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Abstract - This paper looks at algorithms for the detection of termination in a distributed

system and analyzes them for effectiveness and efficiency. A survey is done of the pub

lished algorithms for distributed termination and each is evaluated. Both centralized dis

tributed systems and fully distributed systems are reviewed. The algorithms are analyzed

for the overhead and conclusions are made about the situations in which they can be used,

i.e. an operating system, a real-time system, or a user application. An original algorithm is

presented for the asynchronous case with first-in-first-out message ordering. It allows any

process to initiate detection of termination and makes use of multiple tokens.

- n



TABLE OF CONTENTS

1. Introduction 1

1.1. Purpose 1

1.2. Definitions 2

1.3. Approach 4

1.4. Correctness of a Solution 7

1.5. Properties of an Asynchronous Solution 8

1.6. Underlying Computation 9

1.7. Tools for Distributed Algorithms 10

1.8. Network Definitions 13

1.9. Assumptions 14

1.10. Restrictions 14

1.11. Formal Definition of Termination 15

1.12. Phases of Termination Problem 15

1.13. Computation of Overhead 16

1.14. Perspectives 17

1.15. Historical Perspectives 17

1.16. Summary 21

2. Synchronous Centralized Solutions 22

2.1. Introduction 22

2.2. Issues 22

2.3. Assumptions 23

2.4. Solutions Using a Tree Topology 23

2.5. Solutions Using a Hamiltonian Cycle 32

2.6. Summary 36

3. Synchronous Distributed Solutions 38

3.1. Assumptions 38

3.2. Issues 38

3.3. Solution Using Tokens 40

3.4. Solutions Using a Logical Clock 42

3.5. Summary 45

4. Asynchronous Centralized Solutions 47

4.1. Assumptions 47

4.2. Issues 47

4.3. Overview 51

4.4. Arora's Solution to the Problem 52

in



4.4.1. Control Messages Used in the Algorithm 52

4.4.2. Overhead for the Algorithm 54

4.5. Chandrasekaran's Dual Approach to the Problem 55

4.6. Rozoy's Algorithm 57

4.6.1. Boundaries on the Number of Control Messages 59

4.7. Dijkstra's Solution to the Problem 59

4.8. Arora's Solution Using a Bidirectional Ring 61

4.9. Summary 63

5. Asynchronous Distributed Solutions 66

5.1. Assumptions 66

5.2. Approaches 66

5.3. Solutions for a Hamiltonian Cycle Topology 68

5.3.1. Arora's Solution to the Problem 68

5.3.1.1. Solution Two 70

5.3.1.2. Solution Three 72

5.3.2. Haldar's Solution to the Problem 76

5.4. Solutions for an Arbitrary Network Topology 78

5.4.1. Misra's Solution to the Problem 78

5.4.2. Skyum's Solution to the Problem 82

5.4.3. Huang's Solution to the Problem 84

5.4.4. Eriksen's Solution to the Problem 87

5.5. Solution for an Application which Requires Synchroneity 88

5.6. Summary 90

6. Solutions for Unreliable Channels 94

6.1. Dijkstra's Solution to the Problem 95

6.1.1. Definitions for Dijkstra's Solution 95

6.1.2. Approach 95

6.1.3. Advantages 98

6.2. Kumar's Solution 98

6.3. Mattern's Solutions 105

IV -



6.3.1. The Four Counter Method 105

6.3.2. The Sceptic Algorithm 106

6.3.3. A Time Algorithm 107

6.3.4. Vector Counters 108

6.3.5. Channel Counting 109

6.4. Summary 110

7. A New Algorithm 112

8. Conclusions 120

8.1. Synchronous Communication 122

8.2. Asynchronous Communication 124

8.2.1. FIFO Ordering for Messages 124

8.2.2. Non-FD?0 Ordering for Messages 128

8.3. Summary 131

8.4. Future Directions 133

- v



1. INTRODUCTION

The detection of termination for a sequential program is trivial. The process knows its

own state and it may terminate when its task is complete. The detection of termination is

also easy for concurrent processes executing on one machine and sharing memory. The

information required to allow the processes to decide if they can terminate can be stored at

some shared memory location. However, when several sequential processes must work

together in a distributed system, shared memory is non-existent and other methods of

detection of termination must be found. The problem arises because a process is aware

only of its own local state and is not aware of the states of other processes at that same

instant in time. Francez [FRAN80] calls the problem of designing control communication

to detect termination, and superimposing it on an application, the distributed termination

problem. The more abstract and general term global quiescence is sometimes used to

represent the situation where an application is globally deadlocked and it is merely a

matter of interpretation as to whether the system is deadlocked or terminated. Chandy

and Misra [CHAN86] and Shavit and Francez [FRAN86] introduced this term.

1.1. Purpose

The purpose of this paper is to survey the literature for termination algorithms begin

ning with Francez [FRAN80] and to analyze them for appropriateness and correctness. As

each algorithm is considered, this paper will consider the efficiency of the algorithm in solv

ing the problem. We will also look at any peculiarities of the solutions that illustrate the

problems that must be solved in order to create a correct solution to the distributed termi

nation problem. Even incorrect algorithms can be useful in illustrating conditions that

must be taken into account to solve the problem correctly.



In addition, this author will propose an algorithm for an asynchronous, distributed

system with first-in-first-out message ordering that does not require clocks.

1.2. Definitions

Francez [FRAN80] identifies two different classes of termination problem. Endoter-

minating processes may terminate on reaching some final state determined only by the ful

fillment of a condition. For example a sequential process might terminate after executing a

specific number of statements, or when the exit procedure is called. On the other hand

exoterminating processes are those that depend on other processes in the group for infor

mation to do their own computation. The set of all processes on which a process depends is

called its termination dependency set (TDS). An exoterminating process may not ter

minate until all processes within its TDS are ready to terminate, i.e. have finished all of

their work. Processes working together to solve a problem in a distributed system are exo

terminating. Therefore it will be necessary that no process within the group terminates

before all processes are ready to terminate.

In the context of distributed systems, several terms should be understood at the

outset. All processes running in parallel and working together to find a solution for a com

putation P, are called communicating sequential processes. By definition they have no

shared memory and they share information only by sending and receiving messages.

For the sake of consistency, the computation will always be referred to as P and the

processes which do the work of the computation will be referred to as p,. This author

assumes that P and
p,- contain both the application and the superimposed control code

used by the detection algorithm. The number of processes in the system will always be

represented by n.
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A computation is ready to terminate if it meets its Global Terminating Condition

(GTC). The GTC refers to the terminating condition for the computation as a whole. For

consistency's sake, I will name the boolean predicate, representing the GTC, B throughout

this paper. Each p, of the computation will have a local predicate, always named 6,, which

will represent some local boolean condition for termination. If each p,-
was running on its

own, this boolean condition, 6,-, would be sufficient for termination. However, since the
p,-

are running together, the conjunction of all the 6,'s is necessary to meet B. Once B has

been met, it cannot change
- it is monotonic.

The processes
p,-

exchange communications of two different types: basic communica

tion and control communication. Basic communication, be, refers to any exchange of mes

sages relative to the computation. Control communication, cc, refers to the exchange of

messages relative to the termination algorithm.

In the single processor, concurrent environment, a process is said to be active if it is

executing its text and passive if it is blocked. In the distributed environment this is not

the case. A process is considered active if its local predicate 6, is not met. This could

mean the process is actively executing its text or waiting for a be. A process is considered

passive only if its local predicate 6, has been met.

If a process is passive it may send/receive cc; it may also receive be although it may

not initiate (send) be. Upon receipt of a be, a passive process immediately becomes active

(and its 6, becomes false). Notice that the 6, are not monotonic.

If a process is active it may send and receive be. It may become passive at any time,

if its local predicate 6, becomes true. Active processes may or may not be able to

send/receive cc depending upon the algorithm under consideration.
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The above definitions describe a transaction oriented model of distributed computa

tion. All of the algorithms presented assume a transaction oriented model except those

presented by Mattern [MAT87B].

Mattern assumes an atomic model of distributed computation. In the atomic model

all local actions are performed in zero time and therefore there is no need for the two

states passive and active - no messages are received unless a process is passive. A process

may at any time take any message from one of its incoming communication channels,

immediately change its internal state and at the same instant send out any number of mes

sages, possibly none at all. For convenience Mattern assumes that all atomic actions are

totally globally ordered. If every local computation initiated by the receipt of a message

terminates, the transaction oriented model is equivalent to the atomic model of distributed

computation. For Mattern, the advantage of the atomic model is that there is no con

current activity of processes. He believes this gives him a better insight into the problem

of distributed termination.

1.3. Approach

This author believes that the algorithms can be best understood by grouping them.

Initially many restrictions are put on the communication channels which make developing

and understanding algorithms easier. In addition, communication may block a process

1 2

(synchronous) or allow the process to continue to execute (asynchronous). Furthermore,

initial efforts allowed one process to control the system and are referred to as centralized.

Centralized solutions have the inherent property that the control code contained in each

1 The sender does not send the message until the receiver is ready to receive.

2 The sender does not wait for the reception of the message to occur.
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process cannot be the same.

The centralized solutions to the distributed termination problem make use of a single

process, the detector, to detect termination. The detector initiates the detection algorithm

and is the only process with sufficient information to determine if termination has actually

occurred. The messages the detector sends out are called probes. Chandy and Lamport

[CHAN85] introduced the term distributed snapshot to refer to the method by which

processes record their own states and the states of communication channels so that the set

of process and channel states recorded form a global system state.

The earliest centralized algorithms used the CSP notation described by Hoare

[HOAR78] to pseudo-code their algorithms. These algorithms are especially vulnerable to

deadlock due to Hoare's definition for communication. The author assumes the reader has

a basic knowledge of CSP; however a few points are of special interest. It is important to

remember that the communication is synchronized in CSP. In addition there is no buffer

ing; therefore, if process
p,-

wishes to send to process py,
p,-
must wait until pj is ready to

receive from p,-. When both the sender and the receiver are waiting for each other, the two

processes are said to correspond and a simultaneous communication occurs. This property

of CSP can lead to deadlock if there is insufficient nondeterminism in the control code. If

two processes are each waiting for input from the other, deadlock could easily occur. An

unusually large number of messages will increase the possibilities for deadlock. The CSP

requirement of simultaneous communication led to the description of these algorithms as

synchronous.

Francez distinguishes between "the instance at which communication is enabled and

the instance at which it actually takes [FRAN82,282]. An insistant communication
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is a communication "which, once enabled, prevents any other activity until it occurs (even

if there are alternative enabled
communications)"

[FRAN82,289]. An indulgent communi

cation is a communication which occurs only whenever a process is not doing anything else,

i.e., "the enabling of a communication is intentionally separated from its actual

occurrence"

[FRAN82,289]. The earliest algorithm presented by Francez [FRAN80] uses

insistant communication - once the cc are enabled, no be may occur until the cc occurs,

i.e., the underlying computation is frozen. In his later algorithm [FRAN82], Francez uses

indulgent communication, i.e., although a cc may be enabled, alternative be may occur,

and the basic computation is not frozen.

Later efforts were fully distributed in an attempt to make the systems more fault

tolerant. The fully distributed solutions to the distributed termination problem make use

of symmetric code - the code for the control algorithm is the same on all processors. In

addition, a distributed solution allows any node to initiate termination detection and any

node, not necessarily the initiator, to actually detect termination.

The reader should be aware that solutions are classified as centralized or distributed

based on the mechanism used to detect termination. This means that a either a central

ized or a distributed termination algorithm can be built on a distributed application. The

key issue is that, in centralized solutions, the initiator is determined before the application

begins execution and can not change. In the fully distributed solutions the initiator is

determined during execution of the application. Either all of the processes can take turns

being the initiator or all of the processes may have the capability to be the initiator at any

time (or even the same time) during the execution of the application.

In several of the distributed algorithms, instantaneous communication is assumed. An

-6-



instantaneous communication is defined as when a send/receive occurs, the message is at

the sender or at the receiver - not on the communication line itself.

As knowledge of the distributed termination problem grew, the researchers realized

that an algorithm could best be developed through the use of invariants. An invariant is a

condition which must hold true at all times during the solution of a problem. The use of

invariants has the advantage of making it easier to prove the algorithms correct.

There are several other conditions to be considered which are beyond the scope of this

paper. This paper will consider only static distributed systems - the process set is fixed for

the lifetime of the system. But it is also necessary to find efficient and correct algorithms

for dynamic distributed systems - processes can be created and/or destroyed during the

lifetime of the system. The entire issue of faulty processors will be avoided - techniques for

discovering that a processor is faulty and for correcting the results of its behavior need to

be developed and applied to the distributed termination problem but will not be discussed

here. Also the effects of message loss due to a faulty channel will not be explored,

although the literature indicates that termination cannot be verified if messages are lost.

1.4. Correctness of a Solution

In order for a distributed termination algorithm to be correct, the algorithm must be

guaranteed not to cause a false termination. False termination is the term used when the

control code declares a termination which has not actually occurred - some process is still

active. Any correct termination algorithm will have to be able to detect all possible cases

of behind the back communication in order to prevent false termination. Behind the back

communication can occur whenever the detector has visited a process, finds it passive, and

assumes it will remain passive. An active process which has not yet been visited by a
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detector may send messages to any process in the system - including processes already

visited and assumed passive by the detector - and cause them to become active. If a

detector does not learn of this behind the back communication, a false termination will be

found.

Apt and Richier [APTR85,480] suggest the following criteria as a guide to judging if a

solution to the distributed termination problem is correct.

Property 1: Whenever P properly terminates, then all processes are passive.

Property 2: There is no deadlock in P.

Property 3: If all processes become passive then eventually P will properly ter

minate.

Property 4: If not all processes are passive then eventually a statement from the ori

ginal program will be executed.

These properties are especially important for the synchronous solutions. Because of

the nature of CSP it is very easy to write control code which will deadlock and violate pro

perty 2. Property 1 is really saying that a false termination will not be detected, i.e., all

behind the back communication will be caught. Property 3 says that if termination occurs,

it will be detected. Property 4 says that if termination has not occurred, then the basic

computation will not be prevented from executing.

1.5. Properties of an Asynchronous Solution

Ferment and Rozoy [FERM87] introduce a discussion of the problems involved in

asynchronous communication. Most of the algorithms for the asynchronous case to be

presented in this paper assume that either all communication is instantaneous or a process
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can test for the emptiness of its buffers. When the network is not a local one, neither one

of these properties would hold and other information would be needed.

If a process can neither test for the emptiness of its buffer nor perform instantaneous

communication, Ferment and Rozoy suggest that there are three critical parameters. If one

of these parameters can be met then finite termination algorithms can be found for the

system. The parameters are:

1. Transmission Order - All messages that have the same priority and are sent over

3
the same communication channel obey the fifo rule.

2. Priority of Detection Messages - All cc have a lower priority than be.

3. Communication synchronicity
- There is a uniform bound during which messages

are treated, i.e., the number of messages processed before any given message is

received and processed is bounded. This is a bound on actions, not on time and

is clearer within Rozoy's definition of the distributed system as a finite state

machine.

All of the algorithms presented in chapters 4 and 5 assume either instantaneous com

munication or the ability to test for an empty channel, as well as a fifo ordering of mes

sages. Chapter 6 will look at algorithms that have the ability to test for an empty channel.

1.6. Underlying Computation

Several of the algorithms assume a diffusing computation for the underlying computa

tion. A diffusing computation is based on a directed graph, in which one of the nodes has

no incoming edges - this node is called the environment; all of the other nodes are called

3 The ordering of the messages is
First-In-First-Out.

4 It acts as such to the rest of the graph.



the 'internal nodes'. The environment may send a message to one or more of its successors

in the graph. This message is sent only once. The internal nodes may send messages to

their successors only after their first message has been received.

An engaged node is a node not in its neutral state, i.e., it has received at least one

message and has not returned signals for every message received.

The edge from p,- to p;- is an engagement edge if py is a neutral node and p, is the first

process to send py a message.

1.7. Tools for Distributed Algorithms

Raynal [RAY88b] suggests three tools which can be used to implement fully distri

buted algorithms:

1. the use of markers or tokens

2. logical clocks

3. sequence numbers for messages.

Although there is no designated process as detector, when a marker or token is used,

the detection of termination is restricted to the process which holds the token. The token

is initially placed by the compiler. In effect, the only process that can initiate a probe is

the process holding the token. The token is passed along until the probe is falsified - i.e., an

active process is found. A new probe is then issued by the process holding the token when

its bf becomes true. When a process receives the token containing its own probe unfalsified,

then termination is detected. There are several ways of guaranteeing that this will happen;

5 p: may go from neutral to engaged and back to neutral. When py goes neutral it has no

engagement but it may become engaged again with the same (or a different) process and

have the same (or different) engagement edge.
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Arora and Sharma [AROR83] offer one solution.

Events occurring in a distributed system are sometimes difficult to order. Lamport

[LAMP78,558] discusses "the happened before
relation"

and gives a distributed algorithm

for extending it to a consistent total ordering of all of the events in the system. The result

of this algorithm is the concept of a distributed logical clock. Abstractly, "a clock is just a

way of assigning a number to an event, where the number is thought of as the time at

which the event
occurred"

[LAMP78,559]. A clock for each process may be implemented

by a counter which is used as a timestamp for events. The clocks may be synchronized

within the system whenever a message is sent. Each message contains a timestamp. The

receiving process increments its clock (counter) to be whichever is greater - its own time

(represented by its counter) or the time (represented by the timestamp) of the message.

This method of synchronization can also be used when real clocks are used. Since no

two clocks will run at exactly the same rate, they will tend to drift further and further

apart. A resetting of clocks through comparison of times whenever a message is received is

sufficient to order the events in a system. Apt and Richier [APTR85] offer several solu

tions for virtual clocks derived from solutions which assume real clocks.

The third tool, sequence numbers on messages has none of the problems of the previ

ous tools. With the use of sequence numbers, each process manages a counter. The

counter is initialized to zero and increases monotonically. Whenever a message is sent out,

the current sequence number is incremented and the new sequence number is attached to

the message. The counter at the site of each process is used only for messages which it

sends.

When a control message is returned to the sender, the sender can verify that no cc

11-



have been sent more recently by comparing the current sequence number with the

sequence number attached to the incoming message. A more recent cc has not been sent if

they match.

Processes receiving a message from another process can verify that it is a new message

(rather than a duplicate) if the sequence number is not a duplicate of the sequence number

attached to other messages received from that process.

If sequence numbers are used, any process may initiate a probe at any time. In addi

tion, the overhead of logical clocks is non-existent. However, as a result, it is possible that

all processes may have a probe in the system at the same time. Some method must be

used to eliminate unnecessary probes to reduce the number of cc. None of the synchro

nous distributed solutions make use of sequence numbers; however, we will see them in

Arora's [AROR87] asynchronous solution.

Arora and Sharma [AROR83] offer a construct which illustrates how 6,-
may be set.

The programmer is given two new statements: set and reset. Both of these statements

take a variable number of boolean parameters. If all of the boolean expressions of the set

statement are true, the process is passive and 6, is set equal to true. If all of the boolean

expressions of the reset statement are true, the process is active and 6, is set equal to false.

It is not clear if the assignment to 6, is implicit to these statements or must be done expli

citly by the programmer. In either case, the programmer is expected to add these state

ments to his distributed program in the appropriate places.

6 Arora uses the term stable to mean passive.
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1.8. Network Definitions

A spanning tree contains all the nodes in the network and some collection of edges so

that there is exactly one path between each pair of nodes; it is inherently acyclic.

A Hamiltonian ring is a cycle in which each node is visited exactly once. Thus each

process has a successor on the cycle to which it can forward a message and a predecessor

from which a message can be received. A Hamiltonian ring for the cc is sometimes super

imposed on the system. Sometimes the term circular directed graph CDG is used instead.

In a broadcast network there is a single communication channel shared by all of the

nodes in the network. Inherent in broadcast systems is that all messages sent by any node

are received by all other nodes. Something in the message itself must specify for whom it

is intended. After receiving a message not intended for itself, a node just ignores it.

In this paper, the term arbitrary network will be used to indicate that the network

structure is not specified.

Two nodes are neighbors if they are directly adjacent, i.e., they have a direct com

munication line.

The diameter of a network, D, is the greatest distance between any two nodes in the

network and the distance between any two nodes is the shortest path between them. The

authors of the presented distributed termination algorithms do not define the method used

for computing the distance between two nodes; however, this author has found that the

number of hops between nodes covers most cases. When computing the time and message

complexities, this author uses the
number of hops.

In a weakly connected network with directed edges, there exists a cycle, not
neces-

7

sarily a simple cycle,
which includes every edge of the network at least once. In a strongly

7 For any p,-, py
there is either a path p, - p; or p;

- p,-, but not necessarily both paths.
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connected network with directed edges, removal of any one edge between any pair of nodes

maintains connectivity.

1.9. Assumptions

There is one assumption made for all of the algorithms: The underlying computation

P is written in such a way that it will always eventually terminate and therefore, each
p,-

8
will also terminate - deadlock will not occur in the computation itself. Initially, the algo

rithms we consider will assume that all channels of the network are reliable: they do not

alter messages, lose them, duplicate them or desequence them, later we will relax this res

triction to some extent.

1.10. Restrictions

Francez suggests the following criteria for an ideal solution for the detection of termi

nation in P [FRAN80,44]:

1. The required solution is independent of the specific problem P is trying to solve.

2 The control communication is inserted into the solution for P with the smallest

possible additions to the basic communication.

3. The solution is independent of the number of processes, n, into which P is broken

up.

4. The solution is independent of the specific neighborhood relationships holding

among the p,'s.

8 This assumption must be made because whether or not a process will terminate is

generally an undecidable problem.
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5. The solution does not require new communication channels, i.e. the cc use the

same channels as the be.

1.11. Formal Definition of Termination

We can summarize our discussion as follows. The application P consists of a group of

communicating sequential processes, p,-, i = l...n, which execute in parallel in a distributed

environment. Control code is added to the p,-
so that termination may be detected. These

processes communicate with each other only through exchange of messages. Each process

has a local predicate, 6,-, i l...n, to represent its local condition for termination. When

the conjunction of all of the 6,'s is true at the same time instant, the global predicate, B,

representing the GTC is also true and all of the processes may terminate. Note, distributed

termination "is actually a deadlock situation where all processes are ready to accept but

none is willing to initiate [FRAN82,288]. Therefore the control code is

used to recognize this deadlock situation as a readiness to terminate.

1.12. Phases of the Termination Problem

The distributed termination problem may be broken into two phases: the detection

phase and the termination phase. The termination phase is trivial, once detection has

occurred, and is not dealt with in this paper nor in the majority of the literature.

Although, strictly speaking, termination occurs only when the termination phase is com

plete, this paper will call the
deadlock situation, where all processes are ready to terminate,

termination.

9 After B has been met, the termination phase consists of the explicit communication to

each Pi to terminate.
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1.13. Computation of Overhead

Overhead can be computed for the termination detection algorithms with respect to

the number of cc. When computation of the overhead requires knowing the total number

of be, this number will be represented by m. There are two cases to consider:

1. The best case is when the initiator of the probe is the last process to meet its &,-

and therefore, as it visits each process, p,-, the detector finds that
p,- has also met

its bt.

2. The worst case is when each process sends only one be (or no be) before meeting

its b{. Then every subsequent be is sent to a process, p,-, whose
6,- has already

been met. When p,-
receives the be it becomes active again.

The overhead includes both control messages needed to enable the detection of termination

and control messages required for detecting termination after it has actually occurred.

The actual overhead of each algorithm must also take several other things into con

sideration. The most important of these is the amount of additional code which must be

executed whenever a be is performed. Also of importance is the amount of extra memory

needed for each process to implement the control code. In a few cases the size of the detec

tion message will also be of importance. In most of the algorithms presented in this paper

the size of the message will remain constant independent of the size of the system. How

ever, in the case where messages are not received in the order sent, the size of the detec

tion message may be dependent on the number of processes in the system [KUMA85]

[MAT87A] [MAT87B]. The algorithm presented by Rozoy [ROZ086] also uses a message

dependent upon the size of the network.

The requirements for a real-time system, an operating system, or a user application
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dictate that no one algorithm is the best solution for all situations. For example a real

time system might require an algorithm which is fastest most of the time, even if it uses a

lot of memory. A user application might be concerned with the control algorithm's effect

on the be and an operating system might need an algorithm which uses the least amount

of memory.

1.14. Perspectives

In this paper, solutions for which the channels have the most restrictions will be

looked at first. Synchronous communication is also more restrictive and therefore will be

considered first. Synchronous solutions can be either centralized or fully distributed. The

centralized solutions more closely resemble a single-processor system and are useful to the

understanding of termination. The fully distributed synchronous solutions offer an oppor

tunity to look at the additional issues involved when the control algorithm is distributed.

Yet, the environment is still very much controlled through the synchronous communica

tion.

Next asynchrony will be introduced. Again there are several centralized solutions as

well as several fully distributed solutions.

Finally some restrictions on the channels will be lifted, e.g., the order of the messages

will not be required to be first-in-first-out. This presents additional problems in the asyn

chronous environment, but cannot happen in the synchronous environment. Both central

ized and distributed asynchronous distributed solutions will be considered when restrictions

on the ordering of messages are
removed.
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1.15. Historical Perspectives

Unfortunately, from an historical perspective these groupings overlap and researchers

borrowed ideas from each other. For example, in a chapter where only algorithms using

synchronous communication are considered, the reader will notice that ideas are incor

porated that may have been developed by another researcher for an algorithm using asyn

chronous communication that will be introduced in a later chapter. In an attempt to make

the actual ordering clearer, a chronological history is given here.

The earliest algorithms were written in 1980. Francez's algorithm [FRAN80] used syn

chronous communication and was based on a spanning tree model, which the programmer

was required to derive. Dijkstra's algorithm [DIJK80] was also based on a spanning tree

model; however, the application itself - a diffusing computation - built the tree and the

communication was asynchronous.

Francez provides further background information in his article on interval assertions

[FRAN81] and an improved version of his first algorithm [FRAN82]. Misra [MISR82] then

merges the idea of a diffusing computation [DIJK80] and Francez's use of CSP [FRAN80].

The literature of 1983 presents four algorithms. Arora [AROR83] and Rana

[RANA83] offer synchronous distributed solutions. Arora's solution uses tokens and a ring

network topology. Rana uses clocks and his results are incorrect. Dijkstra [DIJK83] offers

a solution that uses tokens and a ring topology. Since he does not specify what kind of

communication occurs, only that the
communication facility exists, the algorithm will be

included with the asynchronous centralized solutions. However, the importance of this

algorithm is that Dijkstra also introduces the idea of using invariants to develop the algo

rithm and colors the tokens to represent whether or not a be has occurred. Misra [MISR83]
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applies this idea of colored tokens to the asynchronous distributed situation.

In 1984, Topor [TOP084] merged the idea of a colored token [DIJK83] with that of a

spanning tree [FRAN82].

1985 brought a wide variety of solutions to the problem. Apt and Richier [APTR85]

offered a solution, based on the use of clocks, for the synchronous distributed case that

uses a ring topology. Richier [RICH85] also offers a very complicated solution for the same

case, also using a ring. There is a minor error in this algorithm: one of the variables never

"gets set". It does not use clocks; however, a boolean variable replaces the idea of colored

tokens. Szymanski [SZYM85] offers an algorithm for the asynchronous distributed case.

However, it is specific for his application which must be synchronized. Strictly speaking,

he does not solve the distributed termination problem as defined by Francez [FRAN80].

Finally Kumar [KUMA85] offers several algorithms for the asynchronous distributed case

which lift the restriction of maintaining the ordering of messages in the send/receive pro

cess.

1986 brought many possible solutions; however, most of the researchers presented

them in conjunction with an idea they considered more important, i.e. the algorithms were

an afterthought used to illustrate their point. Apt [APT86] offers a synchronous central

ized solution for a ring topology. However, his real purpose is to introduce correctness

proofs for termination algorithms that use CSP. He uses his algorithm to show how a

proof may be done. Rozoy [ROZ086] offers an asynchronous centralized solution based on

a finite state machine model. However, her real prupose is to introduce a theorem on the

bounds for the cc in any asynchronous algorithm. Skyum [SKYU86] introduces an algo

rithm for the asynchronous distributed case that assumes a strongly connected broadcast

- 19



network. However, his application also requires synchrony and Francez's termination

problem is not solved. Arora [AROR86] offers an asynchronous distributed algorithm

based on information a process has about its neighbors. However, it is incorrect according

to Tan et al [TAN86].

In 1987, we have several incorrect algorithms. Chandy [CHAN87] offers a mathemati

cal proof for the verification of termination detection. He assumes the existence of a distri

buted snapshot and proves that tennination has/has not occurred based on the snapshot.

Arora [AROR87] presents an algorithm for the asynchronous distributed case that uses

sequence numbers and the distance function. This author finds the algorithm to be

incorrect due to the fact that it does not take into consideration all of the possibilities for

behind the back communication. Hazari [HAZA87] presents an incorrect synchronous dis

tributed solution because the algorithm does not take "into account that passive processes

may be reactivated by communications from processes that are still [TEL87]. Fer

ment and Rozoy [FERM87] present ideas relative to the problems which must be sur

mounted in the asynchronous case. Mattern [MAT87A] [MAT87B] presents several algo

rithms in the Kumar strain for the asynchronous distributed case where the ordering of

messages is not maintained.

1988 brings several solutions for the asynchronous case. Arora [AROR88] offers a cen

tralized solution for a ring. The solution is quite complicated due to the fact that he has

previously presented incorrect solutions and been called on it in the literature. Haldar's

solution [HALD88] is based on Arora's [AROR87] [AROR83] and is simpler although it

uses the same concepts of a distance function and sequence numbers. Tel and Mattern

[TELM89] prove that this solution is incorrect. Arora and Gupta [AROG88] dispute Tan

et al's criticism [TAN86] of their 1986 algorithm [AROR86] and present an augmentation
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of the algorithm which this author believes is still incorrect. Eriksen [ERIK88] presents a

solution for the distributed case on a ring topology. The only information each process

needs to know is the upper boundary on the number of processors in the network. Huang

[HUAN88] offers a distributed solution which uses logical clocks. The algorithm is

described in a general fashion for use with any topology. The reader would have to adapt

the algorithm to the particular network topology used.

This author was only able to find two articles in the literature for 1989 - both by

Arora and Gupta. In the first article [AROG89], they present a framework for deriving

ring-based termination algorithms. It appears to this author to simply be a generalization

of algorithms previously presented by these authors and as such will not be discussed in

this paper. The second paper [AROR89] introduces three algorithms which employ bi

directional control communication around a ring. One is for the asynchronous centralized

case and the other two are for the asynchronous distributed case.

1.16. Summary

This chapter gave the reader an overview of the contents of this paper. It contained a

formal description of the termination problem and an overview of its development. All

terms that are used in this paper were defined here. Finally the logic behind the ordering

of topics and a historical perspective were presented in order to clarify some of the overlap

ping topics.
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2. SYNCHRONOUS CENTRALIZED SOLUTIONS

2.1. Introduction

This chapter will begin the analysis of synchronous centralized solutions by looking at

the issues involved in declaring termination for this case. It will also make explicit the

assumptions used in each of the algorithms presented. It will then look at the algorithms

written to solve this version of the problem and finally analyze the overhead involved in

each case.

2.2. Issues

Centralized solutions have the advantage that they make the issues in termination

clear, because they are not clouded by the issues in a truly distributed system.

One of the most basic questions is what conditions are sufficient to determine that a

computation P is completed and therefore can terminate. The obvious answer is that all p,-

have satisfied their local 6,-. However it turns out this is not a sufficient condition.

For instance, consider a computation P, which consists of three processes px, p2, and

p3, connected in a ring. Suppose processes pj and p2 are passive, the detector has visited

them, and knows that they are passive. Suppose also that p3 is active. Before going pas

sive P3 sends one final be to p2, causing p2 to become active. When the detector visits

p3, it is passive and the detector assumes
termination - all processes are passive. However,

this is incorrect because p2 is currently active. This is an example of behind the back com

munication. Any correct termination algorithm will have to be able to detect all possible

cases of behind the back communication.
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2.3. Assumptions

At this point, the assumption that all channels of the network are reliable holds. In

addition all messages are received in a relatively short, finite amount of time, and both

send and receive are blocking operations.

2.4. Solutions Using a Tree Topology

Many of the early synchronous solutions assume a network with a tree topology

superimposed upon it for the control communication. In the earliest solutions the tree has

to be derived by the programmer who knows the TDS for each process. There are three

solutions of this type. The first published algorithm is written by Francez [FRAN80]. This

algorithm is extremely cumbersome and freezes the be of the computation; however, it

illustrates the issues involved. The second solution, also by Francez [FRAN82], eliminates

freezing of the computation and is somewhat more efficient. The third solution, written by

Topor [TOP084] borrows from Francez [FRAN82] and Dijkstra [DIJK83]. The result is

clearer than Francez but efficiency and overhead remain the same as Francez's algorithm

[FRAN82]. There is also a solution, which uses a tree topology, that does not require the

programmer to derive the tree. Misra [MISR82] uses the diffusing computation, as intro

duced by Dijkstra [DIJK80] for his underlying application. The diffusing computation

builds the tree for him.

Francez assumes the network is represented by a weakly connected, directed com

munication graph, Gp, containing one node for each p,. A second graph, Tp is derived

from Gp and reflects the termination dependencies within P. Tp is also a weakly con

nected, directed
graph. The strategy is to arrange the dependencies among the p, such

that Tp will be acyclic (a spanning tree). (If Tp contains a cycle, deadlock situations
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could occur.) After the spanning tree is derived, one process, the root, is assigned the job

of detector. The algorithm works as follows:

1. When the root of the tree reaches its final state, i.e., its 6, is met, it initiates a

control wave to its descendants in the tree.

2. When the wave reaches a node, it does the following:

If the node has satisfied its local predicate, be is frozen (this prevents behind

the back communication) and the wave is passed down to all of its descen

dants.

If the node has not satisfied its local predicate, the wave is stopped and a

negative response is passed back up.

3. When the wave reaches the leaves it is passed back up to the root as follows:

If all of the nodes in p,'s subtree have satisfied their local predicate, pass a

positive response up to p,'s parent.

If p(, or any node in its subtree, has not satisfied its local predicate, pass a

negative response up to p,'s parent.

4. If the root receives a positive response, it initiates termination. If the root

receives any negative response, it propagates an 'unfreezing
wave'

so that basic

communication may resume. When this wave is received by the leaves they ini

tiate a fourth wave. This wave may pass a node which has not met its local

predicate only after that node performs one basic communication. This prevents

the possibility of an endless control loop. Only when the root receives this fourth

wave may it initiate another control wave to detect termination.

Notice that a cc may be received only when the process is waiting for a be; however,
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once enabled, cc is insistant.

The overhead in the best case is 2ra where n is the number of processes in the system.

In the worst case it is (An * m) + 2n where m is the number of basic communications. In

this algorithm the control code interferes with the efficiency of the execution of the appli

cation itself through the freezing of be.

The resulting algorithm is not efficient and it would be better if the programmer did

not have to derive the spanning tree himself. However, Francez made a large contribution

to the field by defining the problem and exploring the dependencies between the processes

into which the application must be partitioned.

A later algorithm offered by Francez [FRAN82] has a smaller overhead with respect

to the control strategy and does not delay the computation by freezing the be. The con

trol communication is indulgent instead of insistant to further reduce the time consumed

by it and increase efficiency. For this algorithm each node has two additional local vari

ables:

advance initially true, which is set to true whenever a basic

communication takes place

send-w$\ftof children] also initially true, which is set to false to indicate

wave w2 may be propagated down to this child.

The initial idea was to have three waves; however, waves one and three can be com

bined to form the single wave wl-3. The algorithm works as follows:

1 Nissim claims the overhead is 4n*m because he counts the extra cc only until the moment

when termination occurs, but does not count the cc to detect that termination has actually

occurred.
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1. Wave wl-3 is initiated by the leaves as their local predicates, 6,, become true.

The current value of advance is passed up to the parent, the variable advance of

the leaf is then set to false, and the node sits and waits for a message from any

other process, although it may not initiate any communication unless it receives

a communication first.

2. When wave wl-3 is received by an internal node, it may propagate it up to its

parents when the following conditions are met:

1. It has received the wave from all of its children

2. Its local predicate &, has been met.

It sends the
'or'

of all of the values of advance of its children 'or'ed with the local

value of advance. It then resets its own advance to false.

3. When wave wl-3 is received by the root from all of its children, it checks the

accumulated value of advance. If the value is false it initiates termination. If the

value is true, some process has had a communication since the last wl-3 (and is

therefore active) and the computation may not terminate.

4. Wave w2 is then propagated down. The root first sets send-w\j\ to true for all

of its children, j. Then indulgently, it sends w2 to each child j, resetting send-

wS[j\ to false as w2 is sent. Upon receiving w2, each internal node, indulgently,

also sets send-w2[j\ to true, sends the wave to all children j and resets send-w[j\

to false.

5. Upon receipt of w2 by a leaf, it may re-initiate wave wl-3 as soon as its local

predicate
6,- becomes true.
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Francez removes the delay of be in favor of cc through the allowance of indulgent cc

and the addition of the variable advance. The number of control communications for this

2
algorithm, according to Francez, is reduced to 2n*m + n in the worst case (from

4n * m + 2n) where m is the number of basic communications and n is the number of

3
processes. The best case is now Sn. However, the programmer is still responsible for

deriving the spanning tree.

The third algorithm using a spanning tree is Topor's. Dijkstra [DIJK83] introduces

the idea of colored nodes and colored tokens. Topor borrows this concept to replace the

accumulated values of the variable advance in Francez's algorithm. The algorithm works

the same as Francez's [FRAN82]; wave wl-3 passes a node under the same conditions;

however, the
'color'

of the node determines the 'response'.

The algorithm is developed by defining an invariant composed of the following predi

cates:

RO: All nodes which have passed the token on are passive.

Rl: Some node which has passed the token on is black.

R2: The token is black.

The resulting invariant, which must hold true at all times during the computation is: RO or

Rl or R2.

The algorithm makes use of the following rules [TOP084,34-35] to keep the invariant

while passing the token up through the
nodes to the root:

2 actually 2(n
-

1) * m + (n -

1)

3 Wave wl-3 will never cause a termination the first time.
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Rule 0: A passive leaf that has a token transmits a token to its parent; a passive

internal node that has received a token from each of its children transmits

a token to its parent; an active node does not transmit a token. When a

node transmits a token it is left without any tokens.

Rule 1: A node sending a message becomes black.

Rule 2: A node that is black or has a black token transmits a black token, other

wise it transmits a white token.

Rule 3: A node transmitting a token becomes white.

Rule 4: If node 0 (the root) has received a token from each of its children, and it

is active or black or has a black token, it becomes white, loses its tokens,

and sends a repeat signal to each of its children.

Rule 5: An internal node receiving a repeat signal transmits the signal to each of

its children.

Rule 6: A leaf receiving a repeat signal is given a white token.

This algorithm produces an overhead which is the same as the overhead for the algo

rithm of [FRAN82]. The use of a token to replace the disjunction of the variable advance is

easier to understand; however, it appears nothing has been gained, except to combine the

ideas of the two algorithms.

Misra's algorithm [MISR82] is an adaptation of Dijkstra's diffusing computation

[DIJK80] using asynchronous communication to the synchronous case. The reader is

advised to read and understand Dijkstra's algorithm before trying to understand Misra's.

4 See section 6.1 for an explanation of Dijkstra's algorithm.
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Misra's problem is different from Dijkstra's because in the CSP implementation "the

sender is unable to determine locally whether it can ever send a message, because that

depends on the state of the receiver as [MISR82,38].

Each process, p,-, keeps an activity graph that contains a list of all the processes, py,

that have sent p,-
messages and a list of all the processes p* to whom

p,- has sent messages.

The py are the arc predecessors of
p,-
and the p^ are the arc successors of p,-. Whenever a

be is sent from pt- to py an activity arc is created and maintained in the activity graph. If

prior to receiving a message from p,-, py is disengaged, then two activity arcs are created.

Arc (ij) is called a tree arc and arc (j,t) is a non-tree arc. The tree arcs build the span

ning tree which Francez required the programmer to derive. If a process is already

engaged, it is unclear if one or two non-tree arcs are created.

In addition each process, p,-, also maintains several variables:

r,(i) a boolean variable for each neighbor pj

ry(i') true indicates that py thinks
p,- is waiting to receive from

Pi

sAi)
a boolean variable for each neighbor py

s,(t) true indicates that pj thinks
p,- is waiting to send to pj

thinkblocked(i) true denotes that:

1. pi is not executing

2. for every process py that p,- is waiting to receive

from, Si(j) is false
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3. for every process p* that p,- is waiting to send to,

ri(k) is false.

Note: thinkblocked(i) denotes only whether or not p, thinks it is blocked; the r,()s and

s,()s may be inconsistent with the true waiting status of the neighbors of p,-. Misra

contends that this inconsistency does not affect the correctness of the algorithm.

Two methods of signalling control messages are now superimposed on the computa

tion. The A-signals delete a single activity arc by updating the activity graph. The B-

signals are used by the process, p,-, to inform a neighbor, py, that
p,- "has changed its wait

ing status (from waiting-to-send/receive to not-waiting-to-send/receive or vice

[MISR82,39] for py.

Non-executing processes are always waiting for A- and B-signals. Therefore, there is

no blocking for signal transmission. The authors do not mention what happens in the case

where a signal is sent to an executing process. Because of the definition of CSP, this is suf

ficient cause for the algorithm to fail. The authors offer the following rules to govern the

transmission of signals:

Rule 1: (waiting condition for transmission of B-signal). Process p, waits to send

a B-signal to process pj if and only if r;() or Sj(i) is inconsistent with

process Cs true waiting status. (Note that i can deduce ry(t') and sy(t')

from the B-signals that it has already sent.)

Rule 2: (waiting condition for transmission of an A-signal to delete a non-tree arc)

Process p, waits to send an A-signal to process py, where (j,i) is a nontree

arc, if thinkblocked(i) is true.
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Rule 3: (waiting condition for transmission of an A-signal to delete a tree arc)

Process py waits to send an A-signal to process p,, where (ij) is a tree arc,

if and only if:

1. thinkblockedfj) is true

2. there is no other incident (i.e. outgoing or incoming) activity arc on

process j

3. process py has ensured (by sending appropriate B-signals) that, for

every neighbor p*, rk(j) and s^j) truly reflect the waiting status of

process py.

It is not explicitly stated in the paper, but this author assumes that when a be is sent

two arcs are always created. Then when one of the processes sends the A-signal (and it

should be the receiver if this algorithm is to mimic Dijkstra's) then both
"arcs"

are deleted

because the activity graph is updated. In the case where one tree arc and one non-tree arc

are created, the A-signal can only be sent by the receiver of the be because that process is

the only one which can delete the tree arc. This is a real fuzzy area in Misra's presenta

tion of the algorithm.

The computation is started by the environment; A-signals are sent for the same rea

sons as in Dijkstra's algorithm [DIJK80] - to help the receiving process keep track of the

number of messages received. B-signals are sent as needed, by process
p,- to process py to

inform Pj of p,'s
wish to rendezvous or not.

The control overhead for this algorithm consists of the total sum of the A- and B-

signals. In the worst case, B-signals are sent by one process to all of its neighbors every

time a message is sent. This could be as many as m * n cc if all nodes are connected to
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every other node in the network. In addition m A-signals are sent - one for each be sent.

This gives a total of m + m * n cc. The additional memory overhead would be quite sub

stantial in this case. Each process would have 2 * n + 1 boolean variables, for a total of

2 * n +n. In addition each process would have two arrays - one for its predecessors and

one for its successors. Since it is possible for a process to be on these lists multiple times,

the total amount of memory used in the system for the lists would be 2m. Each be would

have additional overhead as well - both the A-signal and one or more B-signals, as well as

some method of keeping track of whether or not the receiver of the be is already engaged.

The amount of overhead for Misra's algorithm is substantially higher than the overhead for

the other tree topologies that we've looked at. In chapter 6, where Dijkstra's algorithm is

introduced, the reader will find that Dijkstra's algorithm also has a much lower overhead.

2.5. Solutions Using a Hamiltonian Cycle

When a Hamiltonian ring is used for the cc, the restriction not to add new channels

for the control communication is released, i.e., a process,
p,-
which may not send a be to py

may send a cc to pj. There are two centralized solutions using a Hamiltonian cycle which

we will look at. Essentially they are the same, although they use different methods to keep

track of communication between two probes.

Francez [FRAN81] introduces the idea of an interval assertion implemented with logi

cal clocks. An interval assertion
(TK

, TL, B) where
TK

<
TL

is defined as "true if B

holds during the entire time interval
[TK

, TL) and false [FRAN81,283]. A

sequence of sets of time instances T1, T2,... are chosen dynamically such that
Tk

=
{t*

|

0 < i < n) and max
* < min t-+1. At time

tf+1

the
ith

process, p makes a local test in
'

0<i<n 0<i<n

order to verify the interval assertion af
= (*, *?+1, &,) The truth value of the interval
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assertions for all the p, is collected by one process. If all the a!- are true, then
{a*

| 0 < i <

n} is a set of true local interval assertions which covers (max tk{, min rj+1, B). If any
0<i"<n 0<<n

are false then the process can start a new set of tests.

Francez uses this idea of interval assertion along with the following three additional

variables for this control algorithm:

6c,: true if 6, is true and no be has occurred since 6, first became true in this time

interval, otherwise false

county counter for the control messages which acts as the upper end in the time

interval assertion

dbii a copy of counti at the time
6c,- last became true - it serves as the lower end

of the time interval in the interval assertion

The algorithm works as follows:

1. Process p0 is chosen to be the detector. It initiates the detection wave when its

bci becomes true. Each receiving process passes the wave on when its 6c,- is also

true. The first wave around the ring will always fail.

2. Now all processes have the start
'time'

for the interval assertion,
d6,- = 0, and the

current
'time'

counti
= 1. Any process which is activated will not be able to

pass the wave on until 6,- becomes true again; however, then <f6,-

< counti wm nt

hold and the wave will contain the value false.

3. When po receives the wave it may terminate if it is true or initiate a new wave if

it is false.
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5
The overhead for this algorithm in the best case will be 2n. In the worst case it is

n * m + n. However, there is additional overhead to keep track of the 'time'. The point of

interest is that although few researchers reference this work, the concept of interval asser

tions, as introduced here, is the basis for all methods of detecting termination. Some

attempt must be made to keep track of any communication which occurs between probes -

whether it be an explicit interval assertion or the colored token used by Dijkstra [DIJK83]

or any of the more complicated methods to be described later.

The main purpose of the paper presented by Apt [APT86] is to present a method for

7
doing correctness proofs on CSP programs that are in normal form. He introduces the cri

teria for a correct solution (presented in chapter 1) and presents a very simple algorithm

for the sole reason of showing how to do a correctness proof. This author does not believe

that an analysis of Apt's proof method will aid the reader in gaining understanding of the

distributed termination problem because it is useful for such a restrictive set of CSP pro

grams. Therefore, we will look at the algorithm that is offered, but not the correctness

proof for it.

Apt claims his algorithm is based on Francez's interval assertions [FRAN81] and

Dijkstra's colored tokens [DIJK83]. He has taken the idea that the algorithm must keep

track of any be taking place during any given time span. The method he uses to do this is

5 The token must traverse the ring at least twice. The first time it finds the 6, of all of the

processes to be true. The second time it guarantees that the 6, of all processes remains true

- no behind the back communication has occurred.

6 In the worst case every be causes a falsification of the probe. Then the probe must

continue its traversal of the ring to reach the detector. One final probe must be sent to

guarantee that termination has occurred.

7 A CSP program in normal form is defined as follows:

p = [Pl || ... || p] where for every i, 1 < i < n,
p,- :: initj : *[5'1] and 5, is of the form O gu

-+ s^-
and

1. each j,;y
contains an I/O command addressing py

2. none of the statements
nt,- or s,y contain

an I/O command

34-



a boolean variable that is just an implementation of the colored token idea.

Each process maintains the following variables:

sendi true when process, p,-, holds the probe and has not passed it on yet

false when process, p,-, does not hold the probe

movedi true when a be has taken place

set to false whenever the probe has been passed to the right-hand side

neighbor, it remains false as long as no be occurs

The algorithm works as follows: px sends a probe with a value of true to its right-

hand side neighbor when its 6j becomes true. Each process maintains its copy of movedi

based on whether or not a be has occurred. When the probe arrives, if movedi is still false,

then the probe is passed along unchanged. If movedi is true, the probe is falsified and then

passed along. Once the probe has become false, it does not become true again. When it

returns to the detector, pi, termination will be initiated if the probe is true. If the probe is

false, pi will initiate another probe whenever px's 6X is true.

Notice from the code for the algorithm, contained in the appendix, that px, the initia

tor, does not contain the variable moved. This is because pi does not initiate the probe

until its bx has been met; therefore, any be reaching px from p, will cause the probe to fail

when it reaches p,-.

The control overhead for this algorithm will be 2n in the best case and n*m + n in

the worst case for the same reasons as in Francez's algorithm [FRAN81]. The memory

overhead will be 2 booleans per process for a system-wide total of 2n 1 boolean variables.

The only addition to the
be is to set a boolean variable to true.
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2.6. Summary

In this section we looked at algorithms which designate one process as the detector for

termination. Some of the algorithms make use of a tree topology, derived by the program

mer, for both be and cc. Others use a Hamiltonian ring as the topology for the cc, although

the communication channels for the application could be quite different.

In table 2-1 it is easy to see that the algorithms based on a Hamiltonian cycle have

half of the cc control overhead of the spanning tree topologies in the worst case. In the

best case, the cc overhead for a ring is the same as that for a tree.

Algorithm Additions to

be

Best Case

Overhead

Worst Case

Overhead

Additional

Memory

TREE TOPOLOGIES

[FRAN80] no 2n 4n * m + 2n < 4n 3 booleans

[FRAN82] set advance = T 3n 2n * m+ n < n int constants

< n integers

< 4n 3 booleans

[TOP084] make node black 3n 2n*m+ n
2

< 5n booleans

[MISR82] send A-signal

send multiple

B-signals

mn + wi no upper

bound

<
2n2

+ n booleans

2m integers

RING TOPOLOGIES

[FRAN81] set 6c, = F

[APT86] set movea\
= T

2n

2n

n*m+ n

n * m+ n

2n booleans

2n integers

2n booleans

These are totals for the system, rather than for individual nodes.

This author assumes that color can be implemented as a boolean.

Table 2-1

Except for Francez's first algorithm [FRAN80], all of the algorithms require at least
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one additional statement any time a be is sent. This statement is an assignment to indi

cate a be has taken place; it prevents behind the back communication. Except for Misra's

algorithm, the algorithms are equal in terms of additional overhead for the be.

The table shows that the tree topologies require much more memory than the ring

topologies. The main reason for this is the boolean arrays which contain information to

keep track of whether or not the wave has been propagated to a child and the children's

responses. Apt's algorithm requires the least amount of additional memory.

Overall it would appear that Apt's algorithm has the lowest overhead. The spanning

trees, by their very nature will always have communication bottlenecks getting to the root.

The ring topology does not have this problem; however, it also has only one process which

may initiate and detect termination. Much of the substantial overhead for Misra's algo

rithm is a result of attempting to convert an algorithm which is simple for the asynchro

nous case, to the synchronous case. Given a choice, this author believes it would be better

for the programmer to derive his own spanning tree than to use a diffusing computation in

the synchronous case.

When a specific process is designated as the detector, the control code which is added

to each process cannot be symmetric. In the case of the spanning tree there is control code

for the root, internal nodes, and leaves. In the case of the ring there is code for the detec

tor and code which can be used by all of the other nodes. We would like to have a termi

nation detection algorithm that eliminates these bottlenecks and has code which is sym

metric, i.e., the same for every process. The distributed solutions can solve this problem.

-37



3. SYNCHRONOUS DISTRD3UTED SOLUTIONS

A distributed system provides an environment within which the user is able to spread

the processing needs of a program over several processors. If it is to be effective, it cannot

be controlled by a single processor. - This would reduce it to a centralized system, with all

of the bottlenecks contained therein. However there are situations in which individual pro

cessors are required to know the global state of the system, e.g., the distributed termina

tion detection problem. Methods must be derived to enable each processor to learn the

state of the entire system. This chapter introduces the earliest attempts to do this.

3.1. Assumptions

The assumption that all channels are reliable continues to hold. In addition messages

are received in a relatively short, finite amount of time, although both send and receive

block. The restriction that no new channels may be added for the control communication

is lifted. All of the synchronous distributed solutions assume the existence of a Hamil

tonian ring, or circular directed graph (CDG), for the control code.

3.2. Issues

There are three published synchronous distributed solutions which are incorrect.

These are of interest because they illustrate the kinds of situations which must be

guaranteed not to occur for an algorithm to be correct. Rana [RANA83] proposes an early

solution that assumes the existence of synchronized local real clocks. He describes the

change in method from a centralized solution as follows:

Although an arbitrary process may initiate a detection wave, eventually the last

processes to satisfy their local predicate would succeed in detecting the termina

tion and thus be responsible for initiating the termination wave. [RANA83,46]
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There are two errors in the algorithm that are due to code which does not take all of the

properties of CSP into account. The biggest problem is the possibility of deadlock if all

processes satisfy their
6,-
at the same time instant. It is possible that everyone will be try

ing to send, and no one will be waiting to receive. In addition, the code is written such

that, once
6,- is satisfied, more than one probe will be sent out. This just adds to the

deadlock possibilities as well as adding needlessly to the control overhead.

The algorithm of Hazari and Zedan [HAZA87] is an example of a mistake easily made.

They present code in the programming language Occam for both phases of termination.

In order to guarantee that communication will not be attempted with a terminated pro

cess, they guarantee that initiation of a termination wave will only occur once. However as

Tel et al [TEL87] point out, they also allow initiation of a detection wave to occur only

once by each process. - This is not the definition of the distributed termination problem.

Once a process
p,- has initiated a probe, if it becomes active, via a behind the back com

munication, it may not initiate another probe once its 6,- is met again. If all processes are

reactivated after initiating a probe, when the GTC is finally met, there will be no process

which can detect termination. This algorithm is also incorrect because as Tel et al

[TEL87] point out, it detects false termination. When a ring is used, to receive your own

probe back is not a sufficient condition to ensure termination. The algorithm by Francez

[FRAN81] from the previous chapter is an illustration that two complete cycles are needed

to guarantee proof of termination.

The algorithm of Richier [RICH85] is an example of 2 careless errors. The actual

detection of termination depends upon the knowledge that the variable
'known'

has the

1 Jones, Geraint, Programming in Occam, Englewood Cliffs N.J.: Prentice Hall

International, 1987.
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value true. The author neglects to set this variable to true; however, the reader can assume

where this statement should be put. In addition all probes verify that the count last seen

is the same as the current count carried by the probe. However, processes that initiate a

probe never set this value. The variable kcount should be set to 0 when variables are ini

tialized. The author allows each process to initiate one detection wave only. This gen

erates a maximum of n tokens. As a token is received by process p,-, the information it

contains is stored until p,'s 6,- becomes true. At that time, the accumulated values of all of

the tokens received will be passed on as one token. It is possible to end up with only one

token in the system.

This algorithm has considerable overhead. The algorithm requires memory for five

booleans and one integer at each node. Whenever a be occurs, three booleans must be set

to false. In the best case ,
there will be

n2

cc. In the worst case, n 1 + 2nm cc could be

sent out. This algorithm is unnecessarily complicated in this author's opinion.

3.3. Solution Using Tokens

Arora and Sharma [AROR83] introduce a distance function in addition to the token.

This function gets the distance between two nodes from a pre-defined table which resides

at each node and is transparent to the programmer. There are two additional variables:

T a local boolean which represents whether or not the token is at this process

FP a local variable that represents a process that has had a communication from

this process and is the farthest away (initially set to nil)

2 After the first p, becomes true, each of its successors meet their
6,- just after the probe is

received.
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The token has the name PN. The token is given to some process, p at random by the

compiler and PN is initialized to p,'s predecessor.

The algorithm works as follows:

1. Whenever any process does a send as part of its be, if its FP = nil then FP is set

to the id of the recipient of the be. If FP is not nil the distance function is

invoked and FP is set equal to the process farther away - the recipient of the

message or FP.

2. When a process is passive and holds the token, the token is passed on as follows:

if passive then

if FP = nil then

if PN = this process then

initiate termination

else

pass the token to the next process in the CDG

else

begin

if dist (FP) > dist (PN) then
PN := FP;

FP :=
nil;

pass token to next process in the CDG;
end

By changing the process name associated with the token if the inequality holds between

FP and PN, behind the back communication is detected. The control code for this algo

rithm does not interfere with the be; however, the distance function must be called each

time a send is executed. This will add time to the computation. Although the authors do

not compute the control overhead, this author believes the overhead for control messages

in the best case will be n or 2n 1. The overhead in the worst case is m*n where m is

3 Each node will be stable when the token reaches it; however, the token will have to make

one complete loop before FP nil for all of the processes. If the FP of each node is its

predecessor, the token will have to make a second loop and will detect termination when it

reaches the initiator's predecessor. If the FP of each node is its successor, one loop suffices

and FP equals PNwhen it reaches the initiator and best case is then n.
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the number of messages in the computation. This is about the same overhead in the best

case as in the algorithms by Francez [FRAN81] and Apt [APT83] from the previous

chapter and in the worst case it is better by n messages. The overhead for calling the dis

tance function is not considered in these numbers.

3.4. Solutions Using a Logical Clock

Apt and Richier develop an algorithm using a ring topology and logical clocks. We

have already seen the use of logical clocks as a tool by Francez [FRAN81]. Apt and Richier

[APTR85] offer a much fuller explanation and several algorithms for a distributed environ

ment.

Termination detection would be easy if a real global clock could be used. Apt and

Richier describe the mechanism on a ring topology as follows [APTR85,475]:

Whenever a machine turns passive it notes down the current time instant t and

sends to its right-hand side neighbor a detection message with the time stamp t.

The aim of this message is to verify whether other machines were also passive at

the time instant t. If this is the case then termination is detected: at the time

instant t all machines were passive.

This clock is read by each process only through message-passing. The end result is a

bottleneck at the process which controls the clock. Essentially this is a centralized, rather

than a fully distributed, solution.

A better solution would be to use local real time clocks. However, local clocks cannot

be physically synchronized. Lamport [LAMP78] has given us a standard clock synchroni

zation procedure which can be integrated into a termination detection algorithm as follows

[APTR85,490]:

We advance the value clock-timei of the local clock of p, to max(c/ocA;-ttme

time) upon reception by
p,-
of a detection message with the time stamp, time.
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With the introduction of local clocks, determining whether all processes are passive at

the same time instant becomes less "transparent". However, the same effect may be

achieved with a virtual clock as follows:

In each process replace the local tune clock by an integer variable T representing a

virtual local clock. Initialize T to zero. Increment T by one, whenever the clock

is consulted. Synchronization with other clocks is done as described previously.

The resulting solution makes use of the following variables:

ok True if the clock has been read and the process is passive

set to false when a be occurs

ensures reading of the clock value occurs only once when the process becomes

passive

sent true if a probe has been sent

set to false when a be occurs

ensures that sending of a detection message takes place only once during each

period when the process is passive

T the counter used as the virtual clock

count the number of processes which have received this detection message

time the timestamp of this message

fait set to true when count = 2n to enable a process to exit the main loop and

send a termination message.

In this solution the probe must go around the ring twice before termination is detected.

The first cycle synchronizes the clocks and the second cycle checks that no process has

become active since then. Initially ok and sent are false and T is 0.
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The algorithm works as follows:

1. Whenever a be occurs set ok and sent to false.

2. When 6,- becomes true, set ok to true and increment T.

3. If ok is true and sent is false, then initiate a probe with time = T and count = 1

and set sent to true.

4. If 6,-
and ok are true then a detection message may be received.

If its count = 2n then set fait to true and initiate the termination phase.

If its count <2n then

if 6,- is not met then

T = max (time, T)

purge the message

else if 6,- is true then

if the timestamp, time, of the message < T then

purge the message

else if time > T then

increment the count

pass on the detection message

set sent = true

Notice that the algorithm contains a statement which purges the detection message if 6,- is

not met. The value of 6,-
can change because 6,- is dependent not only on variables of

p,- but

also some auxiliary variables.

This author computes the best case cc overhead for this algorithm to be 2n + n 1,

4 All processes go passive in order around the ring in the direction of the cc. Each probe

goes only to its successor before being purged because of time. The last process to go
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and the worst case overhead to be m * n + 2n. The be has the overhead of setting the

booleans ok and sent to false. And each process requires memory for three boolean and

three integer variables.

Apt and Richier develop two other solutions: one allows detection messages to over

take and destroy each other. The other does not purge messages received by an active

process. This author is not convinced that either is a step forward.

3.5. Summary

This section looked at algorithms whose code is symmetric. The algorithms used syn

chronous communication and ring topologies for the cc. Of the three tools for solving dis

tributed problems suggested by Raynal [RAY88B], Arora and Sharma [AROR83] and

Richier [RICH85] made use of tokens, Apt and Richier [APTR85] made use of logical

clocks, and there are no published algorithms using sequence numbers for synchronous

communication.

Table 3-1 illustrates the overhead for each solution. Arora's token solution has a

smaller cc overhead, smaller memory requirements, and a be overhead which is about the

same as the logical clock solution. Richier's token solution allows n tokens to be generated,

but attempts to limit the number of detection messages in the system at any given time.

The end result is that Richier's solution has a very heavy overhead.

passive initiates a probe which detects termination.

5 Each process initiating a probe finds its predecessor active. The probe causes n - 1 cc.

The actual overhead is m * (n 1) + 2n.
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Algorithm Additions to Best Case Worst Case Additional

be Overhead Overhead Memory

RING TOPOLOGY

[AROR83] call dist

function

n m*n n booleans

n integers

[APTR85] set ok = F

set sent = F

3n-l m* n + 2n 3n booleans

3n integers

[RICH85] set known = F
n2

n + 2nm 5n booleans

set turn2 = F n integers

set color = F

Table 3-1

Three algorithms are too few to allow one to draw solid conclusions; however, it would

seem that it is possible for a token solution to require a smaller number of cc than a logical

clock solution. When only one token is circulating through the system [AROR83], the

algorithm is closer to a centralized solution - a process may initiate a probe only if it is

holding the token. If a process, p,, falsifies the probe, the token is held by
p,-

until
p,- is

ready to initiate a probe. The algorithm offered by Richier is more fully distributed

because any process may initiate a probe at any time. One of the problems later research

ers have had to face is that of reducing this overhead when tokens are not used.
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4. ASYNCHRONOUS CENTRALIZED SOLUTIONS

In previous chapters, solutions using synchronous communication have been discussed.

However, in the real world asynchronous communication is the norm. This chapter looks

at the earliest solutions to the termination problem with asynchronous communication -

centralized solutions. Rana [RANA83] suggests two approaches to the asynchronous solu

tion for termination. We will look at solutions using each of these approaches and also at a

theorem which attempts to describe the conditions for termination in the asynchronous

case.

4.1. Assumptions

The assumptions that all channels are reliable continues to hold. We will continue to

assume that termination will actually occur. Send is no longer a blocking operation. In

addition either all be are acknowledged or else message transmission is instantaneous.

Instantaneous communication allows the researchers to avoid the problems of behind the

back communication that would occur if message transmission could take an indefinite

amount of time. A channel is considered empty if all messages have been received along

that channel.

4.2. Issues

Again we ask the question: what conditions are sufficient to determine that a compu

tation, P, is complete and therefore may terminate. In the synchronous case, the sending

process blocked until the receiver was ready to receive. In the asynchronous case, we have

no idea when a message will be received. Yet, we must still guarantee that behind the back

communication will not occur. It will be sufficient if we guarantee that the following two
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conditions are met:

1. For all Pi,
6,-
must be satisfied.

2. All channels between the p,-
must be empty.

In order to guarantee that these two conditions have been met, we are saying that all

processes must be passive at some time instant and that all of the channels must be empty

of be at that same time instant. In the asynchronous case, we know that if all of the 6,-
are

true, behind the back communication can not happen when all the channels are clear, since

an empty channel implies that all be have been received. In the centralized case, again one

process is responsible for declaring termination.

K. Mani Chandy [CHAN87] presents a theorem which is meant to illustrate the prin

ciples involved in the asynchronous distributed termination situation. Chandy describes a

distributed system, presents two invariants, proves them, and finally states a theorem

which follows from them. His description of the system agrees with everything we've seen

so far. Chandy's theorem requires that each process record its state at most once. This

distributed snapshot is the equivalent of sending out a single probe that visits each process

and returns with the state of all of the processes in the system. Chandy assumes that dis

tributed snapshots may be taken at any time during processing. If the application is not

ready to terminate, a new snapshot may be taken at a later time and the results of previ

ous snapshots are discarded.

Chandy describes a distributed system making use of the following variables:

p the name of a process, p G {pi, p2, ..., p}
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p.fini has this process recorded its state?

p. idle is this process idle?

p.IDLE the recorded value of p. idle

c, 6 the names of channels

c.s the number of be messages sent along this channel

c.r the number of be messages received on this channel

c.S the recorded value of c.s

c.R the recorded value of c.r

e an event in the system

d the set of processes that have recorded their states, i.e. the set of processes

that have become passive at least one time.

The system works as follows:

Rule 1: An idle process with empty incoming channels remains idle.

Rule 2: An idle process does not send messages and any messages it receives were

sent at an earlier time.

Rule 3: The number of messages sent along a channel is greater than or equal to the

number of messages received from that same channel, i.e. c.s > c.r.

Rule 4: If the number of messages sent is greater than or equal to the number of

messages received, then no matter what event occurs next in the system,

that relationship will continue to hold, i.e. for integers k and j

{(c.s = k) and (c.r = j) and (k >j)} e {A: > c.r >j}

1 Some messages may still be in transit at any
given point in tune.
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Rule 5: The number of messages sent along a channel is monotonically
nondecreas-

ing, i.e. {c.s = k} e {c.s > k}

Chandy requires that, at some arbitrary time, each process records its state at most once

as follows:

if -ip.fini then

begin

p.fini := true;

p.IDLE :=
p.idle;

[for all input channels c of p :: c.R :=
c.r]

[for all output channels c of p :: c.S := c.s]

end;

This results in a distributed snapshot, which is probably taken by means of sending out a

probe. Chandy then claims the invariants of the system to be:

invariant [for all output channels, c, of processes in d :: c.s > c.S] and

[for all input channels, c, of processes in d :: c.r > c.R]

invariant [for all p in d :: p.IDLE] and [for all channels, c, between processes in d ::

c.S = c.R] and

[for all channels, 6, from processes not in d to processes in d :: b.s = b.R]

=>

[for all p in d :: p.idle = p.IDLE] and

[for all output channels, c, of processes in d :: c.s c.S] and

[for all input channels, c, of processes in d :: c.r = c.R]

Finally he states this theorem:

[for all p :: p.fini and p.IDLE] and
[for all c :: c.S = c.R]

=> [for all p :: p.idle] and [for all c :: c.s = c.r]
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Notice that when termination has actually occurred, the recorded values satisfy the

antecedent of the theorem. If termination has not occurred, the antecedent is not satisfied

and a new snapshot must be taken, i.e., a new probe must be initiated, always being care

ful to discard the results of the previous probe. Chandy's theorem could be used to

develop a detection algorithm and/or to prove that if termination is declared, termination

has actually occurred.

4.3. Overview

Rana [RANA83,46] suggests two potential approaches to deal with the asynchronous

communications case:

(i) Modify the global termination condition: ensure that all processes satisfy their

local predicates at a particular time and that no message is pending to be

delivered.

(ii) Modify the local predicates: modify all processes such that an ack is expected

(sent) for each basic communication message sent (received) by a process. Let /?,-

denote the modified local predicate 6,-; then /?,- becomes true only when
6,- is true

and all expected acks have been received.

The algorithms of Dijkstra [DIJK83], Rozoy [ROZ086] and Arora [AROR89] take the

first approach. Arora's algorithm [AROR88] takes the second approach. Chandrasekaran

[CHAN90] uses a combination of both approaches. Arora [AROR88] superimposes his solu

tion to the termination problem on a spanning tree model for the underlying computation.

Chandrasekaran assumes a spanning tree for the algorithm and superimposes a diffusing

computation upon it. Rozoy uses the diffusing computation model for the underlying com

putation and essentially follows messages around the system. Dijkstra uses a Hamiltonian

ring for the network topology and Arora [AROR89] uses a bidirectional ring for the net

work topology.
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4.4. Arora's Solution to the Problem

The algorithm presented by Arora et al [AROR88] is the result of two erroneous tries

by the authors to solve the distributed termination problem in the fully distributed case.

They have learned from their experiences and this author believes they have written a

correct algorithm for the asynchronous centralized case.

When comparing Arora's model to Francez's [FRAN80], [FRAN82] or Topor's

[TOP084] models, the reader should remember that in the latter three cases, no additional

channels were allowed for the cc. Arora's use of additional channels and the asynchronous

communication provide additional possibilities for behind the back communication to

occur.

4.4.1. Control Messages Used in the Algorithm

Arora requires an ack to be sent for every be received. It is not clear from the paper

how these acks influence the algorithm. According to Rana [RANA83], a correct algorithm

should not allow a process to satisfy its 6,-
unless all outstanding acks have been received.

However, Arora never makes this specification.

Arora allows four kinds of cc messages to be sent: 'I-am-passive', 'I-am-through', 'I-

am-up-again', and the detection message initiated by the root. Each process knows who its

children are in the control structure and who its neighbors (those to whom it may send a

be) are in the underlying network.

The
'I-am-passive'

message is sent to p,'s neighbors whenever
p,-
meets its 6,-. This is

recorded in the variable statej(pi) for each neighbor py receiving this message. The only

time stateApi) is recorded as active is when py sends a
message to p,-. Therefore it is possi

ble for py to
think p,- is passive when in reality

p,- is active becuase p* has sent a message to
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Pi. This should not be a problem, as we shall see, because there are other protections.

This incorrect knowledge may cause an
'I-am-through'

message to be sent which could

have been avoided, but it will never cause false termination to occur.

The
'I-am-through'

message is sent when a process is passive, it has received the 'I-

am-through'

message from all its children (if it has any) , and it thinks all of its neighbors

are passive. Notice that if a process, p,, communicates with its neighbor, p}; and then goes

passive, this message will not be sent until
p,-
receives the

'I-am-passive'
message from py.

The
'I-am-up-again'

message is sent to a parent whenever a process becomes active

again or if the
'I-am-up-again'

message is received from a child. This is protection against

behind the back communication. The sender of the be may not be in this portion of the

tree, yet detection of a false termination will not be able to occur. As a matter of fact, the

use of this message precludes the need for knowledge about neighbors at all. However, the

use of neighbors prevents some detection messages from being initiated.

The final message to be considered is the detection message. This message is initiated

by the root when

1) it is passive

2) all of its children have sent the
'I-am-through'

message

3) and it thinks all of its neighbors are passive.

This message is passed down through the tree by each node p only if the same conditions

are met as for the root. When the message reaches the leaves, it is passed back up and

reaches the root only if every node is indeed passive. This guarantees that a false termina

tion will not be detected.
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Using the criteria presented by Apt and Richier (ch 1) it can be shown that this algo

rithm is correct. In the description it has been shown that false termination cannot occur.

In addition termination will be detected if it occurs. As each process becomes passive it

will send an
'I-am-through'

message. Eventually each process will know that its children

and neighbors are passive and be able to pass the message on to its parent until the mes

sage is reached by the root. If a process is still active, it will eventually execute. The con

trol code does not block the be. In addition the cc will not cause deadlock. If the root ini

tiates a detection message which becomes falsified, the active process will eventually cause

an
'I-am-through'

message to be sent up to the root and a new detection message will be

initiated.

4.4.2. Overhead for the Algorithm

There is quite a bit of overhead for this algorithm. Whenever a be is sent to py, the

receiver's state must be marked as active in statei(pj). When a be is received, an
'I-am-

up-message'

must be sent if p,-
was passive when the be was received and an ack must be

returned.

The memory overhead is also substantial. If all processes are directly connected to

every other process, each process would require Sn booleans and 2n integers. The

minimum, if each process has only 1 child and 2 neighbors, would be 5 integers and 5

booleans.

Whenever p, goes passive, it sends
'I-am-passive'

messages to its neighbors. If no pro

cess is reactivated after it goes passive and all processes have a neighbors then a*n mes

sages are sent. In addition each child sends an
'I-am-through'

message to its parent for a

total of n
- 1 additional

'I-am-through'
messages. If no process is reactivated, no 'I-am-up-
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again'

messages are sent. Finally 2*(n 1) detection messages are sent. Therefore, the

total number of control messages is m + an + 3n in the best case.

2
In the worst case

,
there will be

'I-am-up-again'
messages also. If all processes have a

neighbors and d is the depth of the tree, then ma
'I-am-passive'

messages, a maximum of

md
'I-am-through'

messages, m acknowledgements, a maximum of m
'I-am-up-again'

mes

sages, and a maximum of 2nm detection messages will be sent for a total of

m(a + <f+ 2 + 2n) control messages.

4.5. Chandrasekaran 's Dual Approach to the Problem

The main purpose of this paper [CHAN90] is to present a new lower bound for the

overhead due to cc in the worst case situation. In addition the authors present an algo

rithm which meets this lower bound.

The existence of a root process and a spanning tree are assumed. All processes except

the root run the same version of the algorithm. Topor's algorithm [TOP084] is the start

ing point for the algorithm. In Topor's algorithm essentially the root initiated the detec

tion wave and any of the internal processes could falsify it if they were active. However,

responses were required to be sent back to the root when the wave was falsified so that a

new wave could be initiated. Chandrasekaran and Venkatesan describe a method whereby

the wave is never falsified and therefore only one wave need occur, reducing the number of

cc substantially. Essentially a diffusing computation is superimposed on the application at

the point where any process becomes active after receiving the wave. From that point on

in the computation, each process, p,, keeps track of all be it sends/receives to/from process

2 In the worst case every be reactivates a process, p whose neighbors and children are

passive
-

p, has already sent an
'I-am-through'

message.
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py by placing either to/py or from/py on a stack in local memory. When py becomes pas

sive, it sends acknowledgments to every process pk on the stack as from/p*. Any stack ele

ment to/pi is removed from the stack when an ack is received from p*.

A process
p,-

passes the wave back up to the root only when the following conditions

have been met:

1. Pi is passive

2. pi has received the detection wave on all of its incoming links.

3. p,'s local stack is empty.

4. Pi has received the terminate wave from each of its children -

obviously each leaf,

Pj, initiates this wave when conditions 1-3 are true for pj.

Chandrasekaran refers to the sending of the initial detection wave as coloring the links.

When the wave is received, the incoming link on which it was received is colored and out

going links from that node are also colored. Acknowledgments must be sent only when

messages are received from a colored link. Acknowledgments are expected only when mes

sages are sent out on colored links.

The result is that the worst case overhead occurs in the situation where the root is

ready to terminate but all other processes are active. Then a max of 2n cc and m ack

nowledgments would be required. In the best case all processes are passive before the root

initiates the termination detection wave and the overhead is 2n.

This worst case overhead is lower than most we've seen so far. However, there is a

tradeoff - the cost of memory space can be quite high. For every be sent after the algo

rithm is initiated, memory requirements will be 2 booleans (to/from) and 2 integers. There

is also need for 2|c| booleans, where |c| is the number of communication channels in the
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system, to indicate if the link is colored or not.

In addition, whenever a be is sent/received each process must verify its state (DT or

NDT - have I received the detection wave from my parent?). If the state is DT (detecting

termination) the sender/receiver must be added to the local stack.

4.6. Rozoy's Algorithm

The purpose of Rozoy's paper [ROZ086] is to develop two theorems which describe

the bounds on the number of cc required to detect termination in an asynchronous system.

However, the sketch of a proof, which she provides, is based on a description of the distri

buted system as a finite state machine with an unbounded buffer for receiving messages, a

transition function for changing states, and a function to send messages. All communica-

3
tion is considered instantaneous. Although a brief description of the model is given, there

are missing pieces of information.

In the process of developing the proofs for her theorems, Rozoy does offer a termina

tion algorithm. The assumption that all messages are received in a short finite amount of

tune is critical for the correctness of the algorithm. The algorithm works as follows:

Rule 1: Local memory mem(pi) contains the names of all processes, p;, to whom

Pi has sent a be.

Rule 2: When the initiator, p,, goes passive a token is sent out containing a list of

the names of all processes, p}; to whom p, has sent a be
(- the contents of

mem(pi).)

3 A complete description is given in

Rozoy, B., "Detection de la terminaison dans les reseaux
distribues."

Tech. Rept. 1986, Universite de

Paris, VD LITP.

which is written in french.
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Rule 3: Upon receipt of the token by py:

a. py adds the
contents of mem(pj) to the token list.

b. py deletes its name from the token list.

c. pj clears mem(pj).

d. When 6y becomes true, the token is passed to any process, p*, in the

token list.

Rozoy claims that the following invariant remains true throughout the computation as

her proof of the algorithm.

PO: A\/B\/C

where

A is true if for all p,-, if p,'s name is not in the token list then p,- has remained idle

4
since the last visit.

B is true if for all p,-, if p,'s name is in the token list, then either p, has been active

or will be active since the last visit by the token.

C is true if the token contains more than one process name or a single name - of a

process which is still active.

4 The English translation is difficult to understand here. The definition given above for A is

what I think she is trying to say. However, I don't think it is what she means. The

terminology she uses is "p has not to be visited by the token". I assume she means p's

name is not in the token list, since the token only visits those
processes on its list. However,

consider the following scenario:

The initiator puts the names of five processes in the token list. The token visits the

first process on the list and adds its local memory to the token list. In the

meantime any process activated by the remaining four processes in the token list

are not on the list.

Eventually all of these process names will be put in the token list. However, there is a point

in time when they are not on the list although Rozoy implies that the token list will always

be correct.
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Notice that the token follows no specified path, nor does it verify its findings for ter

mination before claiming termination. For this algorithm to work correctly, the send of a

be must be immediate - there can be no lapse of time until it arrives at its destination. If

there is a lapse of time, it is possible for false termination to be claimed. It should also be

noted that the size of the probe varies for each cc and has a maximum size of n.

4.6.1. Boundaries on the Number of Control Messages

Rozoy suggests that a lower bound for the number of cc can never be less than m - all

be must be acknowledged or followed. In a fully connected network where additional

channels have been added to the network for the control algorithm, the upper bound is

dependent on the size of the system and requires m + ncc messages. When the termina

tion algorithm is well suited to the network - no additional channels are added - then the

upper bound is dependent on the size of the problem and requires 2(m + 1) cc messages.

4.7. Dykstra's Solution to the Problem

Dijkstra et al [DIJK83] introduced an algorithm for the detection of termination of

distributed processes in a ring topology where more than one process can reside on each

machine. The signalling facilities are assumed available and specifics are not mentioned,

except that all communication is instantaneous. The algorithm is general enough to handle

either asynchronous or synchronous communication. This algorithm checks each machine

for whether or not its set of processes have terminated by passing a token around the ring.

The token is either white (no be has been seen) or it is black (some process has performed

a be). In addition to the local predicate, 6,-, for each process, all machines have the variable

5 If the detection tokens are distant from the traffic, they cannot guess whether the traffic

is finished or very slow. Therefore they have to follow the message.
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colour which is white (no process on this machine is active i.e. has performed a be) or

black (some process is active). Then for the following propositions [DIJK83,218], where t is

the unique id of the machine which has the token and N is the number of machines in the

network:

PO: for all i:t<i<N: machine Nr.i is passive.

PI: there exists j:0<j<t: machine Nr.j is black.

P2: the token is black.

The invariant PO V PI V P2 must be true at all times.

This is accomplished through the following rules [DIJK83,218-9]:

Rule 0: When machine Nr.i+1 is active it keeps the token; when it is passive it

hands over the token to machine Nr.i.

Rule 1: A machine sending a message makes itself black.

Rule 2: When a machine Nr.i+1 propagates the probe it hands over a black token

to machine Nr.i if it is black itself, whereas if it is white it leaves the

colour of the token unchanged.

Rule 3: After the completion of an unsuccessful probe, machine Nr.O initiates a

next probe.

Rule 4: machine Nr.O initiates a probe by making itself white and sending a white

token to machine Nr.N1.

Rule 5: Upon transmission of the token to machine Nr.i, machine Nr.i+1 becomes

white.

The number of control messages required is 2N in the best case because the probe will
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never succeed the first time around. In the worst case it is N * m + N, where m is the

number of be sent and N is the number of machines in the system.

4.8. Arora's Solution Using a Bidirectional Ring

Arora and Gupta [AROR89] present several algorithms that assume a bidirectional

ring as the control topology for the cc. The first of these algorithms assumes a pre-

designated process to initiate the probes for the detection algorithm.

The algorithm uses the following variables at each node p,-:

6cm(p,) a boolean flag which is set whenever p,-
sends/receives a be and reset

whenever
p,-
receives the probe, initially 0

procflg(pi) a boolean flag which is set whenever p,-
changes state from active to

passive and reset whenever
p,-
receives the probe, initially 0

se9(Pi) fr '' 1> *ne sequence number of the current set of probes

for all other i, the sequence number for the currently forwarded

probe message

prevpm a boolean flag which is reset to 0 when px initiates the first set of

probe messages, it remains 0 afterwards

a boolean flag which records the status of the forwarded probe mes

sage for the remaining
p,-

distancel the distance clockwise around the ring from this process to the ini

tiator
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distances the distance anticlockwise around the ring from this process to the

initiator

pas a boolean flag for px which is initially false and is set to true when

bi becomes true the first time and remains true

There are two kinds of cc messages: the probe message which gathers information concern

ing the states of the processes, and the repeat-probe message which is a signal that a probe

has been falsified and a new probe should be initiated.

The algorithm works as follows:

1. The initiator sends probes out in both directions.

2. Upon receipt of a probe, each process waits until its 6,- has been met before verifying

the probe and passing it on. If the probe is already falsified the flags of the process

are reset and the probe is passed on. Otherwise the flags are checked - if either one is

set then the probe is falsified else it remains unfalsified. In either case the flags are

reset and the probe is passed on.

3. Whenever a process receives a probe that carries a sequence number that has already

been seen, the flags of the process are checked and the termination phase is initiated

if both probes were unfalsified and a repeat-probe signal is sent back to the initiator if

either probe is falsified. (The initiator acts on only one of the repeat-probe signals.)

In previous algorithms Arora and Gupta did not verify that no be have been received

and the process has not been active since the last probe. They seem to have solved that

problem here. Processes may be reactivated after the probe passes them; however, the ini

tiating process of any string of be will always be caught. Eventually a probe will travel

around the ring from both directions and find all processes passive and initiate the
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termination phase correctly.

The overhead for be for this algorithm is comparable to others we've looked at. How

ever, the memory requirements are quite high: 3 booleans at each node, 4 at the initiator

and 3 integers at each node, 1 at the initiator. The best case overhead for the cc is less

than Sn - the 2n cc required to set and check flags normally found in ring algorithms plus

the repeat-probe signal which is at most .5n. The worst case overhead is mn + 2n plus

.5mn for the repeat-probe signal which results in a worst case cc of less than 2mn + 2n.

This is slightly higher than normal for ring algorithms because both send and receive set

flags. The reader should notice that although the cc is worse than for most ring algo

rithms, it is possible that it will take less time for the algorithm to actually run, because

there are 2 probes circulating at the same time.

4.9. Summary

This section looked at algorithms which assumed asynchronous communication.

Table 4-1 illustrates the overhead for each solution. Notice that all of the algorithms have

additional work to be done before a be can be sent. As in previous chapters the spanning

tree model has a much higher overhead than the the ring topology - both in terms of addi

tional memory and the number of cc. The spanning tree model is the least efficient

method of implementing termination algorithms; however, it does help to make the issues

clear. Notice that all algorithms that use trees as the network topology for the cc keep a

list of processes with whom they've had communication. Dijkstra's algorithm [DIJK83] is

the most efficient of all of the algorithms and also one of the easiest to understand. It

requires a very simple addition to the be, and very little additional memory. The cc

6 Add one to this
value to guarantee that both probes are seen twice by one process.
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Algorithm Additions to

be

Best Case

Overhead

Worst Case

Overhead

Additional

Memory

DIFFUSING COMPUTATION MODEL

[ROZ086] add receiver

to local mem

m m+n

2(m+ l)
2

<n2

integers

SPANNING TREE TOPOLOGY

[AROR88] mark receiver

active

return ack

send cc msg

as necessary

<n2+3n+m3

<m(3n+d+2)
3

<3n2

booleans

<2n2

integers

[CHAN90] if state = DT

save recvr's

name

save sndr's

name

2w <2n + m <2m chars

<2m+2n2

booleans

RING TOPOLOGY

[DIJK83] make machine

black

2N4

N*m + N n booleans

BIDIRECTIONAL RING

[AROR89] set flag
at send/recv

<3n <2mn+2n 3n+l booleans

3n2 integers

A fully connected system is assumed.

No new channels are added.

This assumes each process has a maximum of n neighbors.

N represents the number of machines in the system. If there is only one process on each machine

this is the same as 2n.

Table 4-1

overhead in the best case is the best for all of the algorithms presented in this chapter,

although the worst case is not as good as the algorithm which assumes a diffusing compu

tation. As in previous chapters, it would seem that the ring topology allows algorithms to

require a lower overhead. Arora's bidirectional ring is comparable to Dijkstra's algorithm

in the best case cc overhead and double in the worst case. However, the actual detection of
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termination may take the same amount of time since it must be remembered that Arora

sends cc in opposite directions at the same time. However, Arora's algorithm requires sub

stantially more memory and may not be a good choice if minimal use of memory is impor

tant.

It is interesting to notice that Dijkstra's centralized algorithm requires the same over

head as the centralized algorithms for the ring topologies in the synchronous case. How

ever, Arora's algorithm [AROR88] has a much higher overhead than the algorithms based

on a tree topology presented in chapter two. This author does not believe that it is neces

sary to have this high an overhead; however, Arora was looking for an algorithm that

would always be correct, after his two unsuccessful attempts. In an attempt to limit cc,

probes are initiated only after sufficient supporting evidence for the GTC is obtained; how

ever, the end result is a substantially larger number of cc. Notice that while

Chandrasekaran's algorithm has a very low cc overhead, the cost of memory and additions

to the be offset the gain when m is high. They are in normal range when m is low.
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5. ASYNCHRONOUS DISTRD3UTED SOLUTIONS

Any valid asynchronous distributed solution requires that any process be able to

detect termination and that all behind the back communication will be caught despite the

fact that message communication is not synchronous. This is complicated by the fact that

no one process is given the job of declaring termination - a fully distributed solution

requires that any process be able to initiate a probe and/or detect that the GTC has been

met.

In chapters two thru four, we have only looked at tree topologies and ring topologies

for the underlying network. In this chapter we will broaden our scope to include algo

rithms for broadcast networks and arbitrary network topologies.

5.1. Assumptions

As in previous chapters, these algorithms continue to assume that the application P

will terminate and that the channels for communication are reliable. Communication does

not block the sending process and all messages are received in a finite amount of time.

Most algorithms assume that message transmission is instantaneous.

5.2. Approaches

We will look at three approaches to the solution of this problem in the literature.

There are several solutions that assume a ring topology for the underlying network. Arora,

Rana, and Gupta present three solutions [AROR86], [AROR87], [AROR89] and Haldar

[HALD88] also offers a solution based on a ring topology. Only one of these solutions is

correct. The literature supports the error in Arora's first solution [TAN86] - the detection

of false termination. This author believes that the second solution does not solve the prob-
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lem encountered in the first algorithm. Haldar's solution is based on this second solution

and contains the same error. Tel and Mattern [TELM89] give a counterexample to prove

Haldar's solution is incorrect. Arora's third solution is actually two algorithms. Although

the first is incorrect, it is easily fixed. The other is similar to his first two solutions and

seems to be correct. It is important to look at these algorithms and understand the situa

tion which leads to the detection of false termination. They illustrate very clearly the

kinds of problems which a correct distributed asynchronous solution must take into con

sideration.

There are several solutions which assume an arbitrary network topology. Misra's

[MISR83] solution, using colored tokens, is the asynchronous distributed version of

Dijkstra's [DIJK83] synchronous centralized solution. Skyum [SKYU86] presents an algo

rithm which assumes knowledge of the diameter of the network. Huang [HUAN88] offers a

solution that requires the use of logical clocks. Eriksen's algorithm [ERIK88] requires only

that all processes know the size of the network. The network is represented as an

undirected graph, although the communication lines are directed.

A third approach toward solving the termination problem differs from the accepted

definition of distributed termination. Szymanski [SZYM85] offers an algorithm whose pur

pose is to detect termination in applications which require some degree of synchroneity

even though asynchronous communication is used. The algorithm will be presented; how

ever, this author
does not believe it will lead to a working solution to the generic distri

buted termination problem. Szymanski's solution assumes that all messages are received

within an arbitrary finite time.
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5.3. Solutions for a Hamiltonian Cycle Topology

In this section we will look at several solutions offered by Arora and Gupta. The solu

tion offered in 1986 [AROR86] is incorrect and countered by Tan et al [TAN86]. Arora et

al present another algorithm in 1987 [AROR87] that takes into consideration some of the

criticisms offered by Tan. In 1988, Arora [AROG88] counters Tan's criticisms of the 1986

algorithm. All discussion of the algorithm presented in 1986 will be considered before dis

cussing the later algorithms, even though this is not the chronological order of events. In

1989, Arora et al [AROR89] present three similar algorithms - one that has been discussed

in the previous chapter, and two for the distributed case.

5.3.1. Arora's Solution to the Problem

The algorithm introduced by Arora et al [AROR86] was written to improve on the

previous algorithms by [RANA83] and [AROR83] by eliminating the need for distance

functions, logical clocks, or counters. However, Tan, Tel and Van Leeuwen [TAN86] found

that it does not work correctly and is not easily fixed. The restriction for this algorithm is

that be messages may be sent only to neighbors of a process. A Hamiltonian ring topology

is assumed for the control communication. A local predicate, 6,, is maintained as before.

In addition records of each neighbor's state are kept (passive/active). A neighbor is

marked active by p, whenever
p,-

sends a message to it. A process is marked passive when

an
'I-am-passive'

message is A probe may be initiated by process p, whenever p,

and all of its neighbors are passive. Each probe message contains the process id of its ini

tiator. The probe is passed on only when the process receiving
it (and all of its neighbors)

1 A process sends this message each time it changes state from active to passive.

2 Notice p( does not
know that p, is active if p; was activated by any process other than p,.
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are passive. When a process receives its own probe back, it may begin the termination

phase. Because behind the back communication can occur and is not caught, this algo

rithm allows false detection of termination to occur.

Arora and Gupta [AROG88] counter the assertion of Tan et al [TAN86] that this

algorithm is incorrect. Arora claims that there is no delay in handling the cc. However, he

verifies that in certain situations a delay may result in the declaration of a false termina

tion as per the example of Tan et al. In an attempt to remedy this problem Arora and

Gupta augment the original algorithm with additional cc to update the states of the neigh

bors of a process. This requires an additional boolean variable at each node, the construc

tion of a list of the id of each of p,'s neighbors every time an
'I-am-passive'

message is sent,

and additional cc. As a result, when a process becomes passive it does not initiate a probe,

but rather the last process in the list of the
"I-am-passive"

message initiates the probe

when it becomes passive.

This still does not solve the problem because processes do not send
"I-am-active"

mes

sages which allows behind the back communication to occur and not be caught! Let's

assume all processes passive A - G, except C in Tan's setup of a Hamiltonian ring with the

additional link DF. Let's look at the probe initiated by E. Just after the probe leaves E, C

sends a be to D and then goes passive (sending its
"I-am-passive"

message). D sends a be

to F, and F sends a be to G after the probe has passed G. D and F go passive (sending

"I-am-passive"

messages) leaving G active. A thinks G is passive and passes the probe on.

The probe reaches E and false termination is declared because G is still active.

3 See the figure on the next page.
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5.3.1.1. Solution Two

The algorithm written in 1987 by Arora et al [AROR87] attempts to take into con

sideration the problems pointed out by Tan et al [TAN86] which were not solved in

Arora's earlier algorithm [AROR86]. However, in this author's opinion, a false termination

can still be declared.

Arora's algorithm assumes a Hamiltonian ring in which control messages travel in one

direction only. Local variables are as follows:

SeqNumi initially 0, it gets incremented each time a message is sent out

IdListi a list of all processes pj to whom
p,- has sent messages for the computation

When a process becomes passive it may initiate a detection message which consists of its

id, its current sequence number, SeqNumi, and 2 bit flags, Fl and F2 (initially set to 0).

This detection message is never purged; it always goes completely around the ring.

Upon receipt of the probe, each process pj
deletes the id of the initiator of the mes

sage from IdListj. If this list is not nil (empty) now or if pj is active, pj
"falsifies"

the

probe (if it has not already been done) by setting Fl equal to 1. If py is active, it also sets
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F2 to 1. The probe is then passed on.

When the initiator, p,-, receives the message back, p,- purges the probe if F2 = 1, or if

Fl = 1 and SeqNbri is not equal to the sequence number contained in the probe or if p,- is

active. If Fl = 1 and the sequence numbers match, a new probe is sent and if Fl = 0 and

sequence numbers match
p,- initiates the termination phase. Once termination has

occurred, it may be detected simultaneously by more than one process.

Now consider the following scenario: three processes - A, C, and E - are connected in

a Hamiltonian ring. The cc travel in a clockwise direction from A to E. Process A sends be

to process E. Processes E and C do not send any be. A goes passive and immediately

afterward E goes passive. In the next step, each probe moves forward one process and

finds the following:

Process E's probe finds process A passive, removes its name from IdListc, leaving an

3
empty IdListA.

When process A's probe reaches process C, C has just sent a be to process A and

gone passive. A will remove its name from IdListc and because C is passive and

IdListc is now empty, A's probe will continue on unfalsified.

Process C's probe will remain unfalsified when it reaches process E because E is pas

sive and IdListE is empty.

In the next step, we observe the following:

Process E's probe finds process C passive, and IdListc empty; therefore, it continues

on unfalsified.

Process A's probe will find process E passive and IdListE empty and it will also

3 The be that C sends at this step of the computation to be described in the next sentence

of the main body of the paper
- has not been received by A yet.
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continue on unfalsified.

Process C's probe will find process A active and be purged by A.

In the final step of the detection phase, we observe the following:

When A's probe returns, it finds A active and the probe is falsified.

C's probe has already been purged.

When E's probe returns to E, it will declare termination since it has never been falsi

fied; however, process A is still active and it is a false termination.

The problem becomes evident when we consider Francez's concept of interval asser

tions [FRAN81]. Termination may only be declared when all processes have been continu

ously idle over some time interval. Arora et al [AROR87] do not even consider the time

intervals during which the
6,-
are met! In addition, when

p,-
receives its probe back, there is

no verification that IdListi is empty. It would be possible for p,- to be reactivated, become

passive and send out a second probe during the circuit of the first probe.

Even if this algorithm were correct, its control overhead is substantial. In the best

case, it is
n2

since all processes must initiate a detection message on becoming passive if

for no other reason than to eliminate their id from everyone else's control block. In the

worst case, the control overhead is m*n + n2. This algorithm is unwieldy
- much of the

code is repeated needlessly because of its placement and could be written more concisely.

In addition it contains too many parameters to the probe. Haldar's algorithm [HALD88] is

based on this algorithm and contains the same problem.

5.3.1.2. Solution Three

Arora and Gupta [AROR89] present two algorithms for the distributed case. They

assume a bidirectional Hamiltonian ring for the control topology and are based on an
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algorithm for the centralized case found in the same article and discussed previously in sec

tion 4.8 of this paper. The variables and code for the first distributed version are similar

5
to those of the previously presented algorithm. The differences are as follows:

1. The code when
p,- becomes passive in this version is the same as for the central

ized version.

2. The code for receivng a repeat-probe-signal is not needed.

3. The code for receiving a dectection message is similar to the previous code except

that a new probe (instead of a repeat-probe-signal) is issued by the process half

way around the ring.

This first version is called a "shifting process control
algorithm."

This author finds

the "shifting process control
algorithm"

to be incorrect. Arora is attempting to guarantee

that the probe messages will not double each time a message is falsified. (Remember a

repeat-probe-signal is not sent out, two of these were not a problem - the initiator simply

ignored the second one.) However, in the process he has made it possible for the probe

message to disappear and termination never to be detected. Suppose that four processes

are connected in a ring such that Pi is the predecessor of p2, p2 is the predecessor of p3,

etc. Process p3 is the last active process. Process pi initiates the algorithm and passes

the detection message to p2 and p4. Process p2 passes an unfalsified detection message on

to p3 and P4 also passes an unfalsified detection message to p3. If p3 receives the detec

tion message from p4 first, p3 falsifies it and passes it to p2 who purges it and does not

reissue a detection message because p3 is not the predecessor of p2. When p3 receives the

5 The discussion of the centralized version is found in section 4.8. The pseudocode for the

current version can be found in the appendix pp. 185-186.
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detection message from p2 it falsifies it and purges it; since a probe is not reissued, termi

nation will never be detected.

This author believes the problem is easily fixed. Once the sequence number pseq(pi),

matches the sequence number carried by the detection message, the detection message is

purged if it is unfalsified and p,- is active. At this point the code for initiating a new probe

should be inserted if the sender of the probe was the predecessor of p,-. The original code

can be found in the appendix, the altered code is as follows:

if pseq(p,)
= msg.seqdm then

if msg.Fl = 0 then

if prevpm(p,)
= 0 and (bcm(p,) = 0 and procflg(p,)

= 0) then

enter the termination phase

else

purge the detection message

if msg.source = pred(p,-) then

seq(p,)
=

seq(p,) + 1

msg.seqdm :=
seq(p,)

pseq(p,)
:= msg.seqdm

msg.type := probe

msg.Fl := 0

send (succ(p,), msg, p,)
send (pred(p,), msg, p,)

bcm(p,) := 0

procflg(p,)
:= 0

prevpm(p,)
:= 0

else

purge the detection message

if msg.source = pred(p,) then

seq(p,)
=

seq(p,) + 1

msg.seqdm :=

seq(p,)

pseq(p,)
:= msg.seqdm

msg.type := probe

msg.Fl := 0

send (succ(p,), msg, p,)
send (pred(p,), msg, p,-)

bcm(p,) := 0

procflg(p,)
:= 0

prevpm(p,)
:= 0

{the additional code begins here}

{the additional code ends here}
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This guarantees that only one probe will be initiated and that in fact it will be initiated.

The memory required for this algorithm is 4 booleans and 2 integers at each node.

Whenever a be is sent/received a boolean flag is set. The cc overhead in the best case is

2n + 2. In the worst case it is mn + m + 2n + 2.

The second distributed version of the algorithm is called a "multiple process algo

because any process may initiate a probe at any time. The concept of updating

neighbor processes is used as in previous algorithms [AROR86] [AROR87]. Each process

keeps a copy of its own state, the state of its neighbors, the sequence number and the vali

dity of the last probe seen from every process, and its own sequence number. When a

probe is received by
p,- from py, the algorithm works as follows:

if Pi and all of its neighbors are passive then

if the last sequence number seen from this process matches the sequence number

on the probe then

if the probe was unfalsified the last time then

enter the termination phase

else

purge the probe

else

remember this sequence number

set the status of the probe to be remembered as unfalsified

pass the probe to the next process

else

remember this sequence number

set status to be remembered as falsified

purge the probe

In this algorithm Arora has finally verified that all processes have been passive since the

last visit of the probe. However, the cost is considerable in terms of memory overhead.

Each process requires n booleans and n integers to remember the status of previous probes

6 The first probe will always be falsified because all of the flags will be set when processes

become passive the first time. To complete a cycle around the ring takes n + 1 cc. Then for

every
message that falsifies the probe mn+mcc will be passed. Finally an unfalsified probe

will be verified with n + 1 cc. Therefore, the total number of cc is m (n + 1) + 2(n + l).

-75



from each process. They also require up to n integers to keep track of who their neighbors

are and up to n booleans to keep track of their states. In addition an integer is required to

keep track of the sequence number for probes initiated by this process. This gives a possi

ble total of 2n booleans and 2n + 1 integers at each node. The addition to the be is to set

a flag at both send and receive. Every time a process goes passive, as many as n cc are

required to update its state for its neighbors. A count of the cc is difficult to determine

because it depends on the number of neighbors each process has and the timing of when

they go passive. However, if all processes have only 1 neighbor and go passive at the same

time for the first time there will be
n2

+ n cc. If after every be the sending process goes

passive there will be mn update messages and there could be as many as
2mn2

probe mes

sages.

5.3.2. Haldar's Solution to the Problem

Haldar's algorithm takes the concept of a distance function from Arora's earlier algo

rithm [AROR83] and the list of processes with which it has communicated from the later

algorithm [AROR87]. Probes, msg, contain the id of the initiator, the FP of the initiator

(as in [AROR83]) and a 1 bit key to falsify the message (the variable Fl of [AROR87]). A

process may initiate a probe if it is passive and the probe has a higher priority than any

other message waiting for service. This guarantees that an active process will not hold it

up.

Haldar's algorithm uses the following variables:

FP The id of the farthest process down the ring with which p, has com

municated when Pi was active
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IdListi This is a list of processes with whom this process initiates communi

cation

Haldar gives the following rules for the actions to be taken upon receipt of a detection

message:

Rule 1: As soon as the detection message gets falsified, the bit flag Fl is set to 1

and remains 1 until the message is purged.

Rule 2: The unique identification carried with the detection message is removed

from the IdList of the visited process if present.

Rule 3: If Fl becomes 1 before the control message generated by p,-
reaches msg.FP

the message is purged by msg.FP.

Rule 4: As soon as the control message generated by a process
p,-

crosses msg.FP,

the message is purged if it is received by an active process or by a process

having a nonempty IdList.

When these rules govern the action of the algorithm, if a process ever receives its own

probe back the authors assume the process may begin termination. However, if you con

sider the scenario that we looked at to prove Arora's algorithm [AROR87] incorrect, it is

obvious that the same situation is present here. Again all processes passive at the same

time has not been considered. The comments of Tel and Mattern [TELM89] present

another counterexample to illustrate this point.

This author believes Haldar has an additional problem - it is possible for the control

algorithm to cause deadlock! Notice that a process puts the name of the recipient of all be

in its IdList whenever be are sent. Notice also that a probe is initiated only once each

time a process becomes passive. Finally notice that a probe is purged as soon as it is
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falsified and has passed msg.FP. However, one of the processes between msg.FP and the

initiator of the probe, p,-, may have sent
p,-
a be while p,-

was still active. Even if the probe

is not purged, p,'s name is not removed from any IdList beyond msg.FP. If p,'s probe is

falsified,
p,-

will not ever send out another probe and no other process will be able to

declare termination because some IdList will contain p,'s name.

In addition no check is made to verify that p,- is passive and IdListi is empty if its

probe is returned unfalsified - this is potentially dangerous.

The authors believe they have solved the distributed termination problem without the

use of timestamps and clock synchronization as in Rana's algorithm [RANA83] and

without the use of sequence numbers as in Arora's algorithm [AROR87], If this algorithm

were correct, in the best case, it would require only n + n 1 (2n as an upper bound) cc.

In the worst case, the authors contend both algorithms use about the same number of con

trol messages - m*n + n2. This algorithm does not feel cluttered by additional informa

tion; however, it does require the use of the farthest function which adds time on to the

basic communications of the computation. Although it may be an improvement over

Arora's algorithm, Haldar's algorithm does not solve the distributed termination problem

correctly.

5.4. Solutions for an Arbitrary Network Topology

5.4.1. Misra's Solution to the Problem

Misra's algorithm [MISR83] makes use of a marker to determine if a process has been

continuously idle over an interval of time. Processes are colored black initially and when

ever they receive a be. Processes become white when the marker is passed on. The marker
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is passed on only if a process is idle.

The idea behind the algorithm is similar to Dijkstra's [DIJK83] and Topor's

[TOP084] basic premise. In each of these algorithms the marker was returned to the ini

tiating process which decided whether or not to terminate the computation. Therefore, the

easiest approach was to color the marker as well as the processes. However, in Misra's

algorithm, any process is capable of detecting the termination. Therefore, rather than car

rying a color, the marker carries a count of the number of processes visited which were

white -

continuously idle since the last visit of the marker - at the time of the arrival of the

marker. Any process which is black sets the marker to 0, white processes increment the

marker. Any process which increments the marker to n- the number of processes in the

system -

may declare termination.

Using Apt's criteria, [APT86] we can show that this algorithm is correct.

1. If the computation terminates, the marker will find each process passive and be

passed on immediately. It will eventually find n white processes in a row and

and termination will be declared.

2. If termination is declared, it will actually have occurred. If the marker counts n

processes as continually idle, then it found all processes passive and because the

order of all messages is FIFO, all messages will have been flushed from the net

work and it will be impossible for any process to be reactivated.

3. The algorithm does not cause deadlock of the computation, because it does not

interfere with it in any way.

4. The superimposed detection scheme does not delay the computation proper inde

finitely. There are only two additional control statements
- an assignment when

79-



a be is received and the passing on of the marker which only occurs when a pro

cess is idle.

The algorithm is general enough to be used in an arbitrary network. Looking at a

Hamiltonian ring for the cc, we can see that the algorithm carries very little overhead.

The additional memory is a single boolean variable, color, which holds the color of the pro

cess. Upon receipt of a be, assignment of the value black is made to color. The marker

consists only of an integer. The cc overhead is minimal in the best case - 2n. This

represents the initial round of visits where all processes have become passive and the

7
second round of visits to check that they have been continuously idle. In the worst case

,

the cc overhead is mn + n if all messages are sent to p,'s predecessor.

This algorithm is very simple to understand and requires a minimal amount of over

head. Notice that the only additional information required is the number of processes

involved in the application.

Misra's article is of special interest because he also presents a method of implementing

his algorithm in an arbitrary network in which no global information is available to any

process. However, the marker must be able to traverse all edges in both directions.

Again the marker is placed at any process initially. Misra sketches out a depth first

search although any method of search may be used. Whenever a black process is found, a

new depth first search is begun. Each new search is called a round. Each process main

tains the following variables:

6 No process is reactivated by any be.

7 Every be reactivates a
process.
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color a value of black indicates that a be has been performed since the last visit

by the marker

a value of white indicates that no be have been received since the last

visit by the marker

roundnbr this is the round number attached to the last token seen, probably initial

ized to 0

p(i) the index of p,'s parent

T,- the indices of all
'children'

of
p,-

- the processes to whom
p,- has passed on

this round of the marker

When the marker encounters a black process, p,-, it colors the process white, increments

msg. roundnbr, sets roundnbr equal to msg.roundnbr, and whenever
p,- becomes passive,

departs to any process connected to p,-. Although not specifically mentioned in the pseudo

code, it is obvious that Misra intends for each process to keep track of from whom it

receives the token and to whom it passes the token. Whenever a token with msg.roundnbr

not equal to roundnbr appears, the list of children should be set to nil again.

This algorithm is best described by looking at the actual code. When a process, p,-, is

white when it receives the marker the following code is executed:

if msg.roundnbr > roundnbr then

p(i)
:= sender of token

roundnbr := msg.roundnbr;

propagate the marker

else if msg.roundnbr = roundnbr then

if sender T,- then

propagate the marker

else

return the marker to the last sender

The propagation of the marker is done as follows:
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Choose an edge along which the marker has not been received or sent in the current

round.

if there is such an edge then

send the marker along that edge

else

if there is no father then

initiate termination

else

send the marker to the father

The overhead for this version of the algorithm is higher. The addition to the be is the

same for this network topology; however, each node now requires four variables. In addi

tion the count of the cc overhead is substantially higher. Because there is not a Hamil

tonian cycle, the marker must visit all possible edges. Let's assume there are c edges,

where c > n. Then the best case overhead will be Sc, because the marker will first

encounter all of the processes as black and start as many as c rounds. The next round will

detect termination but will require 2c cc. In the worst case, all processes except for one

will go passive about the same time and all messages will reactivate some process. If the

reactivated process is the last process to be visited in the round the overhead will be

m*2c + 3c cc. This is even higher than the overhead for the tree topologies which we

looked at because all edges must be traversed to guarantee no behind the back communi

cation. If time is important and the complexity of the problem is not high, this is a high

price to pay versus setting up a tree before the application begins and assigning one pro

cess the job of the root. However, if the complexity of the application is high, this would

not be a problem.

5.4.2. Skyum's Solution to the Problem

Skyum's solution [SKYU86] requires that messages be transmitted instantaneously.

There are two additional statements required: disable does not allow be to cause an inter-
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rupt, and enable allows interrupts to occur again. All of the code between the disable and

enable statements is indivisible. It appears that the control cycle does not begin for each

Pi until Pi has gone passive for the first tune. The control cycle is then interrupted when

ever a be reactivates p, and when p, becomes passive again the control cycle continues

from where it left off. The protocol has the following form:

broadcast a message

cycle

await that no inbuffers are empty;

read one message from each inbuffer;

broadcast a message

endcycle

This splitting up of the computation into parts separated by a broadcast to all outbuffers

followed by a reading from each inbuffer introduces a local time concept. This time con

cept is continuous enough for the p,- to
'know'

that if they have not heard from any active

8
process for some 'time', then there are no more active processes in the configuration.

The overhead for this algorithm is quite high. The memory requirements for each

process are 1 boolean, 2 integers, and 1 constant. The addition to the be is comparable to

other algorithms - set active to true. However, the count of cc is substantial. If we

assume that the network is a Hamiltonian ring, each process will have only one inbuffer

and one outbuffer. The choice of the constant, L, will greatly effect the number of cc. By

definition L must be greater than 2d; however in a hamiltonian ring the diameter is equal

to n 1. Therefore L will be equal to 2n. Because each process must accumulate L

8 An active process is indicated by a warning carrying an age of 1.
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warning messages, the cc overhead is as follows. In the best case n +
2n2

cc will be

required and in the worst case n +
m*2n2

cc will be required. If we assume a broadcast

network with connections to all processes, the count of cc is even higher. In the best case,

it will be
n2

+ 2n3; in the worst case it will be
n2

+ m * 2n3. This is a very expensive algo

rithm in terms of the cc overhead!

5.4.3. Huang's Solution to the Problem

Huang [HUAN88] builds his algorithm on a system which has logical clocks, and no

specific topology for either the be or the cc. The basic approach is as follows: When a

process, p,-, becomes passive it makes an announcement to the rest of the processes that it

is ready to terminate at its own (p,'s) clock time. If the other processes do not know of a

later time at which a process has gone passive, they return an agreement. Any process

that can obtain agreements from all processes in the system may initiate termination.

9
Each process is given a logical clock, represented by the variable rime,-

which consists

of two parts: a time value, time,-.va/ue and the name of the process that owns the clock,

timei.name. Each process also remembers the latest idleness time received in an announce

ment, and the name of the process announcing it, in the variable 5fme,-. Two clock

times are related as follows:

(timei.value, p,) > (timej.value, py) if

(a) timei.value > timej.value, or

(b) timei.value timej.value, and p, > p;

Note: we interpret greater as later

9 In Huang's algorithm the clock is represented by xf.

10 In Huang's algorithm the latest idleness time is represented by z{.
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All clocks have the properties of being totally ordered and monotonically increasing. To

guarantee the monotonic increasing property of the clock,
p,-
adjusts its clock each time a

cc is received to be the max of p,'s clock and the clock time carried by the cc. In addition,

Pi increments its clock by one each time it becomes passive.

There are three types of cc: announcements, Ann, agreements, Agr, and acknowledg

ments, Ack. Each carries the logical clock of the process sending the cc. Specifics of the

algorithm can be found in the appendix. There is a special case that should be noticed

here. A process can not send a be and then go passive immediately; it must wait for an

acknowledgment before going passive. During this time it cannot send any other be,

although it may perform its own computations, and receive and acknowledge other be. By

the same token, any process receiving a be, must immediately respond with an ack

nowledgment.

The reader will note that the agreements are not counted in the algorithm printed in

the appendix. The reason for this is that the method will be different for differing topolo

gies.

If the topology is a tree, there will not be a specific count. There will always be m

acknowledgments. In addition, the root will send an announcement to all of its children. If

all children are passive and this is a later time, the announcement will be passed down to

all of their children and so on. If at any time an active process, or a process which has a

later idleness tune, is encountered then the announcement will be purged. Then each

node, p , needs
to keep a variable that holds the information that an announcement has

been received back from all of its children. When all announcements have been received

by p ,
it passes the announcement back up to its parent. When the root receives the
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announcement from all of its children, it may conclude termination. There is no mention

of how the root knows to send a second announcement if it does not get a return

announcement from all of its children. Although a tree topology is specifically mentioned

in the article, this author believes the use of a tree would imply a centralized algorithm

and this is clearly not what Huang intended.

If the topology is a Hamiltonian ring, again a specific variable to hold the count will

not be required. Any node will be able to initiate an announcement along the ring. As

each node receives it, the announcement will be passed on only if this process is passive

and the clock time of the message is greater than the latest idle time known. Otherwise

the message is purged. If a process ever gets its own announcement back, it will know to

12 13
initiate termination. In the best case this could mean 2ra cc. In the worst case the

count of cc is <m*n + n2. In both cases there will also be m acknowledgments.

If the topology is totally arbitrary and a broadcast network is used then each process,

Pi, must keep a count of agreements returned from an announcement. In the best case all

processes go passive at about the same time and the network is deluged with announce

ments. The code for each process could be written in such a way that all announcements

are received before any agreements are returned. In this case there would be n announce

ments and n agreements to the process with the latest idle time, along with the m ack

nowledgments for a total of 2n + m cc. In the worst case, each be reactivates some

12 All processes become passive at about the same time. Each announcement is sent to its

successor on the ring and finds a later idleness time and is purged. The process with the

latest idleness time receives its announcement back.

13 Initially all processes except one go passive. Then all further be from any process, p

reactivate the predecessor of the sender. Therefore the announcement from p, will visit
n 1

processes before it becomes purged. The process with the latest idleness time will eventually

receive its probe back.

14 All processes except one return agreements after some process goes passive and each be

reactivates some process.
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cess. There will be as many as 2mn + 2n + m cc.

The memory requirements are two clocks for each process and, in the case of the arbi

trary broadcast network, an additional integer. The addition to a be sent by p,-, is an ack

nowledgment from the receiver that contains a clock and a possible resetting of p,'s clock.

The reader will notice that the clock overhead is not cheap.

5.4.4. Eriksen's Solution for an Arbitrary Network

This algorithm requires that each process, p,-, contains a local counter, ctri, and access

to two auxiliary functions min,-, and max,-. These functions return the minimal/maximal

value of the counters of all of p,'s neighbors. A constant, L, is predefined to be greater

than or equal to the size of the network plus the diameter of the network minus 1.

Initially all counters are set to 0 and whenever any process becomes reactivated, after

having been passive, its counter is restored to 0. The behavior of a passive process, p,-, is

described by the following rules:

Rule 1: if ctri L *nen terminate

Rule 2: if min, + 1 < ctri then ctri
:= 0

Rule 3: if max,
- 1 < err, <

min,- then ctri
:=

ctri + 1

The updating of counters is considered an indivisible operation. Rule 2 guarantees that

whenever any process goes from passive to active, eventually the counter for all processes

will be restored to zero. Rule 3 guarantees that all be will be caught. If the counters are

incremented slowly in this fashion, a false termination will not be declared. Every time a

process changes its counter, it shares this information with each of its neighbors.

This algorithm is really simple to understand; however its proof of correctness is based
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on a formalization of the rules using graph theory and is beyond the scope of this paper.

The modification of be is minor - a counter is set to 0. The addition of memory is also

minor - a single integer. However, the count of cc could be quite high. Notice that the

counter must be incremented to n + d 1 by each process - after it becomes passive. In

the best case, all processes become passive at the same time and the count is

n2

+ n*(d 1) assuming each process has only 1 neighbor - the topology is really a Hamil

tonian ring. In the worst case, every message reactivates some process and the count is at

least mn +
n2

+ n*(d l), again assuming each process has only 1 neighbor. This is a

higher overhead than the centralized algorithms for tree topologies. It will be even higher

for a truly arbitrary network that allows each process to have more than 1 neighbor for the

control topology. In the worst case, the network is completely connected and the count of

cc for the best case is
n3

+ n2*(d 1). For a completely connected network the worst

case count of cc is mn +
n3

+ n * (d 1).

5.5. Solution for an Application Which Requires Synchroneity

Szymanski et al [SZYM85] present an algorithm for a specific class of computation.

The definition of the computation is motivated by attempts to use a network of distributed

processes to solve a large set of simultaneous equations. This problem requires some

degree of synchroneity and therefore the termination algorithm is actually a variation on

the distributed termination problem described in this paper. The computation is described

as follows:

The main computation satisfies the following property: a process outputs its

(j-t-l)th output along every outgoing
communication channel only after

receiving the jih input along every incoming channel [SZYM85,1136].

-88-



Each process counts the number of times it has received input from all of its predeces

sors. This value is used as a local counter of the main computation steps and as an index

of process activities. To synchronize termination of the main computation, each process

has to stop with the same value of the main computation step. The termination detection

algorithm involves sending tokens through the network and evaluating node states.

Tokens are labeled by integer values ranging from 0 to D + 1 where D is the diameter of

the network.

There are two additional variables for each process used in this algorithm:

/,- The minimum label of all tokens received at node t in the jth. input.

Si The integer label to be put on the jth. output token.

Si(j) is defined for process p,-
and step j as follows:

0 if 6,- is false

I{(j) + 1 if 6, is true and J,(j) < S{(j
-

1)

Si(j 1) + 1 otherwise

The algorithm is simple:

for all Pi do

begin

S, =0

while St < D do

send out tokens labeled by
5,-

read input-tokens

evaluate
6,-

if not 6,- then
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Si =0

else

S{ = min (J S{) + 1

end while

stop the process

end

The overhead for this algorithm is very low. The state is evaluated and added on to

the outgoing be. There are two additional integer variables for each process and no addi

tional control communication. However, the algorithm is of use only for very specialized

problems.

5.6. Summary

This chapter looked at three approaches to solving the distributed termination prob

lem:

1. Hamiltonian ring network topologies

2. synchronization within an asynchronous environment

3. arbitrary network topologies - including trees where the root is arbitrarily
self-

chosen

In the first approach, only one of the solutions offered was correct. However, knowledge

was gained from looking at these algorithms - they made the possibilities for additional

occurrences of behind the back communication clear. One of Arora's algorithms was fix-

able yielding results that are typical for a ring. The other carries a very high overhead in

terms of both memory and the count of cc.
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The second approach deviated from the accepted definition of termination. This solu

tion illustrated the possibilities for reducing the overhead of termination algorithms if the

algorithm makes use of the unique characteristics of the particular application.

The arbitrary network approach is actually a broader look at the problem than has

been used in previous chapters. The reader will notice that in the algorithms presented by

Misra [MISR83] and Huang [HUAN88] the worst case overhead for a ring is approximately

half as much as the overhead for an arbitrary network in the former case or broadcast net

work in the latter case. In the best case overhead, Misra's ring algorithm requires two

thirds the number of cc as does his arbitrary network algorithm and Huang's overhead for

the best case is the same in both situations. In the case of Skyum [SKYU86] and Eriksen

[ERIK88] the count of cc overhead in both cases is less by a factor of n for the algorithms

based on ring topologies than for the algorithms based on arbitrary network topologies.

Mindful of this, the reader should be careful to compare overhead for algorithms presented

in previous chapters to the algorithms in this chapter which are based on ring topologies.

In comparing the total overhead of all the algorithms which assume a ring topology,

we notice that the additions to the be are all essentially the same except for Huang's algo

rithm which requires a clock update as well. Misra requires the least amount of additional

memory closely followed by Eriksen. Skyum's algorithm requires more than three times

as much memory as Misra's and Huang's algorithm requires four times as much memory as

Eriksen's. If the amount of memory used were the only criterion for choosing an algo

rithm, either
Misra's or Eriksen's algorithm would be a good choice. However, if message

volume (and therefore speed) is also a criteria then Misra's algorithm would be the best

choice.
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If the number of basic messages required for the application is small, a clock is built

into the system, and memory space is not an issue, Huang's solution would be almost as

good as Misra's solution. This author would not choose Skyum's solution as the best for

any situation.

When for one reason or another it is not possible to superimpose a Hamiltonian ring

upon a network, the solutions based on an arbitrary network topology are the only choice.

The reader should be aware that all values presented are worst case scenarios for the

network and some networks may require fewer cc. Again the additions to the be are the

same in all cases with the exception of Huang's algorithm which requires clock overhead.

In terms of memory overhead, Misra's algorithm now requires a substantially greater

amount of memory than any of the other algorithms. The memory requirements for

Skyum's and Eriksen's algorithm remain the same and the additional memory for Huang's

algorithm is minimal. Therefore if memory requirements are the most important, Eriksen's

algorithm for arbitrary networks would be the best choice.

If keeping the volume of message traffic low is of prime importance, Misra's algorithm

would be the best choice. If the volume of basic communications is relatively low Huang's

algorithm would be a good second choice. If the size of the network was sufficiently small

relative to the basic communications, Eriksen's solution would also be a possible choice.

However, the cc overhead for Skyum's solution does not ever make it a good choice.

In conclusion, we can say that in most cases, Misra's algorithm is the best solution to

the distributed termination problem in the asynchronous distributed case. Huang and

Eriksen share the second choice position dependent upon the situation. Skyum's solution

is not the best solution in any situation.
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Algorithm Additions to

be

Best Case

Overhead

BIDIRECTIONAL BJNG TOPOLOGY

ARBITRARY NETWORK TOPOLOGY

SYNCHRONIZED SOLUTION

[SZYM85] add state

to be

none

Worst Case

Overhead

none

Additional

Memory

[AROR89]
single set flag 2n mn + 2n 4n booleans

probe at snd/rcv 2n integers

multiple set flag
n2

+ n
<mn+2mn2

<
2n2

booleans

probes at snd/rcv <2n2+n integers

[MISR83]
ring set color

to black

2n mn
-+-

n n booleans

arbitrary set color

to black

>3n > 2mn + 3n n booleans

<n2+2n integers

[SKYU86]
ring set active

to true

+
2n2

n + 2mn n booleans

2n integers

1 int constant

broadcast set active

to true

n2

+
2n3 n2

+
2mn3

n booleans

2n integers

1 int constant

[HUAN88]
4n integersring send ack 2n + m < mn +

n2

+ m

update clock

arbitrary send ack

update clock

2n + m 2mn + 2n + m 5n integers

[ERIK88]
ring at recv

ctr := 0

<2n2

<
mn+2n2

n integers

arbitrary at recv

ctr := 0

<2n3

<
mn+2n*

n integers

2n integers

*
In the case where a cycle length or the diameter of the network is used to compute the overhead,

n and a relation (> or <) are substituted for easier
comparison.

^
Notice the agreements are not included in this count. See page 85 of the text for an explanation.

Table 5-1
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6. SOLUTIONS FOR UNRELIABLE CHANNELS

In chapters two thru five we have assumed that the communication channels are reli

able, i.e., messages are not altered, lost, duplicated, or desequenced. The purpose of this

chapter is to look at the results of lifting some of these restrictions from the communica

tion channel. In particular we will release the restriction that all messages must be

delivered in the order in which they are sent. Messages are received in an arbitrary but

finite amount of time - they are not instantaneous.

In chapters 4 and 5 we have claimed that all processes being passive at the same time

instant and all channels being empty of messages are sufficient conditions to declare termi

nation in a distributed system. The FIFO property of message delivery enabled the algo

rithms to guarantee that the channels were empty. With the lifting of this requirement,

other methods must be found to guarantee that all channels are empty. There are two

approaches:

1. Require an acknowledgment to be sent for every be received.

2. Keep a count of messages sent/received.

Dijkstra's algorithm [DIJK80], is one of the earliest algorithms found in the literature and

follows the first approach. There are two researchers, of whom this author is aware, that

follow the second approach: Devendra Kumar [KUMA85] and Friedemann Mattern

[MATT87A] [MATT87B].

Initially one might assume that what is needed is to count all messages sent, S(), and

all messages received, R(). Then when S() = R() becomes true for the system, it may be

assumed the system has terminated. However, in the discussion that follows the reader

will notice that the
method used to count the messages affects the outcome - additional
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conditions may also be required.

6.1. D\jkstra's Solution to the Problem

Dijkstra and Scholten [DIJK80] solve the distributed termination problem through the

design of a signalling scheme to be superimposed on a diffusing computation proper. This

scheme allows the diffusing computation proper to signal the environment when comple

tion of the computation has occurred. The algorithm requires that an acknowledgment is

sent for every be received.

6.1.1. Definitions for Dykstra's Solution

Each process, p,-, needs a method to keep track of how many messages it has received

from its predecessors, py, and therefore how many signals (acks) must be returned and to

whom. Each process, p,-, may be considered to have a bag into which the name of process

p.- is placed each time a message is received from py. A signal may be returned by p,-, to

each py contained in its bag.

A coronet differs from a bag in that a process, p,-, holding a coronet remembers the

name, p*, of the very first process sending a message and placed in the coronet. When it is

time to return the signals, the very last signal to be sent is the signal to p^.

The term deficit is defined to be the number of messages sent along an edge minus

the number of signals returned along it. C is the sum of the deficits of the incoming edges

for any node. D is the sum of the deficits of the outgoing edges for any node.

6.1.2. Approach

Dijkstra and Scholten approach the solution to the distributed termination problem

by designing a signalling scheme to be imposed upon a diffusing computation and requiring

-95-



an invariant to hold during the entire computation. They structure the problem in the fol

lowing way:

1. No process, except the environment, may send a message until it has first

received a message - definition of diffusing computation.

2. At all times, each edge may never have carried more signals than messages -

definition of signalling, a response to a message.

Each edge is assumed to be able to accommodate two-way traffic, but only messages of the

computation proper in the one direction and signals in the opposite direction.

In order to satisfy the second premise in the structure of the problem Dijkstra and

Scholten impose the invariant PO:

PO: Each edge has a non-negative deficit.

PO can be kept invariant by keeping PI and P2 invariant for each node.

PI: C>0

P2: D > 0

Notice that initially C = 0 and D = 0 for all nodes. Only the environment node will have

the right to send a signal and it will always have C = 0 and D > 0. For all of the internal

nodes a message may be sent only if C > 0 i.e., C > 1. By the same token, the last signal

may be sent only if D = 0, i.e., signals have been received for all messages sent. These two

conditions can be guaranteed by keeping

P3: C> 0 or D = 0

invariant. If all nodes keep P3 invariant for themselves, then P3 will be kept invariant

over the computation. Since all edges must carry equal numbers of messages and signals
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when the environment node has D = 0, the computation will be complete and termination

will have occurred. At termination the internal nodes have C = 0 or (C = 1 and D > 0)

and the environment has C = 0 and D > 0.

If process p,- holds a bag to determine which processes, p*, need to receive a signal the

only restriction on
p,- is that the last signal may not be sent unless D 0 for p,-. If a

coronet is used instead of a bag then

P4: all engaged nodes are reachable from the environment via directed paths, all

edges of which have positive deficits.

may also be held invariant. The result is that the diffusing computation builds the tree

which in Francez's algorithms had to be derived by the programmer. Since the environ

ment "has control", when it returns to its neutral state the diffusing computation has ter

minated.

Dijkstra and Scholten demonstrated the truth of this as follows:

(a) each engagement edge connects two engaged nodes (because it has a positive

deficit and, hence, leads from a node with D > 0 to a node with C > 0);

(b) engagement edges do not form cycles (because, when the edge from p,- to py

became an engagement edge, py was initially neutral and, hence, had no outgo

ing engagement edge);

(c) each engaged internal node has one incoming engagement edge (on account of

P3 and because its bag has been replaced by a coronet) .

From (a), (b), and (c) we conclude that the engagement edges form a rooted tree -

1 See chapter 2 for a description of Francez's algorithms.

97-



with the environment at its root - to which each engaged node, but no neutral node

belongs. Hence its edges provide the paths whose existence implies the truth of

P4...[DIJK80,3]

6.1.3. Advantages

The advantage of this algorithm is its simplicity. Although it is not explicitly stated,

for this algorithm to work correctly the final signal from each process, p,, should occur only

when the equivalent of 6,-
becoming true has been met.

Although the algorithm is simple, it does carry a high cc overhead. The number of cc

is m and can never be any lower. In addition there are two integer variables to be main

tained for each process. The be is modified to include a check to see if it is legal to send a

message (i.e., that the node sending is engaged) and a counter (the deficit for that edge) is

incremented. Finally additional code must be added to return the signals: check on condi

tions, send the signal and decrement a counter (the deficit for that edge) .

Despite its disadvantages this algorithm is important for several reasons:

1. It is one of the earliest algorithms to be published (second only to Francez).

2. It is the first algorithm developed for asynchronous communication, and it is also

correct for message order that is not fifo.

3. It is a good example of the use of invariants to develop an algorithm.

6.2. Kumar's Solution

Kumar's purpose in writing this article [KUMA85] is to instruct the reader in the

method used to develop his algorithms. Three initial algorithms are introduced as well as

improvements and variations to them, some of which are incorrect. This is done for the
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purpose of aiding the reader in gaining insight into the problem.

Kumar looks at three classes of algorithms:

o

1. algorithms which assume a single cycle in the network, not necessarily a simple

cycle, and count the be sent/received on each line

2. algorithms which assume a single cycle in the network, again not necessarily a

simple cycle, and count the total number of be sent/received in the system

3. algorithms which assume multiple cycles (these do not have to be disjoint)

This third class takes specific properties of the network into consideration and cannot be

considered a generic solution. As the number of cycles increase, it degenerates to an algo

rithm for the centralized case. Therefore, this author chooses not to discuss it in this

paper.

The variables used for class 1 of this algorithm are all arrays of integers with dimen

sions sufficiently large to include each edge of the network. They have the following mean

ing for the class 1 algorithms:

sntm an array carried by the probe to indicate all messages sent in the system

recm an array carried by the probe to indicate all messages received in the system

sntpi an array which contains a count of all messages sent out on each edge by p,

recpi an array which contains a count of all messages received by p, along each

edge

2 Kumar defines a cycle to include every process of the network at least once - all edges do

not need to be traversed.
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srm used in the improvement to the algorithm as the sole contents of the probe

srm = sntm recm

Note: sntpi and recpi are large enough to contain a count of messages for every edge in the

system even though p,-

may not be a vertex on that edge. Initially Kumar suggests all

arrays are initialized to 0. However, in an attempt to eliminate the need to keep track of

whether or not a complete cycle has been made at least once, initializations for each edge,

e, are made as follows:

sntm(e) :l

recm(e)
:= 1

sntpi(e) :=0

recpi(e) :=2

For both classes of algorithms based on a single cycle, Kumar uses an algorithm skele

ton. Although Kumar does not use the statements disable and enable, this author borrows

them from Skyum and Eriksen [SKYU86] to indicate the atomicity of a visit by the probe.

The skeleton is as follows:

After the probe arrives at p,, it waits until 6, is met.

disable

sntm := sntm + sntpi

sntpi
:= 0

recm := recm + recpi

recpi
:= 0

enable

Declare termination or depart from p,
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The algorithm is simple to understand; however, it is quite inefficient. Whenever a be

is sent/received sntpi/recpi must be incremented for the edge that carried the be. There is

a single probe token placed randomly at some process in the system. Each node contains a

list of the next node for the probe to visit. If the cycle is simple there will only be one

name in the list, otherwise the node must also remember to which node the probe is to be

sent at its next visit. The probe carrys two arrays with dimensions |c| the length of the

cycle. Each node also has two arrays of dimension |c|. When the probe reaches each node

it adds sntpi/recpi to the appropriate values in the probe and resets sntpi/recpi to 0. The

major question to be asked concerning this algorithm is: 'When may termination be

declared?'

The condition sntm = recm is sufficient if the probe has made at least one com

plete cycle of visits. The second set of suggested initializations guarantees that all

processes have been visited at least once. Since the probe is not passed on until a process

is passive, if the probe ever finds sntm
= recm then all processes are passive and all chan

nels are empty.

Additional memory required is n counters for each edge of a fixed communication

graph, or, in the case of a Hamiltonian cycle, a total of n counters. In the best case the

count of cc will be | e | - if the network is a Hamiltonian cycle it is n. In the worst case

the count of cc will be m( | c |
- 1). The cost of this algorithm in terms of memory, and

communication overhead
- both be and cc - is quite high. Kumar suggests several possible

improvements:

1. use only one array, srm, in the probe

2. reduce the size of the arrays at individual nodes
- so that they contain only the

edges connected to p,
- but add a mapping function from names for the edges
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connected to p,- to the global names for the edges

Neither of these improvements solve the most serious problems - messages on each edge

are counted separately and the size of the probe is dependent on the number of edges in

the network.

The algorithms for class two are an attempt to reduce the size of the message carried

by the probe. The meanings for the variables used in class 2 algorithms are as follows:

sntm2 the probe carries an integer to indicate the total number of messages sent in

the system

recm2 the probe carries an integer to indicate the total number of messages

received in the system

sntp
2,- integer to indicate the total number of messages sent by

p,-

recp
2,- integer to indicate the total number of messages received by p,-

srm2 used in the improvement of the algorithm as the sole contents of the probe

srm 2 = sntm2 recm 2

Note: each of these variables is initialized to 0.

The algorithm for class 2 counts total messages in the system. The algorithm works

in the same way as for class 1. The difference in the use of the variables requires a new

answer to the question: 'When will the probe be able to declare
termination?'

This

method allows false detection of termination to occur. Kumar [KUMA85,89] presents an

example "to show that there exist computations where in an infinite sequence of visits, the

probe continuously finds that sntm2=recm2, i.e. termination has occurred, and yet the

primary
computation never

terminates."

Consider the following case [KUMA85,89]:
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Consider a network of 10 processes. The cycle C is the elementary cycle 1, 2, ...,

10, 1. Initially the probe is at process 1, process 5 is active, and process 10 is idle.

Processes 1-4 and 6-9 never send or receive a primary message and are always idle.

Consider the following sequence of events at processes 5 and 10:

1. 5 sends a primary message to 10, 10 receives it, 10 sends a primary message

to 5, 5 receives it. At this point 5 becomes idle and 10 remains active.

2. The probe visits 5, and departs.

3. 10 sends a primary message to 5, 5 receives it, 5 sends a primary message to

10, 10 receives it. At this point 10 becomes idle and 5 remains active.

4. The probe visits 10, and departs.

5. The above steps 1-4 are repeated indefinitely.

Obviously, after every visit the probe will find that sntm2 = recm2. But the pri

mary computation would never terminate!

A correct algorithm must not detect termination in this example. This situation

proves that sntm2 = recm2 at the end of a visit is not sufficient to detect termination.

However, Kumar suggests that if at the beginning of the visit snip
2,- = recp2,- = 0 and

sntm2 = recm2 after the visit for a full cycle of |e| visits, then termination may be

declared. Notice this means that p,- has neither sent nor received any be since the last visit

by the probe.

3
Kumar offers a more efficient algorithm by making the following changes:

1. check that recp2,
= 0 before each visit

2. check sen*m2=recm2 only at the end of the visit to the last process in the

cycle.

Every time the probe finds recp2,
=*= 0 before a visit, a new cycle is started. In addition

memory may be conserved by replacing sntm2 and recm2 by srm2 = sntm2
-

recm2 and

replacing snip2, and recp2, by srp2,
= sntp2t

;- recp2,. In order to maintain the check

recp2,- = 0 before each visit, recp2, becomes a boolean flag to indicate if a be has been

3 the number of cc required
to detect termination after termination has occurred is reduced.
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received since the last visit by the probe.

Kumar offers three methods of detecting the end of a cycle:

1. Sequence Length Counter - the probe carries a counter, ctr, initially set to 0. If

recp2,- = 0, the counter is incremented, otherwise it is reset to 1. At the end of

each visit, check the counter. If ctr > \ c | then check the condition

sntm 2 = recm2. If this condition is false, then at the beginning of the next visit,

since ctr > \ c \ , ctr is reset to 1.

2. Round Number - each process remembers the round number which the probe

carried at the last visit. Whenever the probe visits a process and finds recp2,-
=#

0, the round number is incremented. When the probe encounters a process with

the same round number, if
recp2,- = 0 at the start of the visit and sntm2 recp2

after the visit, then termination may be declared. The round number of the

probe is initialized to 1 and the round number of the processes is initialized to 0.

3. Initial Process Id - the probe keeps the name of the initial process in the current

cycle of visits. Whenever recp2,- =#= 0, the process id is changed to be the current

process. When the probe returns to the process carried in initial process id, finds

recp2,- = 0 at the start of the visit and sntm2 = recp2 then termination may be

declared.

This algorithm reduces the communication length of the cc, as well as the additional

4 i

memory
requirements. The number of cc used in the best case is 1 2c | . In the worst

case, the
number of cc is ( | c |

-

1) * (m) + | c | .

4 This assumes that every process sends at least 1 be. If no process sends any be, the best

case is I c I .
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6.3. Mattern's Solutions

Mattern [MAT87B] offers several algorithms, which he claims are efficient, for the

solution of the termination problem. They are all based on the idea of message counting,

but have differing characteristics. The five groups are as follows:

1. The four counter method

2. The sceptic algorithm

3. A time algorithm

4. The vector counter method

5. Channel counting.

The first two groups require two probes to detect termination - the initial probe and a con

firming probe. The latter three groups require only one probe. The vector counter

method is explained in great detail in a different article by Mattern [MAT87A].

In previous chapters we have assumed a transaction oriented model of distributed

computation. Mattern assumes an atomic model of distributed computation.

6.3.1. The Four Counter Method

In the four counter method, each process, p,-, keeps track of all of the messages that it

sends/receives. Any process, py, can initiate a probe. When the probe visits p,-, it adds the

number of messages sent by
p,- to its cumulative total of messages sent, msg.SQ, and the

number of messages received by p, to its cumulative total of messages received, msg.RQ.

When the probe returns, a second probe is sent out, holding msg.S'Q and msg.R'Q. When

the second probe returns if msg.SQ
=

msg.RQ
=

msg.S'Q
=

msg.R'Q then termination

4 See chapter 1 page 4 for the definition of an atomic model.
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may be declared. The problem with this method of detecting tennination is that there is

no answer to the question 'how often should a probe be reinitiated?' and the network may

be flooded with unnecessary probes.

This algorithm requires two additional integers in memory at each node. In addition,

S()/R() must be incremented at each send/receive. Mattern does not specify the network

topology for this algorithm; however, for a ring, the best case overhead will be 2n, and

there is no upper bound for the worst case. If there are multiple probes, the best case over

head will be 4n2.

6.3.2. The Sceptic Algorithm

A sceptic algorithm is an algorithm that makes use of a flag to detect the occurrence

of a send/receive of be between probes. We've seen examples of sceptic algorithms in

Dijkstra's [DIJK83] and Topor's [TOP084] colored token algorithms, in Francez's third

algorithm [FRAN82], and in Kumar's class 2 algorithm [KUMA85]. Mattern 's sceptic algo

rithm adds flags to the four counter algorithm and works as follows:

As the first probe goes around the ring it initializes the flags of each process to true

and accumulates the number of messages sent/received. If msg.SQ
=

msg.RQ then a

second probe is sent out which only checks the flags, otherwise a new first probe is

initiated. During the second probe, if no flag has been found set to false (because a be

has occurred) then termination is declared, otherwise a new first probe is initiated.

This algorithm is best used in a centralized or single token network. It is not used as

easily in a ring because probes from different processes may interfere with each other when

processes use a single flag. In a ring the best case overhead will be 2n if a single token is

used. In a multiple token solution, the best case overhead will be 4n . There is no upper
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bound on the cc for the worst case. Overhead for the be is to set the flag at either a send

or a receive, and to increment either SiQ or RiQ. Additional memory is two counters at

each node for be sent/received and the flag. When multiple probes are used, there will be n

flags at each node.

6.3.3. A Time Algorithm

In the time algorithm presented by Mattern, only one probe is needed to detect termi

nation - no confirmation probe is required. Each process, p,-, makes use of the following

variables:

clock the local clock, a counter initialized to 0

count the local message counter, it is equivalent to S{Q riQ

tmax the latest send-time of all messages received by p,-, initialized to 0

tstamp the time stamp on any be

The probe, msg, consists of the following information:

time the timestamp of the cc

count the accumulator for the message counters

invalid the flag that indicates that a be has been received since the last round

init the id of the process initiating the probe

Whenever a be is sent, count is incremented and be is timestamped with clock. When a be

is received, count is decremented
and clock is reset to the greater of tstamp and tmax. A

probe is initiated by incrementing the clock, setting
msg.time to this new value for the

local clock, initializing msg.count to count and msg.invalid to false, and sending the probe

to succ(p,). When a probe is received, the local clock is synchronized to the max of
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msg.time and clock. Then if this process was not the initiator, then msg.invalid is set to

msg.invalid or tmax > msg.time, and msg. count is incremented by count and passed on to

the next process. If this process is the initiator, then if msg. count is 0 and msg.invalid is

still false, then termination may be declared. If termination is not declared, a new probe is

initiated. Mattern does not suggest a method for limiting the number of times a probe is

reinitiated.

The additional memory requirements for this algorithm are three integers for each

process. The be are augmented with a time stamp, and whenever a be is sent/received a

counter is incremented/decremented. In the best case the cc overhead is < n2, and in

the worst case there is no upper bound.

6.3.4. Vector Counters

The purpose of this method is to count messages in such a way that it is not possible

to mislead the accumulated counters. A ring topology is assumed and every process, p,-,

maintains a vector, counti, f length n. The probe, a single token, also contains a vector,

msg.count, of length n. The system initiates the single token and any process may detect

termination while it is holding the token. In a previous article [MAT87A], Mattern expli

citly states that each process has an additional flag, have_vector, that indicates whether or

not the token is currently visiting that process. The counti are used to count the number

of messages each
p,- sends/receives since the last visit of the probe. Whenever p,-

sends a

be to pj, counti[j] is incremented. Whenever p,-
receives a be, count,-[j] is decremented.

When the token visits process p,-, the contents of msg.count is added to counti. If the

5 The first process, p,-, to become passive initiates a probe. As p,'s probe reaches p;) the

successor of p,-, Pj goes passive. No probe meets an active process. There are actually

"("+1)
cc.

2
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result of this operation is that countAi ] > 0 then some process has sent a be to p,-
and

p,-

holds the token until the be is received and only then is the token passed on. If count,[t]

< 0 then if msg.count =
0* (the null vector) then termination may be declared. If

msg.count =#=
0*

then msg. count is set to counti, the token is passed to the next process in

the ring, and counti is reset to 0*. In order to guarantee that the probe makes at least one

complete round of visits before declaring termination, msg. count [j] is initialized to 1 for all

j and count^i ] is initialized to -1 for each process i (for all j, j =*=

', count,[y] is initialized to

0). This is explicitly mentioned in the previous article [MAT87A] although it is not men

tioned here [MAT87B]. This method is very similar to Kumar's improvement for class 1

algorithms.

When this algorithm is used on a ring topology, the best case for cc overhead is n and

the worst case overhead is mn. However, the message carried by the probe is length n.

The addition to memory is a boolean and an array of n integers at each node. The additon

to the be is an increment/decrement at every send/receive.

6.3.5. Channel Counting

In the vector counter method each message was counted twice; by its sender and by

its receiver. The sender had individual counters indexed by the recipient of the messages,

whereas the receiver did not differentiate between the senders. Mattern regards the chan

nel counting method as a refinement of the vector counter method; the receiver takes note

of the sender and keeps track of the number of messages received by each node, using the

appropriate counter. This principle is similar to the class 1 algorithm presented by Kumar

[KUMA85] which is based on counting messages on every communication channel.

Because the algorithms are so similar, Mattern's version will not be described here.
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6.4. Summary

At first glance, the total amount of overhead for all of the algorithms looks similar.

However, it must be remembered that the length of the probe for Kumar's class 1 and

Mattern's vector and channel counting algorithms is dependent on the size of the network,

and therefore, the communication overhead is substantially raised. In addition these three

algorithms use substantially more memory than the others, although the additions to the

be are comparable.

Mattern's Four Counter, Sceptic, and Time algorithms may also have a heavy com

munication overhead because there is no restriction on how often probes are initiated,

although the use of memory and the additions to the be are within normal range. The

communication overhead is even higher for the Four Counter and Sceptic algorithms when

there are multiple initiators of tokens. By eliminating these six algorithms, we are left

with two algorithms to choose from to detect termination in the asynchronous distributed

case with non-FIFO message passing:

Dijkstra's algorithm

Kumar's algorithm for class 2

Kumar's algorithm requires less memory than Dijkstra's algorithm. In addition

Kumar's algorithm requires fewer cc than Dijkstra's algorithm in the best case and is of

the same order of magnitude in the worst case. This author's choice of detection algorithm

is Kumar's; however, Dijkstra's algorithm is extremely simple to understand and could be

used in an arbitrary network if memory space is not a problem.
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Algorithm Additions to

be

Best Case

Overhead

Worst Case

Overhead

Additional

Memory

DD7FUSING COMPUTATION MODEL

[DIJK80] incr deficit TO TO 2n + m inteeei
ok to send msg?

add receiver

to coronet

RING NETWORK TOPOLOGY

[KUMA85]1

class 1 at send/recv

incr count

c mc c integers

class 2 at send:

incr count

at recv:

deer count

set flag

2c mc + c n integers

n booleans

[MAT87B]

4 ctrs at send/recv 2n
3

A 2 4
4n

no upper 2n integers

incr count bound

sceptic set flags
2n3

A 2 4
4n

no upper 2n integers

at send/recv bound n booleans

incr count

time at send

incr count

timestamp

at recv

deer count

<n2

no upper

bound

3n integers

vectors

reset clock

at send n win
n2

integers

incr count n booleans

at recv

deer count

2

3

4

5

A cycle is used for both of Kumar's algorithms, if it is a Hamiltonian cycle n edges are required,

if not c>n edges are required.

The size of the probe is dependent upon the number of processes in the system.

A single token is used.

Multiple tokens are used.

If multiple tokens are used, then
n2

booleans are required.

Table 6-1

- Ill



7. A NEW ALGORITHM

In chapter 5, three algorithms were presented that allow any process to initiate a

detection probe at any time, Eriksen [ERIK88], Arora and Gupta [AROR89], and Huang

[HUAN88]. Both Arora and Eriksen have best case communication overheads of 0(n2)

and Huang has a best case overhead of 2n + m. All three algorithms have worst case com

munication overheads of
0(n2

+ mn). Arora's algorithm keeps track of the state of the

neighbors of each process, Eriksen's algorithm makes use of counters, and Huang's algo

rithm makes use of a virtual clock. This author presents an algorithm for the asynchro

nous FIFO message ordering case that has a comparable overhead and uses tokens.

In the belief that the simpler the algorithm is to understand, the greater the chance

that it will be efficient, we start with the concept of keeping track of whether or not a pro

cess has been passive for the entire time since the last visit of the probe. This requires

that each process maintain a single variable, 6c,-, to indicate when a be has been received.

Initially
6c,- is assigned the value false. It is also assigned the value false whenever a be is

received. When a probe arrives at an active process, it is immediately purged. If the pro

cess is passive, the value of
6c,- is checked. A value of false falsifies the probe. Before leav

ing pi, a value of true is assigned to 6c,. If a probe can return to its initiator unfalsified, all

6c,-
were true, then termination can be declared. This will take one round of visits to ini

tialize the probe and a second round of visits to guarantee that the process has not been

active.

This is essentially Dijkstra's algorithm [DIJK83] using boolean values instead of

colored tokens. The problem is that since every process can initiate a probe, the probes

may
interfere with each other by resetting 6c,. Therefore, we need a way for each probe to
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check the status of a process in the current time interval without interference from others.

One way of doing this is for each process to maintain an array of 6c,-, one for each process

in the system. Then when a probe from pj visits process p,-, it checks the value of 6c,[j]

and then reassigns it the value true when it leaves. In this way, we have eliminated

interference by probes from other processes. The idea of maintaining an array is borrowed

from Mattern's vector algorithm [MATT87B].

Now there will be no interference between probes; however, the system will be flooded

with cc. We need a means of controlling the number of probes sent out. Answers for the

following questions are required:

1. Must a process send out a probe every time it becomes passive?

2. If a probe returns falsified after the second round should a third round be ini

tiated?

3. May a single process initiate multiple probes?

When the last process in the system, p,-, becomes passive, it does not send out any be. If

this were not the case, some other process would be guaranteed to be active after p,. This

leads us to believe that if a process does not send out any be during this activation, it

might be the last active process in the system. If this is the case, we could require that

every process maintain an additional variable, senti, that is assigned the value true each

time a process sends a be. Initially senti is assigned the value false. After verification of

its value, senti is also
assigned the value false just before p, becomes passive. Then we can

require that a process may not initiate a probe
unless senti ^ equal to false. In reality this

is not the case. Consider the following scenario: Four processes, A, B, C, and D are con

nected in a ring as shown in the figure below. Process A sends be to B, C, and D and
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remains active. Process B sends be to C and C sends be to B and then both become pas

sive. After receiving the message from A, D returns a message to A and then goes passive.

After process A receives the message from D, A goes passive. Clearly A is the last process

in the system to go passive; however, because A has sent messages during this activation,

it will not initiate a probe. Neither will B, C, nor D. Therefore, no probes will be initiated

and termination will not be detected.

Next we consider the possibility of changing the meaning of the variable, senti, to

mean that a be has been sent out after the most recent be was received. The variable

senti is initially set to false. After every receipt of a be, senti is assigned the value false

and after every send of a be, senti is assigned the value true. When a process becomes

passive, a probe is initialized only if senti is false. Then only processes that could be the

last active process in the system can initialize probes. The problem here is to guarantee

that a probe is initialized every time termination occurs. There are two cases: 1)
p,- does

not send any be after receipt of the last be and 2)
p,- does send a be after receipt of the last

be. In the first case
sent,- remains false and a probe is initiated. In the scond case, senti is

assigned the value true and a probe is not initiated. We must be able to guarantee that

there will always be a process that does initiate the final probe. There are several possibili

ties:
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1. After receiving a message from pj,
p,- is required to send a message to p^ as a

result of the message from py and then
p,-

goes passive immediately.

2. The work of
p,- is interrupted by a be from py. No work is required as a result of

the be from py;
p,-
sends a message to p* and then immediately goes passive.

3. Same scenario as in case one except that p,-
remains active indefinitely.

4. Same scenario as in case two except that p,-

remains active indefinitely.

In cases one and two,
p,- does not initiate a probe and there is still an active process in the

system. If p^ becomes passive without sending a be, p* will initiate a probe and termina

tion will be detected. If pjt does send a be, some other process will be the last active pro

cess and will initiate a probe.

Cases three and four present a problem. Because p,- has sent out a be after receipt of

the last be,
p,-

will not initiate a probe when it becomes passive. Assume that after receipt

of the be, p* goes passive and initiates a probe. The probe finds p,-
active and is purged.

Process p,-

eventually goes passive; the application is terminated but it will never be

detected.

A solution to this problem is to maintain another variable at each node, purgedi. The

purpose of this variable is to remember if a probe has been purged by p,-. In cases three

and four described above, termination will not be detected if a probe is purged. Note that

a purged probe is only important if this action has
occurred since the receipt of the last be.

Therefore,
p,- should initiate a probe if it has not sent out any be since receipt of the last

be or if it has purged a probe since receipt of the last be. This will cause a few more

probes to be initiated, but will also guarantee the detection of termination.
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Now consider the second question, should a third round of the probe be initiated if

the second round returns falsified? Ideally the answer to this question should be no. We

want to limit the number of unnecessary cc. A probe is falsified if between its first and

second round, any process has received a be. In this situation, it is possible for a probe

from pj to never actually encounter an active process and yet to be falsified on the second

round. If this is the case, then some process will become passive after
p.-

and another

probe will be initiated. Therefore the probe from py may be eliminated after the second

round.

Finally, consider the third question, may a single process initiate multiple probes? The

answer has to be yes. Consider the following scenario: The probe of
p,- is purged by the

active process p*. The chain of events is such that no further probes are initiated and p,- is

reactivated. If p,- does not send any be and it is the last active process in the system, it

must be able to initiate a probe when it becomes passive.

Furthermore, only one probe per process may be circulating in the ring at any given

time. If Pi has two probes in the system at the same time, they can interfere with each

other and cause the detection of a false termination. This may be remedied by requiring

each probe to carry a sequence number. If a process ever receives a probe of its own which

carries a sequence number less than the current sequence number, the probe is purged. In

an effort to reduce the communication overhead, the sequence number and the round

number can be represented in a single integer - odd numbers represent round one and even

numbers represent round two.

- 116



If we are to use this method, the probe must contain the following information:

SeqNbr An integer, initially 0, that represents both the sequence number and the

round number - an odd integer represents round one and an even integer

represents round two

flag This is a boolean which is initialized to true to indicate that no process

has been active since the last visit

init The name of the initiator of the probe

Additional memory at each node is:

6c,- An array holding n boolean values, all initially false, to indicate whether

or not a be has been received since the last probe received from the

process indicated by the index into the array

senti A boolean, initially false, that indicates whether or not p, has sent any be

after the receipt of the last be

purgedi A boolean, initially false, that inidicates whether or not p, has purged any
probes after the receipt of the last be

seqdmi An integer, initially 0, that indicates the value of the sequence number

used on the most recent detection message

When a be is sent by
p,- to pj the following code is executed:

senti
:= true;

When a be is received by p, from pj the following code is executed:

for k := 1 to n do

bci[k] := false;

senti
:= false;

purgedi
:= false;

When process p, becomes passive the following piece of
code is executed:

if purgedi or
->

senti then

msg.SeqNbr := seqdmi + 1;

seqdmi
:=

seqdmi + 2;

msg.flag := true;

msg. init :=p,-;

send (succ(p,), msg, p,);
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When a process py receives a probe initiated by p the following piece of code is executed:

if - 6y then
purge the detection message

purgedj
:= true;

else if msg.init = pj then

if 6cy[t']=true then

msg.flag := false;
send (succ (py), msg, pj);

bcj[i] := true;

else

send (succ(py), msg, p;);
else if msg.init = pj then

if msg.SeqNbr + 2< seqdmi then

purge detection message

else if Odd(msg.SeqNbr) then
msg.SeqNbr := msg.SeqNbr+ 1;
msg.flag :=true;
send (succ (p;), msg, pj);

else {Even(msg.SeqNbr)}
if msg.flag = true then

initiate termination

else

purge detection message

Using Apt's criteria [APT86], we can show that this algorithm is correct.

1. When termination is declared, all processes will be passive. This is true because

any probe that returns to its initiator unfalsified after the second round will have

guaranteed that no process is active.

2. The algorithm does not cause deadlock of the computation because it does not

interfere with it in any way.

3. When all processes become passive, termination will eventually be declared. The

development of the algorithm shows that this is true.

4. If not all processes are passive, then eventually a statement from the original

program will execute. The algorithm does not interrupt execution of the applica-

118-



tion and therefore statements from the application itself are free to execute.

The memory overhead for this algorithm is n + 2 booleans and one integer at each

node. This is substantially less than the memory requirements for Arora's algorithm and

comparable to Huang's memory overhead if the n + 2 booleans can be stored in the same

amount of memory space as a single integer.

At the send/receive of a be, this algorithm requires updating of 1 or more booleans as

does Arora's algorithm. Eriksen's algorithm requires updating an integer value and Huang's

algorithm requires an update to the clock and an acknowledgement of the be.

The communication overhead for this algorithm in the best case is 2n. The best case

overhead is 2n + m for Huang's and 0(n2) for Arora's and Eriksen's algorithms; therefore,

2
there is some savings in the communication overhead. In the worst case the communica

tion overhead has an upperbound of
2n2

+ 2mn. This communication overhead is signifi

cantly less than the overhead for Arora's algorithm
(2mn2

+ mn), about equal to the over

head for Eriksen's algorithm
(2n2

+ mn), and approximately double the overhead for

Huang's algorithm
(n2

+ mn + m).

Overall, the overhead for this algorithm is comparable to the three other algorithms of

its type. It has a better best case communication overhead than the other algorithms and

the potential for a better worst case overhead as well.

1 The best case for this algorithm is when every process sends a be for every be received.

Then only the last
process to become passive will initiate a probe because it does not send

out a final be.

2 Initially all processes but one go passive without sending be, all remaining messages cause

a probe to be initiated and all probes never encounter a process while it is active.

Therefore, all probes will go around the ring twice before being purged. The last message

will eventually
cause the initiation of a probe that detects the termination.
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8. CONCLUSIONS

In this paper we have looked first at centralized algorithms and then at distributed

algorithms for each type of communication. Initially, it had been this author's assumption

that centralized algorithms would be easier to understand and control, but that bottlenecks

would occur; therefore distributed algorithms would be more efficient. However, we have

seen that distributed algorithms that allow any process to initiate detection of termination

have the largest communication overhead and researchers have not been able to reduce

this overhead to that of a single token algorithm or a centralized algorithm.

Chapter 3 considered the synchronous distributed case and found three correct algo

rithms in the literature. All assumed a Hamiltonian ring topology. Only one allowed any

process to initiate probes, but it required a larger communication overhead, larger memory,

and more additions to the basic communication component. Chapter 5 considered the

asynchronous distributed case with a FIFO ordering for message passing. The algorithms

of six researchers were reviewed. Three of these algorithms allowed any process to initiate

a probe. These three have a communication overhead greater than the overhead of the

other algorithms by an order of magnitude. Furthermore, two of these algorithms also had

a significantly larger memory overhead. Chapter 6 considered the asynchronous case with

a non-FD70 ordering for message passing. In this group there are only three algorithms

which allow any process to initiate probes. Again, the communication amd memory over

heads are significantly higher. In chapter 7 this author presented a new algorithm that

allows any process to initiate a probe. It has an overhead equivalent to the overhead for

the chapter 5 algorithms that allow multiple probes. The reader should note that, despite

the additional overhead, these algorithms are not able to
detect termination after it occurs

any more quickly than other algorithms.
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The reason for this problem is rooted in Francez's idea of time intervals [FRAN81].

Each probe must verify that no be have occurred since its last visit. However, if there are

multiple probes circulating in the network, the algorithm must guarantee that no one

probe changes the information another probe needs to read. This results in the larger

memory requirements. A larger problem is that in most algorithms, if all processes ini

tiate a probe whenever they go passive, then there are n probes all gathering the same

information, and the result is redundancy.

The goal of researchers in general seems to have been a decentralized algorithm.

However, experience has shown that a fully decentralized algorithm is not efficient. Single

token algorithms, in which the token is positioned at random by the system initially and

termination is declared by any process, seem to be the most efficient distributed algo

rithms.

In this chapter the author will reach some conclusions as to which algorithm is the

best under different conditions. Consider three situations:

1. Synchronous communication is used.

2. Asynchronous communication is used and FIFO ordering of messages is

guaranteed.

3. Asynchronous communication is used and FIFO ordering of messages is not

guaranteed.

For each of these situations the following cases will be considered:

1 Exceptions are the algorithm of Apt and Richier [APTR85] that kills probes when they

are falsified and Arora [AROR89] that allows any process to initiate a probe but only under

certain conditions and
also allows a process to purge a probe if it is falsified.
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1. termination must be detected quickly after it occurs

2. memory overhead must be kept low

3. communication overhead must be kept low

Tables containing the communication and memory overhead for the algorithms may be

found at the end of each chapter. In addition we will also consider the size of the probe

and the amount of time, t, it takes after termination actually occurs to detect that termi

nation has occurred. We will use the time it takes to send one cc as a measurement for

the basic unit of time. In situations where more than one cc may be sent at the same

time, the time for these multiple cc will be measured as one unit of time. The size of the

probe also affects the time, t; however, this author will not include the size of the probe in

the time measurement but will indicate where the probe size adversely affects the time

measurement.

8.1. Synchronous Communication

Tables for algorithms using synchronous communication can be found in Section 2.6

and Section 3.5. Additional information can be found in Table 8-1.

In a real-time system, the most important factor is that termination be detected

quickly so that the next step may be initiated. If synchronous communication is used, the

three best algorithms based only on the time it takes for termination to be detected after it

actually occurs, would be those of Francez [FRAN80], Misra and Chandy [MISR82], and

Arora and Sharma [AROR83]. However, the reader should remember that Francez actually

stops the computation each time a check for termination is made and Misra must send

multiple signals for every be sent. In addition the memory requirements and cc overhead

for Misra's algorithm are much higher than those for Arora's algorithm. Although Arora
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requires the use of a distance function, the cc and memory overhead for this algorithm are

much smaller than for Misra's and Francez's algorithms. Arora's probe must carry an

integer and the probes of the other two are empty; however, this author would recommend

Arora's algorithm to be the best choice in this situation.

In the case where memory is at a premium, the best algorithms are those that require

memory only for booleans: Francez [FRAN80], Topor [TOP084], and Apt [APT86]. Of the

three, Apt has the smallest requirement -

only 16 bits of memory for every 8 processes in

the system. Again, Francez's algorithm is not a good solution due to its slowdown of the

basic computation. Apt's algorithm makes the same addition to the be overhead and has

the same probe size as does Topor's algorithm. However, Apt's cc overhead is smaller than

Topor's. For these reasons, Apt's algorithm is recommended by this author when memory

requirements are stringent.

When the communication overhead must be low so that an application can complete

its work quickly, as in an operating system, the best algorithms are: Francez and Sintzoff

[FRAN81], Apt [APT86], and Arora and Sharma [AROR83]. In these algorithms the cc

overhead is smaller than all of the other algorithms using synchronous communication and

the probes themselves are also small. Arora sends fewer cc messages than Apt; however,

each of Arora's messages contains an integer and Apt's only contain a boolean value. In a

system where messages have no minimum size restriction, Apt's algorithm actually has a

lower cc overhead because of this difference in size. Although, their overheads are the same

in every other respect, Francez has a larger memory requirement than Apt. For this rea

son, this
author recommends Apt's algorithm for this situation.

Overall both Apt's [APT86] and Arora and Sharma's [AROR83] algorithms would
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make good choices in the synchronous case.

Algorithm Probe Size Time after

Termination

SPANNING TREE TOPOLOGY

[FRAN80] empty < n

[FRAN82] boolean flag <2n

[TOP084] boolean flag <2n

DD7FUSING COMPUTATION MODEL

[MISR82] empty < n

RING NETWORK TOPOLOGY

[FRAN81] (centralized) boolean flag n

[AROR83] (single probe) 1 integer < n

[APTR85] (multiple probes)

(initiated)

2 integers <2n

[RICH85] (multiple probes)
(initiated)

boolean flag
1 integer

n2

[APT86] (centralized) boolean flag n

Table 8-1

8.2. Asynchronous Communication

8.2.1. FD70 Ordering for Messages

Tables for algorithms using asynchronous communication can be found in Section 4.9

and Section 5.6. Additional information may be found in Table 8-2. The reader should

notice that the algorithm presented by Skyum et al [SKYU86] is not considered because it

slows down the application by causing it to execute synchronously.
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Algorithm Probe Size Time after

Termination '

SPANNING TREE TOPOLOGY

[AROR88] 1 integer

2 bits

< n

[CHAN90] 2 bits </*

DD7FUSING COMPUTATION MODEL

[ROZO86] < n integers [0,n)

RING NETWORK TOPOLOGY

[DIJK83] (centralized) boolean flag [n, 2n)

[MISR83] (single probe) 1 integer [fi, 2n)

[HUAN88] (broadcast)
(multiple probes)

2 integers

2 bits

n

[ERIK88] (share info)
(multiple probes)

1 integer
<2n2

[NEWALG] (tokens)
(multiple probes)

2 integers

lbit

(n, 2fi]

ARBITRARY NETWORK TOPOLOGY

[MISR83] (single probe) 1 integer
[e,2c)*

[HUAN88] (broadcast)
(multiple probes)

2 integers

2 bits

[2,2n)

[ERIK88] (share info)
(multiple probes)

1 integer
<2fi2

BDDD1ECTIONAL RING TOPOLOGY

[AROR89] (centralized)
1 integer

2 bits

(.5n, 1.5n)

[AROR89] (shifting initiator)
(of single probes)

1 integer

lbit

(.5fi,n + 2)

[AROR89] (multiple probes)
1 integer

3 bits

[n, 2n]

Table 8-2
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Time is measured by computing the number of cc messages sent since hops take

1 unit of time. In situations where multiple messages can be sent at the same

time instant, these are counted as 1 unit of time.

/ represents the number of levels in the tree and is less than n.

c represents the length of the cycle in the network.

Looking just at the time to detect termination after it occurs, the best algorithms for

detecting termination quickly are presented by Arora and Gupta [AROR88], Chan

drasekaran and Venkatesan [CHAN90], Rozoy [ROZ086], and Huang [HUAN88]. Arora,

Huang, and Rozoy all take about the same amount of time to detect termination after it

occurs. However, it should also be noted that the algorithm presented by Rozoy uses a

probe which can carry as many as n integers. The size of this probe slows down the com

munication and therefore, this could be the slowest of these three algorithms. In addition

the reader should notice from Table 4-1 that the overhead is tied to the number of be sent

during the application.

Arora's algorithm slows down the computation at the receipt of be by requiring the

send of at least one cc (an ack and possibly
'I-am-up-again'

messages). Huang's algorithm

also requires an ack for every be sent. This leaves Chandrasekaran's algorithm as the best

choice: it takes a minimal amount of time to detect termination after it occurs, the probe

size is very small, and there are no cc sent as a result of be. The memory requirement is

quite large, but this is the trade-off for a quick detection of termination.

In the situation where memory is at a premium the best algorithms are: Misra

[MISR83], and Dijkstra and van Gasteren [DIJK83]. Both of these algorithms require only

n booleans and both assume a ring network topology. These two algorithms have the same

overhead in all cases but one: Dijkstra's probe size is a boolean value, Misra's is an integer

value. Therefore Dijkstra's algorithm would run somewhat faster than Misra's. It is
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interesting to note that Dijkstra's algorithm is a centralized version of Misra's single token

algorithm.

The last situation considered is when the communication overhead must be low so

that the application can complete its work quickly. The best algorithms for this case are:

Chandrasekaran and Venkatesan [CHAN90], Dijkstra and van Gasteren [DIJK83], Arora

and Gupta [AROR89], and Misra [MISRA83]. These four are chosen initially because their

best case communication overhead is O(n) and their worst case communication overhead is

0(n+m). The best case communication overheads of the others are either 0(n2) or

0(n+m). Both Arora's centralized and single token algorithms require the probe to carry

an integer and a bit flag. Misra's algorithm requires the probe to carry an integer.

Dijkstra's and Chandrasekaran's algorithms have the smallest probes - a max of 2 bits. As

the number of be increases, Dijkstra's algorithm's worst case overhead increases at a much

greater rate than Chandrasekaran's. Therefore, this author recommends Chandrasekaran's

algorithm when communication overhead must be low.

It is interesting to note that in a ring topology, a centralized versus a distributed sys

tem makes no difference in the overhead - a simple algorithm may be found for each that

requires little overhead in all areas: Dijkstra's centralized algorithm [DIJK83] and Misra's

distributed version [MISR83]. Arora's single token algorithm [AROR89] has approximately

the same overhead as well. All of the other algorithms for ring topologies are substantially

more expensive in both communication overhead and memory overhead. This situation is

definitely an example of 'simple is better'.

It should be noted that Chandrasekaran's algorithm assumes a spanning tree topology

and yet it has a lower overhead in all areas except memory overhead. It appears that the
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topology of the network in these two cases has less effect on the overhead than the quality

of the algorithm itself. On the other hand, arbitrary networks appear to require a substan

tially higher communication overhead.

8.2.2. Non-FIFO Ordering for Messages

A table for algorithms using asynchronous communication with non-FIFO message

ordering can be found in Section 6.4. Additional information can be found in Table 8-3.

When looking at a system which requires prompt detection of termination after it

occurs, the best choices would be Dijkstra and Scholten's algorithm [DIJK80], Kumar's

class 1 algorithm [KUMA85], Mattern's time algorithm [MATT87B], and Mattern's vector

algorithm [MATT87A]. All four of these algorithms can detect termination in less than n

time units, assuming a Hamiltonian ring topology. However Kumar's class 1 algorithm and

Matern's vector algorithm require a probe whose length is based on the number of chan

nels in the network and the number of processes in the network respectively. In reality

these two algorithms are not good choices, since the size of the probe will significantly

increase detection time. Mattern's time algorithm has the potential for a very high com

munication overhead since there are no limitations on the number of times a probe is reini

tiated. Therefore this author believes Dijkstra's algorithm to be the best choice when

prompt detection of termination is required because 1) the probe carries no information, 2)

there is a short code segment at the receipt of cc, and 3) the total number of cc is reason

able.
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Algorithm Probe Size Time after

Termination

DD7PUSING COMPUTATION MODEL

[DIJK80] empty
</t

RING NETWORK TOPOLOGY

[KUMA85]

class 1 (single token)
Ett [0,|c|)t

class 2 (single token) 2 integers <2* |c|
*

[MAT87B]
**

*

4 ctrs 2 integers (n, 2n]

sceptic 2 integers (n, 2fi]

time (multiple tokens) 3 integers

1 boolean

< fi

vectors (single token) n integers [l.]

Table 8-3

t

tt

t

tt

*

/ represents the number of levels in the tree and is less than n.

E is the total number of communications lines in the network.

c represents the length of the cycle in the network.

All values are based on the existence of a Hamiltonian ring.

There may be multiple or single tokens for the four counter and sceptic

algorithms; however, the size of the probe and the time after termination are not

effected by the number of tokens. The single token version has a pre-defined

initiator and is therefore a centralized version of the algorithm.

In the case where memory is at a premium, several of the algorithms require storage

in memory for 0(n2) integers or 0(n2) booleans, and Dijkstra's algorithm requires

memory storage for 0(n+m) integers. When these algorithms are eliminated the remain

ing algorithms are Kumar's class 2 algorithm [KUMA85], and Mattern's four counter algo

rithm, single token sceptic algorithm, and time algorithm [MATT87B]. Of these four,

Mattern's four counter, sceptic, and time algorithms have no upper bound on their worst
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case overhead because there is no control over how often probes are reinitiated after they

are falsified. If the network has a Hamiltonian ring topology, this author would chose

Kumar's class 2 algorithm as the best choice.

The final situation considered is when communication overhead must be as small as

possible so that the application may not be detained more than necessary. Algorithms

making use of a large probe are eliminated first. These include Kumar's class 1 algorithm

[KUMA85], and Mattern's vector algorithm [MATT87A]. Mattern's four counter, sceptic,

and time algorithms [MATT87B] can be eliminated because of their lack of control over

the initiation of probes. This leaves Dijkstra's algorithm [DIJK80] and Kumar's class 2

algorithm [KUMA85] as candidates for the algorithm of choice when communication over

head must be low.

When the number of be, m, is less than the number of processes in the system,

Dijkstra's algorithm is clearly the best choice; however, this will not usually be the case.

Therefore, this author's first choice is Kumar's algorithm.

Kumar's class 2 algorithm is a best choice when the application requries a minimum

amount of memory and a low communication overhead. If an algorithm is required which

would be best for a general application with no special requirements, this author would

endorse Kumar's class 2 algorithm. Even the time required to detect termination after it

2

occurs is greater than the best case only by a factor of less than 2 log2 n.

2 In the best case Dijkstra's algorithm requires log2 n of time. When the spanning tree is

not built efficiently Dijkstra's time approaches fi and the constant factor becomes 2.
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8.3. Summary

In this chapter, nine cases were analyzed, three for each kind of communication. In

the synchronous case a centralized algorithm is the best case in two out of three situations.

In the asynchronous FIFO message ordering case, all three best choice algorithms are cen

tralized algorithms. In the asynchronous non-FIFO message ordering case, one of the three

best choices is also a centralized algorithm. In the remaining three situations a single

token algorithm is the best choice. There are no multiple probe algorithms which can even

come close to the efficiency of these best choice algorithms!

During the process of analyzing each algorithm, it seemed that ring topologies were

the easiest to understand and also the most efficient. Yet in the recommended best

choices, we find a spanning tree topology is the best choice in 2 out of 3 situations for the

asynchronous FIFO message ordering case and in one out of 3 situations in the asynchro

nous non-FIFO message ordering case. It appears that if the spanning tree is built effi

ciently, an algorithm which assumes this topology can be as efficient as an algorithm based

on a Hamiltonian ring topology, especially when the time to detect termination after it

occurs is the most important factor.

Actually a Hamiltonian ring topology may not be as efficient as it appears to be if it is

a virtual rather than an actual ring. If there is no physical Hamiltonian ring, the establish

ment of the virtual ring may require neighbor to neighbor communication where the time

complexity may become very high. The worst case will be bounded by the size of the net

work itself. A best case communication overhead of 2n would actually be 2n2. Note, this

is the same as the best case communication overhead for several of the algorithms that

assume arbitrary
networks and have also been written for ring networks [SKYU86]
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[ERIK88]. Consider the following three network topologies: a star network, a tree net

work, and a mesh network. In the case of a star network, construction of a Hamiltonian

ring on the network will result in 2 cc for every 1 cc passed along the ring. Therefore, a

communication overhead of 2n will actually be 4n. If an equivalent algorithm for an arbi

trary network requiring 3c cc is used, the actual overhad is 3(2(n 1)) or 6n.

To impose a Hamiltonian ring on a network that is a well-built tree, the longest hop is

the diameter of the tree and only occurs once. This number will be some constant less

than n. Therefore a virtual Hamiltonian ring with a communication overhead of 2n will

have an actual overhead of less than 2n2. The most inefficient tree is a linear graph. The

diameter in this case is n 1, and a hop of this length will occur only once. All other hops

will be one. Therefore given an overhead of 2n, the actual overhead will be less than 3n.

To impose a Hamiltonian ring on a mesh network, the longest hop will be the number

of nodes in a row plus the number of nodes in a column, the diameter of the network.

This hop will occur at most once and all other connections will be a single hop. Therefore

if the communication overhead is 2n, for the virtual ring, the actual overhead will be

2(n-l + d) which will always be less than 4n. If the equivalent algorithm for an arbitrary

network requires 3c cc, the actual overhad is 3(2(n 1 + d)) or less than 12n.

These values indicate that unless the network is a well-built tree, it is more efficient

to impose a Hamiltonian ring on any network, rather than to use an algorithm that

assumes an arbitrary network.

3 All nodes, p i = 1 to fir1, are connected only to one other node, p, and p is connected

to every node in the system.

4 In a mesh network, the nodes are arranged in rows, all rows have the same number of

nodes, and all columns have the same number of nodes. The number of columns need not

equal the number of rows. Every node is connected to all of its horizontal and vertical

neighbors, but not its
diagonal neighbors.
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8.4. Future Directions

Future research in this area should include the implementation of the best of these

algorithms. Benchmark applications should be chosen and actual time comparisons made.

Furthermore, very little is written about algorithms suitable for broadcast networks.

Likewise it would be interesting to know if the overhead for algorithms assuming a broad

cast network could be reduced sufficiently to compete with algorithms run on tree net

works or Hamiltonian ring networks.

One area in which research has already begun, but which this paper did not cover, is

termination algorithms for dynamic networks. It is assumed that nodes would not be

added/deleted to/from the network, but rather processes would be created/deleted at any

of the existing nodes. It would be interesting to discover if a particular topology is more

efficient than other topologies in this situation.

Another area in which future research should occur is the removal of all restrictions

on the channels. Duplicate messages could be handled using sequence numbers. However,

lost and/or altered cc could be a real problem. It would be worthwhile to determine

whether or not an algorithm that is both simple and efficient can be found.

Up until this point, for the most part, termination algorithms have been generic.

Although there have been a few algorithms written with a particular type of application in

mind, in the future this
author would expect to see many more algorithms developed for

specific kinds of applications. In this way algorithms may be more efficient for their

intended purpose. An example of this would be the algorithms written by Szymanski et al

[SZYM85] and Skyum and Eriksen [SKYU86] for an application that requires synchroneity,

but runs on an asynchronous communication network. Rozoy also hints at the possibility
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of tailoring her algorithm to specific situations.

It is not possible to pick one termination algorithm that is suitable for all situations.

This author believes that the best algorithms will be modified to take into consideration

any idiosyncrasies of the application that would make the algorithm run more quickly. In

particular, careful attention will be paid to the network topology on which the application

will run and the process hierarchy imposed by the application, hi time there will be a core

of proven algorithms for a variety of situations, but this will require substantial benchmark

testing.
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APPENDIX

The algorithms contained in this appendix have been ordered chronologically. Many

of the variable names have been changed from the names provided in the original algo

rithms. This is an attempt to make the algorithms easier to understand for the reader.

The reader will notice that the algorithms which make use of synchronous communi

cation are coded using the CSP notation. Algorithms using asynchronous communication

are coded using Pascal-like syntax wherever possible.

The syntax of send and receive is as follows:

send(dest, msg, source)

receive(dest, msg, source)

The first parameter names the process that the message is being sent to, the second

parameter is a record containing all of the detection information that the algorithm wishes

to pass on, and the third parameter is the name of the sender of the message.

Consider succ(p,) to be the next process on the Hamiltonian circuit, pred(p,) to be

the previous process in the ring, and next(p,) to be the successor of p,- in the direction the

cc is traveling when the direction is not known. The symbol <: is used to define a relation

among processes. In a Hamiltonian ring, p, <: pj means that pj is ahead of p,-. The state

ment 'purge detection
message'

means the detection message is not passed on, it is deleted.

In a network of arbitrary topology, a send to all processes connected to p,- is per

formed by the following statement:

broadcast (message)

where message is a record containing all information that the control code requires.
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The following statements are borrowed from Skyum and Eriksen [SKYU86] and used

to indicate the atomicity of the code contained between them:

enable allows interrupts to occur for the reception of be

disable prevents interrupts from occurring for the reception of be
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BNF FOR CSP

COMMANDS

<command> ::= <simple command> I <structured command>

<simple command> ::= <null command> I <assignment command> I <input com-

mand> I <output command>

<structuredcommand> ::= <alternative command> I <repetitive command> I <parallel

command>

<null command> ::=
skip

<command list> ::= {<declaration>; I <command>;} <command>

PARALLEL COMMANDS

<parallel command> ::= [<process> {II <process>}]

<process> ::= <process lable> <command list>

<process label> ::= <empty> I <identifier> :: I <identifier> (<label subscript>, {, <label
subscript>})::

<label subscript> ::= <integer constant> I <range>

<integer constant> ::= <numeral> I <bound variable>

<bound variable> ::= <identifier>

<range> ::= <bound variable> : <lower bound> .. <upper bound>

<lower bound> ::= <integer constant>

<upper bound> ::= <integer constant>

ASSIGNMENT COMMANDS

<assignment command> :: <target variable> := <expr>

<expr> ::= <simple expr> I <structured expr>

<structured expr> ::= <constructor> (<expr list>)

<constructor> ::= <identifier> I <empty>

<expr list> ::= <empty> I <expr> {, <expr>}

<target var> ::= <simple var> I <structured target>

<structured target> ::= <constructor> (<target var list>)

<target var list> ::= <empty> I <target var> {, <target var>}

INPUT AND OUTPUT COMMANDS

<input com> ::= <source> ? <target var>

<output com> ::= <destination> ! <expr>

<source> ::= <process name>
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<destination> ::= <process name>

<process name> ::= <identifier> I <identifier> (<subscripts>)
<subscripts> ::= <integer expr> {, <integer expr>}

ALTERNATIVE AND REPETITIVE COMMANDS

<repetitive command> ::= *<alternative command>

<alternative command> ::= [<guarded command> {D <guarded command>}]

<guardedcommand> ::= <guard> <command list> I (<range> {,<range>}) <guard>
? <command list>

<guard> ::= <guard list> I <guard list>; <input command> I <input command>

<guard list> ::= <guard element> {; <guard element>}

<guard element> ::=
,boolean expr> I <declaration>

The curly braces, {}, are used to denote none or more repetitions of the enclosed

material.
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NISSIM FRANCEZ 1980

This algorithm uses the following variables:

p(i) the index of p,'s parent

T,- the set of indices of p,'s children

cm true implies that be may occur

false implies that be is frozen and may not occur

advanced true implies that a be has occurred - not needed by the root

false implies that be has not occurred since the last control wave

newwave a boolean to record the arrival of all ready(j) messages
-

only used by the

root

ready a single boolean value at each leaf to insure that a ready signal to the

parent is sent only once per control cycle

ready(i) true if either p,- has performed a be since the last control cycle or
6,- has

been met and permission has been received from all of the children of p,- to

initiate a new control cycle, i.e. all children, pj, have performed at least

one be since the last control cycle or have met their 6y

a(i) true implies that all children, py, of
p,- have met their 6y

false implies that at least one child, Pj of
p,- has not met its 6y

Control code for the root:

initially newwave is true, and for all j, ready (j) is false

c,-
:: 6,-; newwave

-

n Pi ? aG);

yer,

* n Pj ! ok;

yer,

r : A a(j);
j&Ti

1

[

r
> halt

? -ir ? newwave := false;

Jl Pj ! resume

yer,

? py ? ready (j) -?
yer,-

[ A ready (j) ? newwave := true;
yer,-

JI ready (j) := false

yer,-

? ~ A ready (j)
->

skip

yer,
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Control code for an intermediate node:

initially, cm = true, for all j, ready(j) = false, advanced = false

ci '' Pp(i) ? ok ? cm := false;
[-,6,-

->

pp({)
! false

n fy -? n pj ! ok;

yer,

n pj ? aG);
yer,-

r : Ava(j);

PP(i) !r

a

pp(i) ? resume > cm := true;

advanced := false;

fj py ! resume;

;er

?

? pj ? ready(j)
? skip

yer,-

D

(6,-
V advanced) /\ A ready (j);

yer,-

pp(l) ! true -> n ready(J)
:= false

yer,-

Control code for a leaf:

initially, cm = true, ready = false

c, :: pp (,-)
? ok -> cm := false;

PP(i)
! b{

D

ppti\ 1 resume cm := true;

advanced := false;

ready
:= true

?

ready f\ (6, V advanced);

pp (,-)
! true - ready

:= false
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NISSIM FRANCEZ 1981

The initial distributed program is as follows:

p - [Po II . || Pn-i] where for each 0 < i < n, p, :: *[5,]

P is assumed to have the following two properties:

1. n-1 6, -+ B
A
i=0

2. Communicating processes Po,-,Pfi-i can be found, so that by means of some fin

ite sequence of be, the parallel composition
P - [Po II || Pn-i] reaches a globally stable state, in which each p, is locally
stable, and

p,- initiates no communication, but is ready to communicate with

other processes that would initiate such a communication.

Thus when 6,-
holds,

p,-

waits at the top level loop, and 5,-
contains guards which wait

for possible communication.

This algorithm uses the following variables:

6c,- true if 6,- is true and no be has occurred since
6,- first became true in this time

interval else false

counti the counter for the control messages, it acts as the upper end in the time inter

val assertion

dbi a copy of counti a* the time
6c,- last became true - it serves as the lower end of

the time interval in the interval assertion

C,-
assures that a change in the value of 6,- has not occurred since the beginning of

the time interval

C,- is equivalent to the truth value of rf6,- < counti

Mi the line number for the time instance at which the assignments on this line are

performed and cause
6c,- to be set to false
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The modified program containing the control code for the root is as follows:

p0
"

6c0 := false; send0 = true; count0 = 0; db0 = 0;

*[S0
D 6qJ ~>bci > 6c0 := true; db0 = count0

a pfl_1 ? s0
- [o -* halt

D ->s0 > send0
:= true]

D send0j 6c0; Pi ! (d60 < county) * send0
:= false;

count0
:=

count0 + 1

The modified program containing the control code for the remaining nodes is as follows:

Pi ::
6c,- := false; send,- = false; counti i= 0;

*[Si
O 6,-; ->6c,- > 6c,- := true;

d6,- :=
counti

D p,-_! ? s,- ? sendi
:= true

? M,-; send^, &ci> P'+l ' (* A Q) ""* sendi
:= false; counti := counti + 1
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FRANCEZ AND RODEH 1982

This algorithm uses the following variables:

p(i) the index of the parent of node t in the spanning tree

T,- the set of indexes of the children of p,-

w2Q the constant message representing wave2

advance true implies that a be has occurred

false implies that a be has not occurred since the last wave

m the count of children of p,- that have already transmitted wavel-3

7 the total number of children any one
p,- has

w2-arrived true implies that wave 2 has been received and wavel-3 has not been

sent yet

this variable is used only by the leaves and is initially set to true

send-w2[j] an array containing a boolean value for each
jr,-

true indicates that wave2 has been sent to pj

wavel-8fjj an array containing a boolean value for each
jer,-

true indicates that a be has occurred in one of py's children

false indicates that all children of pj are ready to terminate

Control code for the root, p0:

initially m = 0, advance is true and send-w2[j] is false for all children of the root

c,-
:: ? Pj ? wavel-3[j]

? m := m + 1

j'er0

? m =
7; 60 > [-"advance; A -"wavel-3[j]

> halt

yeto

? advance V ( V wave1-3 [j] -> m := 0;
yero

advance := false; JJ send-w2[j]
:= true

yer0

]
D send-w2[j]; py ! w2()

-? send-w2[j]
:= false

yer0
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Control code for an intermediate node:

initially advance is true, m is 0, and send-w2[j] is false for all children of each inter

mediate node

c,-
:: ? pi ? wavel-3[jl > m := m + 1

yer,-

? 7
=

m; 6,;

pp(,-) ! (advance V ( V wavel-3[j])) -* m
:= 0;

advance := false;
a Pp(i) ? w2() -? pj send-w2[j]

:= true

yer,

? send-w2[jl;
yer,

LJJ'

Py ! w2() >
send-w2[j]

:= false;

Control code for a leaf:

initially w2-arrived is true, and advance is true

c,-
:: ? 6,; w2-arrived; ppU) ! advance >

w2-arrived := false;
advance := false;

^ Pp(i) ? w^()
* w2-arrived := true;

155-



ARORA AND SHARMA 1983

This algorithm uses the following variables:

T is the token at this node?

FP initialized to nil

FP contains the name of the node farthest away from p,-, with whom
p,-

has communicated

The token has the name PN - initially this is the name of the predecessor of the node

where the token is placed.

The function dist (p;) returns the distance from node
p,- to py.

The following code is added to the application whenever a set statement is reached:

set (BE1, BE2,...)
begin

if all BEi in the set statement are true then

6,- := true/*
this is done by the set statement */

if T = true then

if 6,- then

if FP = nil then

if PN = this process then

initiate termination

else

pass token to next process in CDG

else
/*
FP =f= nil */

begin

if dist (FP) > dist (PN) then

PN = FP

FP = nil

pass token to next process in CDG

end

end

1 The set statement takes as its arguments all boolean expressions that must be true if the

process is passive. If all of the boolean arguments are true, then 6, is assigned the value

true.
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The following code is added to the application whenever a reset statement is reached:

reset (BE1, BE2,...)
begin

if all BEi in reset statement are true then
6,- := false/*

this is done by the reset statement */
end

Whenever process p,-
sends a be to process py the following piece of code is executed:

if FP = nil then

FP :=

py
else if dist (py) > dist (FP) then

FP :=
Pj;

Pj ! be

Whenever a process receives the token it executes the following piece of code:

begin

if 6,- = true then

if FP = nil then

if PN = this process then

initiate termination

else

pass the token to the next process in the CDG

else

if dist (FP) > dist (PN) then
begin

PN = FP

FP = nil

pass the token to the next process in the CDG

end

end

2 The reset statement takes as its arguments all of the boolean expressions that must be

true if a process is active. If all of the boolean arguments are true, 6, is assigned the value

false.
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S. P. RANA 1983

This algorithm uses the following variables:

BTimei the last time at which p,-
went passive

Time the timestamp of the detection message.

Count how many processes have seen this detection message.

The following is the code for each node in the ring:

Pi ::
6,- := false;
* [Application statements

? 6, - BTimei := Clock-Time;

Time := Bttme,-;

Count := 1;

Pi+i detection-msg (Time, Count)
D p,_i ? detection-msg (Time, Count) ?

[ Count = n >

initiate termination phase

? Count =h n
*

[-i6,- > purge the message

D 6,- -

[Time < BTime{ - purge the message

Time > BTime{ ->

count := count + 1;

p,+1 ! detection-msg (Time, Count)
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APT AND RICHIER 1985

This algorithm uses the following variables at each node:

ok true if the clock has been read and the process is passive

set to false when a be occurs

ensures reading of the clock value occurs only once when the process

becomes passive

sent true if a probe has been sent

set to false when a be occurs

ensures that sending of a detection message takes place only once dur

ing each period when the process is passive

T the counter used as the virtual clock

count the number of processes which have received this detection message

time the timestamp of this message

fait set to true when count = 2n to enable a process to exit the main loop
and send a termination message.

T,- the set of indices for all processes to whom p,- has an outgoing channel

The following is the code for the underlying application:

P = [pi || ... || Pn] where for every i, 1 < i < n,

Pi :: *[5,] and
5,- is of the form D g^j s^j and

jei,-

1. each jfyy
contains an I/O command addressing pj

2. none of the statements
mi'i,-

or s^j contain an I/O command
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The following is the code for each node in the ring:

Pi :: init; ok := false; sent := false; fait := false; T := 0;
*

[ D -ifait; g^j
? ok := false; sent := false; s^y

? --fait; 6,; ^ok -> T := T+ 1; ok := true;

? -ifait; ok; --sent; p,-+1 ! detection-message (T,l) ? sent := true

D -ifait;
6,-

ok; P{-\ ? detection-message (time, count) ?

[count = 2n > fait := true

? count < 2n ?

[-i6,-
->T:= max (time, T) purge the message

D 6,-
->

[time < T * skip purge the message

? time > T -v T := time;

count := count + 1;

p,+i ! detection-message (time, count);
sent := true

1
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JEAN-LUC RICHD3R 1985

This algorithm uses the following variables:

first

known

turn2

done

kept

color

count

kcount

Hj

r,

true > this process has not created a detection wave for itself

false this process has initiated a probe (and created a token)
this guarantees that a maximum of n tokens will be generated

true * no be has occurred since the previous detection message has

been received

false ? a be has occurred

true ? a message with count equal to kcount is received a second

time and known is still true i.e., no be has occurred

true termination may be initiated

the GTC has not been detected

a detection message is being stored

there are no detection messages to be sent

all processes visited have been passive since the preceeding

message with the same count field

false ? some process has received a be since the preceeding message

with the same count field

the count of the number of processes that have passed this token on.

the count field of the first message seen after 6, becomes true

these are the application statements

the set of indices for all processes to whom
p,- has an outgoing chan

nel

false

true

false

true

The following is the code for the underlying application:

Pi p] where for every i, 1 < i < n,

Pi :: *[5,] and
5,- is of the form D g^j

yer,

s:
j
and

1. each </^y
contains an I/O command addressing p;

2. none of the statements mt't, or s^y contain an I/O command
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The following is the code for each node in the ring:

Pi :: first := true;

known, turn2, done, kept, color := false;

count := 0;

kcount := 0 {the author leaves out this initialization}

*[ ? -idone; g;
? known := false; turn2 := false; color := false; s;

yer,

D -idone; (first V -ikept); p,-^ ? detection (color, count) >

[count = n > [color ? done := true

? -icolor ? color := turn2;

count := 0

]
? count =t= n * color := color /\ turn2

];

[ ->known > kcount := count

? known >

[count = kcount > turn2 := true

? count #= kcount ? skip

]
];

first := false; kept := true

? -.done; 6,-; (first V kept); pi+1 ! detection (color, count+1) -?

kept := false; first := false;

known := true {the author leaves out this assignment}

1
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SZYMANSKI, SHI, AND PRYWES 1985

This algorithm uses the following variables:

/,- the minimum label of all tokens received at node i in the jth input

Si the integer label to be put on the jth output token

NOTE: Tokens are labeled by integer values ranging from 0 to D + 1 where D is

the diameter of the network.

Si(j) is defined for process p,-
and step j as follows:

0 if 6,- is false

Ii(j) + 1 if 6, is true and I{(j) < S{(j
-

1)

S{(j 1) + 1 otherwise

The algorithm is as follows:

for all Pi do

begin

5, = 0

while S{ < D do

send (succ(p,), 5,-, p,);
read input-tokens

evaluate
6,-

if not 6,- then

S, =0

else

S{ = min (/,-, St) + 1

end while

terminate

end
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ARORA RANA AND GUPTA 1986

This algorithm uses the following variables for each process:

neighborsi the set of indices for all p,'s neighbors

statei(pk) an array for all neighbors, pk, of p, that keeps track of the state of

p*
- active or passive, initially all are set to active

msg this is the detection message - it contains the name of the process

that initiates the probe

When Pi becomes passive the following code is executed:

6,- := true;

for all j neighborsi do

send(p;-, 'I-am-passive', p,);

Whenever p,-
sends a be to py, the following code is executed:

statei(pj)
: active

Whenever p,-
receives an

'I-am-passive'
message from any py, j G neighbors(p,), the follow

ing code is executed:

statei(pj)
:= passive

if statei(pif)
= passive for all k G neighbor and

6,- then

send(succ (p,), msg, p,);

Whenever p,-
receives a probe that it did not initiate, the following code is executed:

if statei(pj)
= passive for all j G neighbor

S,-
and 6, then

send(succ(p,), msg, p,);

else

purge the detection message

Whenever p, receives its own
probe back, the following code is executed:

enter the termination phase
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KRZYSZTOF APT 1986

This algorithm uses the following variables for each process:

sendi true when process, p,-, holds the probe and has not passed it on yet

false when process, p,-, does not hold the probe

movedi true when a be has take place

set to false whenever the probe has been passed to the right-hand side

neighbor, it remains false as long as no be occur

The following is the code for the underlying application:

P = [pj || ... || pn] where for every i, 1 < i < n,

Pi :: initi : *[5,-] and S, is of the form D g^j
?
s^j and

yer,-

1. each <7,-7y contains an
I/O command addressing py

2. none of the statements initi or si,j contain an I/O command

The following is the code for the detector:

px :: initi;

sendi
:= true;

*[9i,J^si,J

? 6,-; send^,

Pi+i ! true * sendi
:= false

? pi_x ? s,- -> [s,- - halt n -is,- -

sendi
'= true]

The following is the code for all other nodes:

Pi :: initi;

sendi
:= false;

movedi
:= false;

*[ ? 0,;y
? movedi : = true; s^y

? p,_i ? s,- > sendi
: true

D 6,-; send^,

P.'+i ! isi A ^movedi)
-> sendi

:= false;

movedi
:= false

1
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SKYUM AND ERIKSEN 1986

This algorithm uses the following variables at each node, p,:

active used to indicate that be have taken place since the last warning was sent

counti used to count the number of times that ready and warning messages have

been received on all input buffers

m the minimum number attached to all broadcast messages received in a

given phase

L L is a constant chosen to fulfill the following condition:
L > 2d where d is the diameter of the network

n the number of processes in the network; it is assumed that n will always

be greater than the diameter d by at least 1

The detection message, msg, contains the following information:

name this may be either a warning or a ready message

warning this message warns the other processes that some process

might have been activated by
p,-

during its last phase

ready when p, receives only this message for some time,
p,-

may ter

minate

age this number tells the other processes that sender has been passive for this

many phases

when the age reaches L, a warning message becomes a ready message

The following additional statements are available for use by the algorithm:

enable allows interrupts to occur for the reception of be

disable prevents interrupts to occur for the reception of be
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Whenever process p,- becomes passive, the following code is executed:

active := true;

counti
:= Oi

msg.name := warning;

msg.age := 1;
broadcast (msg);
cycle

await that no inbuffers are empty;

disable;
read one message from each inbuffer;

enable;

if counti
= L then

terminate;

disable;
if active then

msg.name := warning;

msg.age := 1;

broadcast (msg);
active := false;

counti
:= 0

else

if all inputs were (msg.name = warning and msg.age = n) or msg.name

ready then

msg.name := ready;

broadcast (msg);

counti
: counti + 1;

else

m := min {i | (msg.name = warning and msg.age
= i) was read}

msg.name := warning;

msg.age := m + 1;

broadcast (msg);

counti
:= 0;

enable;
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ARORA, RANA, AND GUPTA 1987

This algorithm uses the following variables at each node, p,-:

seqnumi the initial value is 0, but is incremented whenever
p,- initiates a probe

IdListi this is a list of all processes to whom p,-
sends a be

The detection message, msg, contains the following information:

name the unique identification of the process that issued the probe

seqdm an integer representing the sequence number carried by the probe

Fl 0 indicates that the probe has not been falsified

1 indicates that the probe has been falsified - either a process was found

active or its IdList is not empty

F2 0 indicates that no process was found to be active

1 indicates that some process was found to be active

Whenever process p,- becomes passive, the following code is executed:

6,- := true

seqnumi
:=

seqnumi + 1;

msg.seqdm := seqnumi;

msg.Fl := 0

msg.F2 := 0;

send(succ(p,), msg, p,);

Whenever p, receives a probe
from process py, the following code is executed:

ifmsg.Fl = 1 then

if -i6,- then

msg.F2 := 1;

if msg.name G IdListi then

remove msg.name from IdListi

send(succ(p,), msg, p,)

else {msg.Fl = 0}

if 6,- then

if msg.name G IdListi then

remove msg.name from IdListi

if IdListi is null then

send(succ(p,), msg, p,);

else {IdListi not null}
msg.Fl := 1;

send (succ (p,), msg, p,);

else {-16,}
msg.Fl := 1;
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msg.F2 := 1;

if msg.name G IdListi then

remove msg.name from IdListi

send(succ(p,), msg, p,);

Whenever p,-
receives its own probe back, the following code is executed:

if -i6,- then

purge the detection message

else {6,}
if msg.Fl = 1 then

if msg.F2 = 0 then

if seqnumi msg.seqdm then

purge the detection message

seqnumi
'

seqnumi + 1

msg.seqdm :=
seqnumi

msg.Fl = 0;

msg.F2 = 0;

send(succ(p,), msg, p,);

else {seqnumi =h msg.seqdm}

purge the detection message

else {msg.F2 = 1}
purge the detection message

else {msg.Fl = 0}
if seqnumi

= msg.seqdm then

enter termination phase

else

purge the detection message
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HAZARI AND ZEDAN 1987

This algorithm uses the following variables:

count the number of processes that the probe has found passive

terminated when all processes have been found passive, this is set to true

firstjtime guarantees that p,-
will only initiate one detection wave

c[i-l] the Occam channel connecting
p,- to its predecessor

c[i] the Occam channel connecting
p,- to its successor

The control code for each node is as follows:

Pi :: VAR terminated, first_time, count:

SEQ
terminated := false

first_time := true

while not terminated

ALT

c[i-l] ? count

SEQ
IF

count > n

terminated
:

true

TRUE

SKIP

IF

bi

c[i] ! (count + 1)

TRUE

SKIP

SKIP &: 6,- & firstjime

SEQ
first_time := false

c[i] ! 1

3 This algorithm is written in Occam which is related to CSP.
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FRD3DEMANN MATTERN 1987

The Time Algorithm

This algorithm uses the following variables at each node, p,:

clock the local clock, a counter initialized to 0

count the local message counter, it is equivalent to s,()
-

r,()

tmax the latest send-time of all messages received by p,, initialized to 0

The detection message, msg, contains the following information:

itme the timestamp of the cc

count the accumulator for the message counters

invalid the flag that indicates that a be has been received since the last round

init the id of the process initiating the probe

A be, also msg, contains the following information:

tstamp the time stamp on any be

info the actual message

When Pi sends a be to py the following code is executed:

count := count + 1

msg.time := clock

msg.info : be

send (pj, msg, p,)

When Pi receives a be from pj the following code is executed:

count := count 1

tmax := max (msg.tstamp,tmax);
/*

process the message */
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When Pi receives a cc, the following code is executed:

clock : max (msg.time, clock)
if msg.init = p,- then

if msg.count = 0 and not msg.invalid then

initiate termination

else

try again

else

msg.count := msg.count + count

msg.invalid := msg.invalid or tmax > msg.time

send (succ (p,) , msg, p,)

When Pi wants to initiate a probe the following code is executed:

clock := clock + 1

msg.time := clock

msg.count := count

msg.invalid := false

msg.init :=
p,-

send (succ(p,), msg, p,)
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FRIEDEMANN MATTERN 1987

The Vector Algorithm

This algorithm uses the following variables at each node, p,-:

counti each process
p,- has an array whose indices represent the

destination/source of all messages sent/received by
p,-
and whose con

tents represents the sum of all messages sent to each destination minus

the sum of all messages received from that same destination

havejoector in the previous article [MAT87A], Mattern gives more details - this

boolean represents whether or not the token is currently visiting this

process

The detection message, msg, contains the following information:

count an array which contains the sum of all messages sent minus the sum of

all messages received between any two processes - each index

represents a different process pair and Mattern refers to this as a vec

tor

count is initialized to
0*

- the null vector

When a be is sent by
p,- to py the following code is executed:

counti[j]
:=

counti[j] + 1

Whenever a be is received by p, from py the following
code is executed:

counti[i]
:=

count^i]
- 1

if coun,-[]
< 0 then

if have_vector and
6,- then

if counti
=

0*
then

initiate termination

else

msg.count := counti

send (succ(p,), msg, p,)

counti
:=

0*
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Whenever p,-
receives the cc the following code is executed:

count,- :=
counti + msg.count

have_vector := true

wait until
6,-

disable

if couni,[t]
< 0 then

if counti =
0*

then

initiate termination

else

msg.count := counti

send (succ(p,), msg, p,)
have_vector := false

counti
:=

0*

enable
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This algorithm uses the following variables for each process p,-:

T,- the set of indices of p,-'s children

p(i) the index of p,'s parent

neighborsi the set of indices of p,'s neighbors

statei(pk) an array for all neighbors, pk, of p, that keeps track of the state of

pk
- active or passive

s(pi) 0 initially, cleared to 0 whenever an
'I-am-up'

message is sent to p,'s

parent

1 whenever an
'I-am-through'

message is sent to p,'s parent

childi(pk) an array for all children, pk, of
p,- that keeps track of the state of pk

- active or passive

se(l(Pi) the sequence number of the most recent detection message received

from p,'s parent

rcbdmi(pk) an array of booleans for each child, pk, of
p,-
which indicates whether

or not a valid detection message been received from this child, i.e.

does it match the most recent detection message received from Pp(i)

seqdm an integer representing the sequence number carried by the detec

tion message - this is not additional memory, it is used only in the

detection message

Whenever process p,- becomes passive, the following piece of code is executed:

6,- := true

for all j G neighborsi do

send (py, 'I-am-passive', p,);

Whenever a process, p, changes state from passive to active the following code is executed:

6,- := false

if s(Pi)
= 1 then {conserve messages}

if p{ is a leaf process or
p,- is an internal process then

send(pp(,-), 'I-am-up-again', p,);

s(p.)
:= 0;
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Whenever process p, receives a be from py the following statement is executed:

send (py, ack, p,);

statei(pj)
:=

active;

Whenever process p, sends a be to py the following statement is executed:

sta<e,(py)
:=

active;

Whenever process p, receives the
'I-am-passive'

message from pk, the following code is exe
cuted:

statei(pk)
:= passive

if state{(pj)
= passive for all j G neighbors, and 6, = passive then

if Pi is a leaf then

send (pp(,), 'I-am-through', p,);

s(p.)
:= 1

else if pi is the root then

if childi(pj)
= passive for all j G T,

seq(p,)
:=

seq(p,) + 1

seqdm =
seq(p,);

for each j G T, do

rcbdmi(pj)
:= false

send (pj, seqdm, p,);
else if Pi is an internal node

if childi(pj)
= passive for all j G Tj

send (PpU), 'I-am-through', p,);

s(p,)
:= 1;

Whenever a process, p,-, receives the
'I-am-through'

message from pk, k G T,- the following
code is executed:

childi(pk)
:= passive

if statei(pj)
= passive for all j G neighbor

's,-
and

6,-
and

childi(pj)
= passive for all j G T,- then

if Pi is an internal process then

send (pp(i), 'I-am-through', p,);

s(p,)
:= 1;

else {if Pi is the root
- leaves will never receive this message}

seq(p,)
:=

seq(p,-) + 1;

seqdm := seq(p,);

for each j G
T,- do

rcbdmi(pj)
:= false;

send (py, seqdm, p,);
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Whenever a process, p,-, receives an
'I-am-up-again'

message from pk, and k G
T,- the fol

lowing code is executed:

childi(pk)
:=

active;

if Pi is not the root then {clearly intended but not explicitly stated}
if s(p,)

= 1 then

send (pp(i), 'I-am-up-again', p,);

s(p.)
:= 0;

Whenever a process, p,-, receives a detection message from process pj, the following code is

executed:

if 6,-
and sae,(py)

= passive for all j G neighborsi then

if Pi is the root process then

if seq(p,)
= seqdm and c/u7d,(py)

= passive for all j G I\ then

rcbdmi(pj)
:= true;

if rc6dm,-(pfc)
= true for all k G re

enter the tennination phase

else

purge the detection message

else

purge the detection message

else if Pi is a leaf process then

return the detection message

else if Pi is an internal process

if Py
=

Pp(i)
then

if childi(pk) passive for all k G
T,- then

seq(p,)
= seqdm;

for each k G
T,- do

rc6dm,(pjt)
= false;

send(pjt, seqdm, p,);

else {some child is not passive}

purge the detection message

else if j G T, then

if seq(p,)
= seqdm then

if childi(pk)
= passive for all k G

T,- then

rcbdmAjtj)
= true;

if rc6dm,-(pjt)
= true for all k G T,- then

send (pp(i), seqdm, p,);

else {not all rc6dm,(pfc) are true}

purge the detection message

else {some child is active}

purge the detection message

else {seq(p,) <> seqdm}

purge the detection message

else {either p, or one of its
neighbors is active}

purge the detection message
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This algorithm uses the following variables:

PP the id of the farthest process down the ring with which p, has com

municated when Pi was active

IdListi this is a list of processes with whom this process initiates communica

tion

The detection message, msg, consists of a record containing the following information:

name the id of the initiator

FP the id of the process farthest down the line with whom the initiator of this

probe has communicated

Fl a flag to indicate verification of termination

0 - it is okay to terminate

1 - it is not okay to terminate

Whenever process p,-
sends a be to process py the following piece of code is executed:

if FP = nil then

FP :=

py
else if dist (py) > dist (FP) then

FP :=

py
send (py, msg, p,)
add pj to IdListi

When Pi becomes passive, the following piece of code is executed:

6,- := true;

msg.Fl := 0;

msg.FP := FP;

msg.name := p,-;

send (succ(p,), msg, p,);

FP := nil;
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When Pi receives a probe from py, the following code is executed:

if msg.Fl = 1 then

if msg.name = p,- then {The authors imply this cannot happen}
msg.Fl := 0;

msg.name := p,-;

msg.FP := FP;
send (succ (p,), msg, p,);

else if msg.name <: p,- <: msg.FP then {on the way to farthest}
if msg.name in IdListi then

remove msg.name from IdListi
send (succ(p,), msg, p,);

else {at or beyond msg.FP}

if msg.name in IdListi then

remove msg.name from IdListi
if not 6,-

or not empty (IdListi) then

purge (msg);
else {pi is passive and IdListi is empty}

send (succ(p,), msg, p,);

else {msg.Fl = 0}
if msg.name = p,- then

initiate termination

else if msg.FP = p, then

if msg.name in IdListi then

remove msg.name from IdListi

if 6,-
and empty (IdListi) then

send (succ(p,), msg, p,)
else {not 6, or not empty (IdListi)}

purge (msg);

else if msg.name <: p, <: msg.FP then

{pi is on the path from msg.name to msg.FP}

if msg.name in IdListi then

remove msg.name from IdListi

if not 6,-
or not empty (IdListi) then

msg.Fl := 1;

send (succ (p,), msg, p,);

else {msg.FP <: p, or msg.FP
= nil - msg.name never sent be to p,}

if 6, and empty (IdListi) then

send (succ (p,), msg, p,)

else

purge (msg);
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This algorithm uses the following variables at each node p,-:

time,- this is the current logical time; it has total ordering and monotonic increas

ing properties

the time consists of two parts:

value two 'clock
times'

are related as follows:

(timei .value, p,) > ( ftmey .value, py) if

(a) time,-.value > rimey.value, or

(b) fime,-.value = rimey.value, and
p,- > py

Note: we interpret greater as later

name this is the name of the process that owns this 'clock
time'

Btimei the latest idleness time ever known by
p,-

while
p,- is idle - this variable con

sists of the same two parts as rime,-

The detection message, msgf, contains the following information:

type there are three types of cc that can be sent: announcements, Ann, agree

ments, Agr, and acknowledgments, Ack

clock the clock consists of 2 parts:

value the
'time'

of this control communication

name the
'owner'

of this time

When pi becomes passive it executes the following piece of code:

6,- := true;

time, .value
:= time, .value + 1;

iftj'me, .value := rime,.value;

5me,-.name := p,-;

msg.type := Agr;

msg.clock := time,-;

broadcast (msg);
msg.type := Ann;

broadcast (msg);

When p{ sends a be
to pj, p, executes

the following code:

Wait to receive a message from pj
with msg.type = Ack

rime, .value
:= max (time,-.value, msg.clock.value);
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When pj receives a be from p,-, the following code is executed:

msg.type := Ack;
msg.clock.value := timey.value;
msg.clock.name := py;

send (p{, msg, py);

6y := false;

When p{ receives a message of type Ann, it executes the following code:

if -"6,- then

rime,-.value := max
(time,-

.value, msg.clock.value);

else if 6,- then

if msg.clock > Bitme,- then

msg.type := Agr;
broadcast (msg);
rime,-.value := msg.clock.value;

Brime,-.value := msg.clock.value;

Btimei := msg.clock.name;

When Pi receives a message of type Agr, the code to be executed is dependent on the net

work structure. When all Agr cc messages have been received termination is declared.
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Predesignated Process Algorithm

This algorithm uses the following variables at each node p,-:

6cm(p,) a boolean flag which is set whenever p,-
sends/receives a be, initially

0

distancel the distance clockwise around the ring from this process to the ini

tiator

distance2 the distance anticlockwise around the ring from this process to the

initiator

pas a boolean flag for px which is initially false and is set to true when

Pi becomes true the first time and remains true

prevpm a boolean flag which is reset to 0 when pi initiates the first set of

probe messages, it remains 0 afterwards

a boolean flag which records the status of the forwarded probe mes

sage for the remaining
p,-

procflg(pi) a boolean flag which is set whenever p,-
changes state from active to

passive, initially 0

seq(pi) the sequence number of the current set of probes for pl5 and the

sequence number for the currently forwarded probe message for the

remaining
p,-

The detection message, msg, consists of a record containing the following information:

seqdm

type

Fl

an integer representing the sequence number carried by the detec

tion message

the kind of control message being sent:

repeat-probe-signals used to trigger a fresh set of probe-

messages

probe messages used to detect termination

a flag to verify termination

0 - it is okay to terminate, probe not falsified

1 - it is not okay to terminate, probe has been falsified
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When Pi becomes passive, the following piece of code is executed:

state(p,)
:= passive

procflgjp,)
:= 1

if i = 1 then

if not PAS then

seq(p.)
:=

seq(p,) + 1

msg.seqdm :=

seq(p,)

msg.type := probe

msg.Fl := 0

send(succ (p,), msg, p,)
send(pred(p,), msg, p,)

PAS := true

prevpm := 0

bcm(p,) := 0

procflgjp,)
:= 0

When Pi sends/receives a be from py, the following code is executed:

bcm(p,) := 1

When the repeat-probe-signal message is received by p,-, the following code is executed:

if -"6,- then

wait until
6,-

if i =t= 1 then

send(next(p,), msg, p,)

else if msg.seqdm =

seq(p,) then

seq(p,)
:=

seq(p,) + 1

msg.seqdm :=
seq(p,)

msg.type := probe

msg.Fl := 0

send(succ(p,), msg, p,)

send(pred(p,), msg, p,)

bcm(p,) := 0

procflgjp,)
;= 0

else

purge the repeat-probe-signal message
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When pt (i =#=

1) receives a detection message from px or pi receives back its own

detection message, the following code is executed:

if -"6,- then

wait until
6,-

if seq(p,)
= msg.seqdm then

if msg.Fl = 0 then

if prevpm(p,)
= 0 and (bcm(p,) = 0 and procflg(p,)

= 0) then

enter the termination phase

else

purge the detection message

else

purge the detection message

if i = 1 then

seq(pf)
=

seq(p,) + 1

msg.seqdm :=
seq(p,)

msg.type := probe

msg.Fl := 0

send (succ(p,), msg, p,)
send (pred(p,), msg, p,)

bcm(p,) := 0

procflgjp,)
:= 0

else

if distancel > distance2 then

msg.type := repeat-probe-signal

send(succ(p,), msg, p,)

else

msg.type := repeat-probe-signal

send(pred(p,-), msg, p,-)

prevpm(p,)
:= 0

bcm(p,) := 0

else if i = 1 then

purge the detection message

else

seq(p,-)
:= msg.seqdm

if msg.Fl = 0 then

if procflg(p,)
= 0 and bcm(p,) = 0 then

prevpm(p,)
:= 0

else

prevpm(p,)
:= 1

msg.Fl := 1

else {probe is falsified}

prevpmjp.)
:= 1

bcm(p,)
:= 0

procflgjp,)
:= 0

send(next(p,), msg, p,)
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Shifting Process Control Algorithm

This algorithm uses the following variables at each node p,-:

6cm(p,) a boolean flag which is set whenever p, sends/receives a be, initially
0

pas a boolean flag for px which is initially false and is set to true when

Pi becomes true the first time and remains true

prevpm a boolean flag which records the status of the forwarded probe mes

sage for Pi

procflg(pi) a boolean flag which is set whenever p,-
changes state from active to

passive, initially 0

se?(p) the sequence number of the current set of probes for p,-

pseq(pi the sequence number of the probe message previously

forwarded/issued by
p,-

The detection message, msg, consists of a record containing the following information:

seqdm an integer representing the sequence number carried by the detec

tion message

type the kind of control message being sent: probe used to detect termi

nation

Fl a flag to verify termination

0 - it is okay to terminate, probe not falsified

1 - it is not okay to terminate, probe has been falsified

When pi becomes passive, the following piece of code is executed:

state(p,)
:= passive

procflgjp,)
:= 1

if not PAS then

seq(p,)
:=

seq(p,) + 1

msg.seqdm :=
seq(p,)

msg.type := probe

msg.Fl := 0

send(succ(p,), msg, p,)

sendjpredjp,), msg, p,)

PAS := true

prevpm := 0

bcm(p,) := 0

procflgjp,)
:= 0
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When p{ sends/receives a be from pj, the following code is executed:

bcm(p,) := 1

When pi receives back its own detection message, or a detection message from py (i = j),
the following code is executed:

if ->6,- then

wait until
6,-

if pseq(p,)
= msg.seqdm then

ifmsg.Fl = 0 then

if prevpm(p,)
= 0 and (bcm(p,) = 0 and procflg(p,)

= 0) then

enter the termination phase

else

purge the detection message

{add code for if msg.source = pred(p,-) here}
else

purge the detection message

if msg.source = pred(p,-) then

seq(p.)
=

seq(p,) + 1

msg.seqdm :=

seq(p,)

pseq(p,)
:= msg.seqdm

msg.type := probe

msg.Fl := 0

send (succ(p,), msg, p,)
send jpred(p,-), msg, p,)
bcm(p,) := 0

procflgjp,)
:= 0

prevpm(p,)
:= 0

else

pseq(p,)
:= msg.seqdm

if msg.Fl = 0 then

if procflg(p.)
= 0 and bcm(p,) = 0 then

prevpm(p,)
:= 0

else

prevpm(p,)
:= 1

msg.Fl := 1

else {probe is falsified}

prevpmjp,)
:= 1

bcm(p,) := 0

procflgjp,)
:= 0

send(next(p,), msg, p,)
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Multiple Process Algorithm

This algorithm uses the following variables at each node p,-:

seq(pi) the sequence number of the current set of probes for p,

pmseg,(py) an array of sequence numbers of probe messages previously for

warded by Pi from py

statusi(pj) an array of boolean flags which record the status of the last for

warded probe message from py

statei(pj) an array for all neighbors, pj, of p, that keeps track of the state of py
- active or passive

si,-
a list of processes in the clockwise direction around the ring from

this process

s2,-
a list of processes in the anticlockwise direction around the ring from

this process

The detection message, msg, consists of a record containing the following information:

seqdm an integer representing the sequence number carried by the detec

tion message

type the kind of control message being sent:

repeat-probe-signals used to trigger a fresh set of probe-

messages

probe messages used to detect termination

update messages used to update the state of neighbor

processes

Fl a flag to verify termination

0 - it is okay to terminate, probe not falsified

1 - it is not okay to terminate, probe has been falsified

Whenever process p, becomes passive,
the following piece of code is executed:

statei(pi)
:= passive

for each py G {neighbors of p,} do

if py G s 1, then

augment list 1, by py

else

augment list 2, by py

if list 1, nonempty then

msg.type := update

msg. list := listli

-187-



send (pred(p,), msg, p,)
if list 2,- nonempty then

msg.type := update

msg. list := /is* 2,-

send (succ(p,), msg, p,)
clear list If
clear /tsi2,

Whenever p, receives a message of type = update from process py the following code is

executed:

if -"6,- then

wait until
6,-

if Pi G msg.list then

statei(pj)
: passive

remove
p,- from msg.list

if msg.list empty then

purge the update message

if statei(pk)
= passive for all pk G {neighbours of p,} and statei(pi)

= passive then

seqjp,)
:=

seq(p,) + 1

msg.seqdm :=
seq(p,)

msg.type := probe

msg.Fl := 0

send(pred(p,), msg, p,)

send (succ (p,), msg, p,)
else

send(next(p,), msg, p,)
else

send(next(p,), msg, p,)

Whenever p, receives the
probe from pj the following

code is executed:

if 6,- and statei(pk)
= passive for all pk G {neighbors of p,} then

if pmseg,(py)
= msg.seqdm then

if statusi(pj)
= 0 then

enter termination phase

else

purge the detection message

else

pmseqi(pj)
:= msg.seqdm

statusi(pj)
:= 0

send (next(p,), msg, p,)

else

pmseqi(pj)
:= msg.seqdm

purge the detection message

statusi(pj)
:= 1
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