR NMS

VALUES

EL NM, f

1 I
VALUES

tATTR

MS

ENFORCE PK

UNIQUENESS

EM2-3r,

u

READ REL

FOR DUP PK

DUP IND

ISSUE ERROR

EL NM ,-,

I ITTR NMS

READ RAT

ISSUE ERROR

- 8

JCTURE CHART
SQLSDM {SQLSDM1.2.B}

ENFORCE REF

UPDATE INT

UPDTf,

CMD,

ATTR

VAL

4NULL

| IND REL NM,r.

ATTR NM, I
ATTR VAL

'

ipK

|IND

ENFORCE

ENTITY INT

ENFORCE

PK INTEGR

REL NM,f,

ATTR NM,

ATTR VAL

4NULL EM2-2f,

|i2IND ll

REL NM.fj
ATTR NM 4PK

ilND EM2-5f,

READ RAT ISSUE ERROR

4fK NF

k IND

REL NM,

ATTR NM

fREF'D

,%L NM

CMD, J
DATA

VERIFY FK

EXISTENCE

NEW

4VALUE

NEW VAL 1

REF'D REL i M

ATTR 1W i

4FND

I IND

READ RIT CALCULATE

UPDT VALUE

READ REF'D

RELATION

REL NM

ATTR

OLD

4-VALUE

OPER, OLDq
VAL, UPDTJ

VAL
u

NEW

4VALUE

READ REL

TO UPDT

APPLY OPER

FOR NEW VAL

EM2-60!

I

ISSUE ERROR

- 9

APPENDIX A2

SYSTEM DATA FLOW DIAGRAM

70

J

o

/
i

C/,1 -j

a
<

^?
r-

C.&
o C ts\ 2
o

c:

c ST

Z Cv

3">

I 1
C/

LL)

C/l

3

r>

eS.

z

*>

S.

o

i

c/

/
VJJ

<y\

3

r

p

<^\

-I r
a

c/i

A
t/>

\

DIT DATA

DI 2-1 := DOMAIN TYPE AND/OR DATA SPECIFICATIONS

DI 3-1 := DOMAIN NAME

DI 3-2 := DOMAIN NAME, DOMAIN TYPE/SPEC, PRIMARY IND

DI 3-3 := DOMAIN NAME, PRIMARY IND

DI 3-4 := ALL DIT TUPLES

DI 3-5 := ALL DIT TUPLES EXCLUDING DELETED DIT TUPLES

RAT DATA

RA 2-1 := ATTRIBUTE NAMES

RA 2-2 := DOMAIN NAME

RA 2-3 := PRIMARY KEY INDICATOR

RA 2-4 := ALL RAT TUPLES

RA 3-1 := DOMAIN NAME

RA 3-2 := RELATION NAME, ATTRIBUTE NAME, DOMAIN NAME

RA 3-3 := RELATION NAME

RIT DATA

Rl 2-1 := REFERENCED RELATION NAME

Rl 2-2 := RELATION NAME

Rl 2-3 := REFERENCING RELATION ATTRIBUTES (FOREIGN KEYS]

Rl 3-1 := RELATION NAME, ATTRIBUTE NAME, PRIMARY DOMAIN

Rl 3-2 := REFERENCED RELATION NAME

Rl 3-3 := RELATION NAME

Rl 3-4 := ALL RIT TUPLES

Rl 3-5 := ALL RIT TUPLES EXCLUDING DELETED TUPLES

EM_3_10 INVALID SQL DATA SPECIFICATION

EM_3_11 SQLSDM DATABASE ERROR ... CONTACT DBA

EM_3_12 INVALID SQL RELATION NAME

EM_3_13 INVALID ATTRIBUTE NAME

EM 3 14 DUPLICATE ATTRIBUTE NAMES

INTER-PROCESS DATA OBJECTS LEGEND

SDM DDL COMMANDS SQL OR SDM COMMANDS

CREATE TABLE

CREATE DOMAIN

DELETE DOMAIN

RITDEL

RITEND

SDM DDL

SQL DDL

SQL DML:= CURSOR SQL DML +

NON-CURSOR SQL DML

SQL DDL COMMANDS

COMM.

TRANSACT TJ)NTE.RM .

CREATE SCHMA AUTHORIZATION

CREATE TABLE

CREATE VIEW

GRANT

COMMIT

ROLLBACK

cu.B_soB_s.Q.l__ dim l

OPEN

FETCH

UPDATE . . CURRENT

DELETE . . CURRENT

CLOSE

NQNjrC_yjRSJDR_.SQ:L.. DML

SELECT

INSERT

UPDATE

DELETE

	A SQL front-end semantic data model
	Recommended Citation

	Pages from R0004369684-1
	Pages from R0004369684-2
	R0004369684.pdf

