Explicit PL self-knottings and the structure of PL homotopy complex projective spaces

Douglas Meadows
EXPLICIT PL SELF-KNOTTINGS AND
THE STRUCTURE OF PL HOMOTOPY COMPLEX
PROJECTIVE SPACES

DOUGLAS MEADOWS

We show that certain piecewise-linear homotopy complex projective spaces may be described as a union of smooth manifolds glued along their common boundaries. These boundaries are sphere bundles and the glueing homeomorphisms are piecewise-linear self-knottings on these bundles. Furthermore, we describe these self-knottings very explicitly and obtain information on the groups of concordance classes of such maps.

A piecewise linear homotopy complex projective space \widetilde{CP}^n is a compact PL manifold M^{2n} homotopy equivalent to CP^n. In [22] Sullivan gave a complete enumeration of the set of PL isomorphism classes of these manifolds as a consequence of his Characteristic Variety theorem and his analysis of the homotopy type of G/PL. In [15] Madsen and Milgram have shown that these manifolds, the index 8 Milnor manifolds, and the differentiable generators of the oriented smooth bordism ring provide a complete generating set for the torsion-free part of the oriented PL bordism ring. Hence a study of the geometric structure of these exotic projective spaces \widetilde{CP}^n, especially with regard to their smooth singularities, may extend our understanding of the PL bordism ring. This paper begins such a study in which we obtain a geometric decomposition of \widetilde{CP}^n, into (for many cases) a union of smooth manifolds glued together by PL self-knottings on certain sphere bundles. We also obtain information on groups of concordance classes of PL self-knottings from these decompositions and a number of fairly explicitly constructed examples of self-knottings. I would like to thank by thesis advisor R. J. Milgram for many helpful discussions.

I. Sullivan's classification of PL homotopy \widetilde{CP}^n proceeds as follows: Given a homotopy equivalence $h: \widetilde{CP}^n \rightarrow CP^n$ make h transverse regular to $CP^j \subset \widetilde{CP}^n$, the standard inclusion. The restriction of h to the transverse inverse image $h^{-1}(CP^j) = N^{2j} \subset \widetilde{CP}^n$ is a degree one normal map
with simply connected surgery obstruction
\[\sigma_j \in P_{2j} = \begin{cases} Z, & j \text{ even} \\ Z/2Z, & j \text{ odd} \end{cases} \]

For \(j = 2, \ldots, n - 1 \) these obstruction invariants yield a complete enumeration—i.e. the set of PL isomorphism classes of \(\widetilde{CP}^n \) is set-isomorphic to the product \(Z \times Z_2 \times Z \times \cdots \times P_{2(n-1)} \) with \(n - 2 \) factors.

We will use the following notation to specify elements with this classification:

\[\widetilde{CP}^n \leftrightarrow (\sigma_2, \sigma_3, \ldots, \sigma_{n-1}) \]

will denote the PL homotopy \(\widetilde{CP}^n \) with invariants \(\sigma_j \in P_{2j} \) in Sullivan's enumeration.

We recall that a PL homeomorphism \(f: M \to M \) is a “self-knotting” and \(M \) is said to be “self knotted” if \(f \) is homotopic but not PL isotopic to the identity. Also, PL homeomorphisms \(f, g: M \to M \) are “PL concordant” (pseudo-isotopic) if we have a PL homeomorphism \(F: M \times I \to M \times I \) with \(F(m, 0) = (f(m), 0) \) and \(F(m, 1) = (g(m), 1) \) for \(m \in M \). We then define:

\[(2) \ SK(M) = \text{“the group (under composition of maps) of PL concordance classes of PL self-knottings of } M.\]"

Unless otherwise noted \(CP^j \subset CP^n \) means the standard embedding of \(CP^j \) onto the first \((j + 1) \) homogeneous coordinates of \(CP^n \) or a smooth ambient isotope of this embedding. In this context we define:

\[(3) \ \nu_N(CP^j) = \text{“the smooth tubular disc bundle neighborhood of the embedding } CP^j \subset CP^n.\]

Our results are as follows:

Theorem A. For \(n \geq 4 \) and \(\sigma_2 \equiv 0 \) (2) every \(\widetilde{CP}^n \leftrightarrow (\sigma_2, \sigma_3, \ldots, \sigma_{n-1}) \)

is PL homeomorphic to the identification space

\[[\widetilde{CP}^n - \nu_n(CP^1)] \cup_{\varphi_{n-1}} [\nu_n(CP^1)] \]

where \(\widetilde{CP}^n \leftrightarrow (\sigma_2, \sigma_3, \ldots, \sigma_{n-2}, 0) \) and the identification is over a PL homeomorphism

\[\varphi_{n-1}: \partial \nu_n(CP^1) \to \partial \nu_n(CP^1). \]

We prove Theorem A in Part II by a careful description of Sullivan's classification and an easy \(h \)-cobordism argument.
An immediate consequence of Theorem A is the decomposition of \widetilde{CP}^{n+1} into
$\widetilde{CP}^{n+1} = [CP^{n+1} - \nu(CP^1)] \cup_{\varphi_0}[\nu(CP^1)]$.

Theorem B. For every $n \geq 4$ and non-zero $\tau \in P_{2n}$ there is a PL self-knotting
$\varphi_\tau: \partial \nu_{n+1}(CP^1) \to \partial \nu_{n+1}(CP^1)$

which will suffice for the glueing homeomorphism in Theorem A.

We establish this theorem by an explicit construction of φ_τ in Part III.

II. Here we prove Theorem A by beginning with a construction which shows how to obtain $\widetilde{CP}^{n+1} \leftrightarrow (\sigma_2, \ldots, \sigma_{n-1}, \sigma_n)$ from $\widetilde{CP}^n \leftrightarrow (\sigma_2, \ldots, \sigma_{n-1})$ for $n \geq 4$:

Let $h: \widetilde{CP}^n \to CP^n$ be a homotopy equivalence, and let M^{2n} be the compact $(n - 1)$-connected Milnor or Kervaire manifold of Index $8\sigma_n$ or Kervaire-Arf invariant σ_n as the case may be [4]. Let $r: M^{2n} \to S^{2n}$ be a degree one map. Then $h\#r: \widetilde{CP}^n\#M^{2n} \to CP^n\#S^{2n} = CP^n$ is a degree one normal map with 1-connected surgery obstruction σ_n. We define \hat{H} as the D^2 bundle over $\widetilde{CP}^n\#M^{2n}$ induced by $h\#r$ from H, the disc bundle associated to the complex line bundle over CP^n. Let $\hat{h}: \hat{H} \to H$ be the bundle mapping. We note that the map $h\#r$ is $(n - 1)$-connected with homological kernel $K_n = \pi_n(M_0^{2n})$ where $M_0^{2n} = M^{2n} - D^{2n}$. The bundle \hat{H} is trivial over M_0^{2n} since $M_0^{2n} = (h\#r)^{-1}(point)$. In $M_0^{2n} \times D^2$ we can represent $\pi_n(M_0^{2n})$ by disjointly embedded spheres $S^n \subset M_0^{2n} \times S^1$ with trivial normal bundles. This follows by general position and the fact that the normal bundles of the generating spheres $S^n \subset M_0^{2n}$ are the stably trivial tangent disc bundles $\tau(S^n)$. We now attach a solid handle $D^{n+1} \times D^{n+1}$ along $S^n \times D^{n+1} \subset M_0^{2n} \times S^1$ for each generator of $\pi_n(M_0^{2n})$ and extend the map \hat{h} across these bundles. This is possible since the embedded spheres are in the homotopy kernel of \hat{h}. Call the resulting PL manifold \tilde{H} and the extended map $\tilde{h}: \tilde{H} \to H$. In the process of extending \hat{h} across the handles, we may guarantee that \tilde{h} is a map of pairs $(\tilde{H}, \partial) \to (H, \partial)$. We observe, then, the:

Proposition. $\tilde{h}: (\tilde{H}, \partial) \to (H, \partial)$ is a homotopy equivalence of pairs.
This follows directly from the construction as \(\tilde{H} \) deformation retracts onto \(\tilde{C}P^n \# M^{2n} \cup \{ e^n \} \) where the \(n \)-cells \(e^n \) are attached so as to kill the entire homology kernel of \((h \# r) \). Hence \(\tilde{h}: \tilde{H} \to H \) is a homology isomorphism, and as \(\tilde{H} \) is 1-connected we have by Whitehead's theorem that it is a homotopy equivalence. The restriction of \(\tilde{h} \) to the boundary is likewise a homology isomorphism as the boundaries, \(D^{n+1} \times S^2 \), of the solid handles are precisely the surgeries needed to cobord \(\tilde{h}: \partial \tilde{H} \to \partial H \) to a homotopy equivalence.

In particular as \(n \geq 3 \) we note that the boundary manifold, \(\partial \tilde{H} \), is a PL \((2n+1)\)-sphere by the Poincaré conjecture. Thus, we attach \(D^{2n+2} \) to \(\tilde{H} \) as the PL cone on \(\partial \tilde{H} \) and define:

\[
\tilde{C}P^{n+1} = \tilde{H} \cup c(\partial \tilde{H}) \quad \text{and} \quad h: \tilde{C}P^{n+1} \to C P^{n+1} = H \cup c(\partial H)
\]

by radial extension of \(\tilde{h} \) into \(c(\partial \tilde{H}) \).

Observe that \(h \) has "built-in" transverse inverse image \(\tilde{C}P^n \# M^{2n} = h^{-1}(C P^n) \) with surgery obstruction \(\sigma_n \). Hence, this \(\tilde{C}P^{n+1} \leftrightarrow (\sigma_2, \ldots, \sigma_{n-1}, \sigma_n) \) is the space we require.

Now, given \(\tilde{C}P^n \leftrightarrow (\sigma_2, \ldots, \sigma_{n-1}) \) let us consider a bit more closely the suspension and generalized suspension constructions described above. First, assume the homotopy equivalence

\[
h: \tilde{C}P^n \to C P^n
\]

is the identity map on a disc \(D^{2n} \subset \tilde{C}P^n \). Let \(\tilde{C}P^n = \tilde{C}P^n - D^{2n} \), \(M^{2n}_0 = M^{2n} - D^{2n} \) and observe that \(\tilde{C}P^n \# M^{2n} = \tilde{C}P^n_0 \cup_\partial M^{2n}_0 \). Now, let \(\tilde{C}P^{n+1} \leftrightarrow (\sigma_2, \ldots, \sigma_{n-1}, 0) \) be the suspension\(^1 \) of \(\tilde{C}P^n \) with homotopy equivalence

\[
\tilde{h}: \tilde{C}P^{n+1} \to C P^{n+1}
\]

and \(\tilde{C}P^n \leftrightarrow (\sigma_2, \ldots, \sigma_{n-1}, \sigma_n) \) be the general suspension of \(\tilde{C}P^n \) with homotopy equivalence

\[
\tilde{h}: \tilde{C}P^{n+1} \to C P^{n+1}.
\]

Let \(D^{2n} \subset C P^n \) be the image \(h(D^{2n}) \) and let \(C P^1 = S^2 \subset C P^{n+1} \) be represented as \(D^2_\ast \cup c(\partial D^2_\ast) \) in \(C P^{n+1} = H \cup c(\partial H) \) with \(D^2_\ast \) the fiber in \(H \) over the center of the disc \(D^{2n} \). Then \(\nu_{n+1}(C P^1) \subset C P^{n+1} \) may be represented as the set \(D^2_\ast \times D^{2n} \cup c(\partial H) \), a \(D^{2n} \) bundle over the sphere \(S^2 = D^2_\ast \cup c(\partial D^2_\ast) \).

Now let \(\tilde{V} = \tilde{h}^{-1}(\nu_{n+1}(C P^1)) \) and \(\hat{V} = \hat{h}^{-1}(\nu_{n+1}(C P^1)) \) in \(\tilde{C}P^{n+1} \) and \(\hat{C}P^{n+1} \), respectively. We observe directly from the constructions that

\(^1\)We say \(\tilde{C}P^{n+1} \leftrightarrow (\sigma_2, \sigma_3, \ldots, \sigma_{n-1}, 0) \) in the "suspension" of \(\tilde{C}P^n \leftrightarrow (\sigma_2, \sigma_3, \ldots, \sigma_{n-1}) \) as it is precisely the Thom complex of the line bundle induced over \(\tilde{C}P^n \).
\(\hat{C}P^{n+1} - \hat{V} \) and \(\hat{C}P^{n+1} - \hat{V} \) are precisely the same spaces. To prove Theorem A we must show that \(\hat{V} \) and \(\hat{V} \) are PL homeomorphic to \(v_{n+1}(CP^1) \).

Lemma 1. \(\hat{V} \cong v_{n+1}(CP^1) \) if \(\sigma_2 \) is even.

We observe this from PL block bundle theory as follows: by construction \(\hat{V} \) is the union of two discs \(D^2_1 \times D^{2n} \) and \(c(\partial \hat{H}) = D^{2n+2} \) along \(S^1_1 \times D^{2n} \). Hence \(\hat{V} \) is trivially a block bundle regular neighborhood of \(CP^1 = D^2_1 \cup c(\partial D^{2n}) \). Assume the obstruction \(\sigma_2 \) is even. Then as noted by Sullivan ([23] p. 43) the splitting obstruction of the homotopy equivalence

\[
\tilde{h}: \hat{C}P^{n+1} \rightarrow CP^{n+1}
\]

along \(CP^1 \) vanishes as it is the mod 2 reduction of \(\sigma_2 \). Hence, by a homotopic deformation we may conclude that the transverse inverse image of \(CP^1 \) by \(\tilde{h} \) is \(CP^1 \subset \hat{C}P^{n+1} \). Moreover, as any two homotopic PL embeddings of \(CP^1 \subset \hat{C}P^{n+1} \) are ambiently PL isotopic (for \(n \geq 2 \) by Cor. 5.9 p. 65 [21]), we see by appeal to the uniqueness of normal block bundles (regular neighborhoods) [20] that \(\hat{V} \) is block bundle isomorphic to the bundle induced from \(v_{n+1}(CP^1) \) by \(\tilde{h} \). Conversely, the same argument on the homotopy inverse of \(\tilde{h} \) implies \(v_{n+1}(CP^1) \) is block bundle induced from \(\hat{V} \). As we are in the stable block and vector bundle range and \(\pi_2 B_{PL} = \pi_2 B_0 = Z_2 \) we can conclude that \(\hat{C} \) and \(v(CP^1) \) are block bundle isomorphic; hence PL homeomorphic.

Lemma 2. \(\hat{V} \cong S^2 \) (homotopy equivalent).

Proof. By construction \(\hat{V} = D^2 \times M_0^{2n} \cup X \cup c(\partial H) \) where \(X \) represents the solid handles we attached along \(S^1 \times M_0^{2n} \) to kill the homology kernel of \(\hat{h} \). The manifold \(D^2 \times M_0^{2n} \cup X \) is simply-connected with simply connected boundary and the homology of a point; hence by Smale's theorem (Thm. 1.1 [22]) it is a PL disc \(D^{2n+2} \). Thus, \(\hat{V} = D^{2n+2} \cup W D^{2n+2} \) where \(W \) is the complement of the embedding

\[
D^2 \times S^{2n-1} \subset S^{2n+1} = \partial D^{2n+2}
\]

and \(S^{2n-1} = \partial M_0^{2n} \). By the Mayer-Vietoris sequence we know that \(W \) is a homology circle. Then, by a second application of the Mayer-Vietoris sequence to the union \(D^{2n+2} \cup W D^{2n+2} \) we see that \(\hat{V} \) is a homology \(S^2 \). Finally, by the Van Kampen theorem \(\hat{V} \) is 1-connected and we apply the Whitehead theorem for CW complexes.
Lemma 3. $\hat{V} \cong v_{n+1}(CP^1)$.

Proof. $\partial \hat{V} = \partial[CP^{n+1} - \hat{V}] = \partial[CP^{n+1} - \hat{V}] = \partial \hat{V} \cong \partial v_{n+1}(CP^1)$ by Lemma 1. Let $S^2 \subset \hat{V}$ be a homotopy equivalence and a PL embedding via Whitney's embedding theorem. Then $S^2 \subset \hat{V} \subset \hat{CP}^{n+1}$ is homotopic to the standard embedding $CP^1 \subset \hat{CP}^{n+1}$, and as before, the PL block bundle neighborhoods of these two embeddings must be isomorphic. Let $v \subset \hat{V}$ be this block bundle. We note that $\partial v = \partial v_{n+1}(CP^1) \cong \partial \hat{V} = \partial \hat{V}$ by the previous lemmas. Hence, if $\hat{V} - v = Y$

we have $\partial Y = \partial \hat{V} \cup \partial v$, two copies of the same manifold.

We consider the Mayer-Vietoris sequence for the union $\hat{V} = Y \cup v$ over $\partial v = Y \cap v$:

$$\cdots \rightarrow H_1(\partial v)^{i_1 - i_2} \rightarrow H_1(v) \oplus H_q(Y)^{j_1 - j_2} \rightarrow H_1(\hat{V}) \rightarrow \cdots$$

where

$$i_1 : \partial v \ni v, \quad j_1 : v \ni \hat{V},$$

$$i_2 : \partial v \ni Y, \quad j_2 : Y \ni \hat{V}.$$

Since v and V are homotopy 2-spheres and j_1 is a homotopy equivalence, we see that for $q \neq 2$, $i_2^*: H_q(\partial v) \rightarrow H_q(Y)$ must be an isomorphism. When $q = 2$ the sequence becomes:

$$Z^{1-i_2} \rightarrow Z \oplus A \rightarrow Z, \quad A = H_2(Y)$$

from which we obtain i_2^* are isomorphisms $Z \rightarrow A \rightarrow Z$. Thus, $i_2 : \partial v \subset Y$ is a homology isomorphism, and in fact, a homotopy equivalence since $\hat{V} = Y \cup v$ and $\hat{V}, v, \partial v$ are all 1-connected so that by Van Kampen's theorem Y is 1-connected.

We show next that $\partial \hat{V} \subset Y$ is a homology isomorphism so that Y is an h-cobordism from ∂v to $\partial \hat{V}$—i.e. $Y \cong \partial v \times I$ and $\hat{V} = Y \cup v \cong v \cong \hat{V} v_{n+1}(CP^1)$ as required.
We know already that $\partial \hat{V} \cong Y$ as $\partial \hat{V} \cong \partial \nu \cong Y$. Moreover, $\partial \nu \cong \partial \nu_{n+1}(CP^1)$ is an S^{2n-1} bundle over S^2. Hence, by the Serre Spectral Sequence we have

$$H_p(Y) = H_p(\partial \hat{V}) = \begin{cases} Z & \text{if } p = 0, 2, 2n - 1, 2n + 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then, the exact sequence of the pair $(\hat{V}, \partial \hat{V})$ is:

$$0 = H_3(\hat{V}, \partial \hat{V}) \rightarrow H_2(\partial \hat{V}) \rightarrow H_2(\hat{V}) \rightarrow H_1(\hat{V}, \partial \hat{V}) = 0$$

where the first and last groups are 0 by Poincaré Duality. Thus, the inclusion $\partial \hat{V} \subset Y \subset \hat{V}$ is a homology isomorphism through $p = 2$.

Now, consider the composition $f: \partial \hat{V} \rightarrow Y \rightarrow \partial \hat{V}$ where the second map is a homotopy equivalence. Then $f_*: H_p(\partial \hat{V}) \rightarrow H_p(\partial \hat{V})$ is an isomorphism for $p \leq 2$, and by Poincaré Duality so is $f^*: H^i(\partial \hat{V}) \rightarrow H^i(\partial \hat{V})$ for $q = 2n - 1, 2n, 2n + 1$. By the Universal Coefficient Theorem f_* is an isomorphism for $p = 2n - 1, 2n, 2n + 1$ and so for all p. Thus, f is a homotopy equivalence, and so is i.

Theorem A is now an immediate consequence of the last lemma as we have:

$$\widetilde{CP}^{n+1} \leftrightarrow (\sigma_2, \ldots, \sigma_{n-1}, \sigma_n) = [CP^{n+1} - \hat{V}] \cup \hat{V},$$

$$\widetilde{CP}^n \leftrightarrow (\sigma_2, \ldots, \sigma_{n-1}, 0) = [CP^{n+1} - \nu_{n+1}(CP^1)] \cup_{\sigma_n} \nu_{n+1}(CP^1)$$

where we have identified \hat{V} with $\nu_{n+1}(CP^1)$ by Lemma 1, and the PL homeomorphism

$$\varphi_n: \partial [\widetilde{CP}^{n+1} - \nu(CP^1)] \rightarrow \partial \nu(CP^1)$$

comes from the restriction to the boundary of the PL homeomorphism $\hat{V} \rightarrow \nu_{n+1}(CP^1)$ of Lemma 3.

III. Construction of the self-knotting φ_n: Here we construct for $n \geq 4$ a PL self-knotting

$$\varphi_n: \partial \nu_{n+1}(CP^1) \rightarrow \partial \nu_{n+1}(CP^1)$$

with the property that it extends to a homotopy equivalence

$$\overline{\varphi}_n: \nu_{n+1}(CP^1) \rightarrow \nu_{n+1}(CP^1)$$
which has a transverse-inverse image

\[M_0^{2n} = \bar{q}_\sigma^{-1}(D^{2n}) \]
on a fiber \(D^{2n} \). Clearly such a \(\varphi_\sigma \) will suffice for the map in Theorem A.

We begin the construction by defining

\[\Sigma^{2n-1}_\sigma \subset S^{2n+1} \]
to be the smooth Brieskorn knot represented as the link of the singularity on the hypersurface in \(C^{n+1} \) defined by

\[
p(Z) = \begin{cases} Z_0^{6a-1} + Z_1^2 + \cdots + Z_n^2, & n \text{ even}, \\ Z_0^2 + Z_1^2 + \cdots + Z_n^2, & n \text{ odd}. \end{cases}
\]

It is well-known that \(S^{2n+1} - \Sigma^{2n-1}_\sigma \) is a smooth fiber bundle over the circle with fiber \(M_0^{2n} \), the smooth Milnor or Kervaire manifold with surgery invariant \(\sigma \).

Now, let \(S^1 \subset S^{2n+1} \) be a fiber on the boundary of the smooth tubular neighborhood \(D^2 \times \Sigma^{2n-1}_\sigma \) of the knot (a trivial bundle as \(\pi_{2n-1}(\text{SO}(2)) = 0 \) for \(n > 1 \)). Since \(n > 1 \) this circle \(S^1 \) is smoothly unknotted in \(S^{2n+1} \) so that the complement of a small tube \(S^1 \times D^{2n} \) about it is diffeomorphic to \(D^2 \times S^{2n-1} \). Hence the knot \(\Sigma^{2n-1}_\sigma \) lies in this complement with a trivial normal bundle and we can therefore define:

\[\beta: D^2 \times \Sigma^{2n-1}_\sigma \hookrightarrow D^2 \times S^{2n-1} \]
as this embedding. Let \(W^{2n+1} \) be the complement of this smooth embedding. Then we observe:

(a) \(\partial W = S^1 \times S^{2n-1} \cup S^1 \times \Sigma^{2n-1}_\sigma \).

(b) \(W \) is a smooth fiber bundle over the circle \(S^1 \) with fiber \(F^{2n} = M_0^{2n} - D^2 \) and \(\partial F = S^{2n-1} \cup \Sigma^{2n-1}_\sigma \).

(c) the bundle projection is trivial on \(\partial W \rightarrow S^1 \).

Now, using the smooth embedding \(\beta \) we define a piecewise-linear embedding

\[\gamma_\sigma: D^2 \times S^{2n-1} \hookrightarrow D^2 \times S^{2n-1} \]
as the composite map

\[D^2 \times S^{2n-1} \overset{\text{id} \times \alpha_\sigma}{\rightarrow} D^2 \times \Sigma^{2n-1}_\sigma \overset{\beta}{\rightarrow} D^2 \times S^{2n-1} \]
where \(\alpha_\sigma: S^{2n-1} \rightarrow \Sigma^{2n-1}_\sigma \) is a specific PL homeomorphism.
We now describe the normal bundle $\nu_{n+1}(CP^1)$ in CP^{n+1} as:

$$\nu_{n+1}(CP^1) = D_+^2 \times S^{2n-1} \cup \rho D_+^2 \times S^{2n-1}$$

(*) where $\rho: S^1 \times S^{2n-1} \to S^1 \times S^{2n-1}$ is a smooth bundle automorphism representing an element in $\pi_1(SO(2n)) = Z/2Z$ ($n > 1$). [We note in fact that $\gamma_{n+1}(CP^1)$ is trivial for n even and non-trivial for n odd as it is the Whitney sum of n copies of the canonical line bundle over $CP^1 = S^2$.]

In the above description we are expressing CP^1 as $S^2 = D_+^2 \cup D_+^2$. Using this representation we will define the self-knotting ϕ_σ by showing that the PL embedding

$$\gamma_\sigma: D_+^2 \times S^{2n-1} \to D_+^2 \times S^{2n-1}$$

may be extended to a PL homeomorphism on all of $V_{n+1}(CP^1)$. We will show this using the very agreeable bundle structure on the complement W of the embedding γ_σ.

The map

$$\phi_\sigma: D_+^2 \times S^{2n-1} \cup \rho D_+^2 \times S^{2n-1} \to D_+^2 \times S^{2n-1} \cup \rho D_+^2 \times S^{2n-1}$$

will in fact be defined as the union of three maps —

1. $\gamma_\sigma: D_+^2 \times S^{2n-1} \to D_+^2 \times S^{2n-1}$,

2. $\eta: \tilde{W}^{2n+1} \to W^{2n+1}$,

3. $\text{id} \times \mu: D^2 \times \Sigma_{-\sigma}^{2n-1} \to D_+^2 \times S^{2n-1}$

where η is a bundle homeomorphism of bundles over S^1 and $\mu: \Sigma_{-\sigma}^{2n-1} \to S^{2n-1}$ is a PL homeomorphism and

$$D^2 \times \Sigma_{-\sigma}^{2n-1} \cup \tilde{W}^{2n+1} = D_+^2 \times S^{2n+1}.$$

Essentially what we are producing in this construction is a map with the symmetric property that ϕ_σ embeds a fiber (the core of $D_+^2 \times S^{2n-1}$) piecewise linearly onto the smooth fibered knot $\Sigma_{-\sigma}^{2n-1} \subset D_+^2 \times S^{2n-1}$ while ϕ_σ^{-1} embeds a fiber (the core of $D_-^2 \times S^{2n-1}$) piecewise linearly onto the smooth fibered knot $\Sigma_{-\sigma}^{2n-1} \subset D_+^2 \times S^{2n-1}$.

The construction will be completed by (a) defining the bundle \tilde{W} and the bundle map η in (2), (b) showing that $D^2 \times \Sigma_{-\sigma}^{2n-1} \cup \tilde{W}$ is in fact $D_+^2 \times S^{2n-1}$ by a PL homeomorphism which is the identity on the boundary, (c) showing that the maps (1), (2), (3) agree on boundaries after taking the defining automorphism ρ into account, and finally by (d) showing that ϕ_σ is homotopic to the identity.
We define the bundle \tilde{W} over S^1 by defining its fiber \tilde{F} and its monodromy map $\tilde{h}: \tilde{F} \to \tilde{F}$.

Recall that the $2n$-manifold F (fiber of W) is $(n - 1)$ connected and that $\partial F = S^{2n-1} \cup \Sigma^{2n-1}$ where the smooth exotic sphere is defined as $\Sigma^{2n-1} = D^{2n-1}_+ \cup D^{2n+1}_-$ and $\sigma: S^{2n-2} \to S^{2n-2}$ is an exotic diffeomorphism.

Let $I \subset F$ be a path connecting the centers of the discs D^{2n-1}_+ and D^{2n-1}_- of Σ^{2n-1} and S^{2n-1}. Then a tubular neighborhood of I is $I \times D^{2n-1}_+$. We define \tilde{F} as the smooth manifold

$$\tilde{F} = [F - I \times D^{2n-1}_+] \cup [I \times D^{2n-1}_+]$$

where the union is taken over the diffeomorphism

$$\text{id} \times \sigma^{-1}: I \times S^{2n-2} \to I \times S^{2n-2}.$$

Then $\partial \tilde{F} = \Sigma^{2n-1} \cup S^{2n-1}$ as a smooth manifold and we can define a PL homeomorphism

$$\hat{\eta}: \tilde{F} \to F$$

where $\hat{\eta}$ is the identity on $F - I \times D^{2n-1}_+$ and is $\text{id}_I \times (\text{cone extension of } \sigma)$ on $I \times D^{2n-1}_+$.

Then we define the monodromy $\tilde{h}: \tilde{F} \to \tilde{F}$ as the composite map

$$\tilde{h} = \hat{\eta}^{-1} \circ h \circ \hat{\eta}$$

where $h: F \to F$ is the monodromy map defining the bundle W. Since ∂W is a trivial bundle we know that h is the identity map on ∂F. Hence, \tilde{h} is the identity on $\partial \tilde{F}$ and the bundle \tilde{W} has the trivial boundary

$$\partial \tilde{W} = S^1 \times \Sigma^{2n-1} \cup S^1 \times S^{2n-1}.$$

Since $\hat{\eta} \circ \tilde{h} = h \circ \hat{\eta}$ the PL homeomorphism $\hat{\eta}: \tilde{F} \to F$ induces a well-defined bundle homeomorphism

$$\eta: \tilde{W}^{2n+1} \to W^{2n+1}.$$

Restricted to the boundary η is a pair of bundle maps

$$\text{id}_{S^1} \times \alpha^{-1}_{-\sigma}: S^1 \times \Sigma^{2n-1} \to S^1 \times S^{2n-1},$$

$$\text{id}_{S^1} \times \alpha_{\sigma}: S^1 \times S^{2n-1} \to S^1 \times \Sigma^{2n-1}$$

where the PL homeomorphism $\alpha_{-\sigma}$ and α_{σ} are the identity on D^{2n-1}_- and the cone extension of σ^{-1} and σ respectively on D^{2n-1}_+.

198 DOUGLAS MEADOWS
We next embed \(\tilde{W} \) in \(D^2 \times S^{2n-1} \) as a knot complement which will act as an inverse to \(W \):

Recall the bundle isomorphism

\[
\rho: S^1 \times S^{2n-1} \rightarrow S^1 \times S^{2n-1}
\]

which defines \(\partial_{\nu_{n+1}}(CP^1) \). We define a PL bundle map

\[
\hat{\rho}: S^1 \times \Sigma_{-\sigma}^{2n-1} \rightarrow S^1 \times \Sigma_{-\sigma}^{2n-1}
\]

as the composite: \(\hat{\rho} = (id_{S^1} \times \alpha_{-\sigma}) \cdot \rho \cdot (id_{S^1} \times \alpha_{-\sigma})^{-1} \). We consider the PL manifold

\[
D^2 \times \Sigma_{-\sigma}^{2n-1} \cup_{\hat{\rho}} \tilde{W}^{2n+1}
\]

where the union is over the appropriate component of \(\partial \tilde{W} \) and show:

Proposition. The PL manifold \(D^2 \times \Sigma_{-\sigma}^{2n-1} \cup_{\hat{\rho}} \tilde{W}^{2n+1} \) is isomorphic to \(D^2 \times S^{2n-1} \) by a PL homeomorphism \(\Delta \) which restricted to the boundary \(S^1 \times S^{2n-1} \) is an \(S^{2n-1} \) bundle isomorphism \(\lambda \).

Proof. We recall from the definition of \(W^{2n+1} \) that \(S^1 \times D^{2n} \cup W^{2n+1} \) is the knot complement of our original Brieskorn knot and so has the homology of \(S^1 \). A simple exercise with the Mayer-Vietoris sequence implies then that the manifold \(\tilde{W}^{2n+1} \cup S^1 \times D^{2n} \) likewise is a homology circle, and a second application of the sequence implies that the PL manifold.

\[
P^{2n+1} = D^2 \times \Sigma_{-\sigma}^{2n-1} \cup_{\hat{\rho}} \tilde{W} \cup S^1 \times D^{2n}
\]

has the homology of \(S^{2n+1} \). Moreover, \(P^{2n+1} \) is simply connected since \(\tilde{W} \cup S^1 \times D^{2n} \) fibers over \(S^1 \) with fiber \(\tilde{F}^{2n} \cup D^{2n} \) which is \((n - 1) \)-connected. Hence \(\pi_i(\tilde{W} \cup S^1 \times D^{2n}) = Z \) and by the Van Kampen theorem on the union

\[
[D^2 \times \Sigma_{-\sigma}^{2n-1}] \cup_{S^1 \times \Sigma_{-\sigma}} [\tilde{W} \cup S^1 \times D^{2n}]
\]

we have \(\pi_i(P^{2n+1}) = 0 \). By the Hurewicz and Whitehead theorems any simply-connected homology sphere is a homotopy sphere, and by the generalized Poincaré conjecture \((2n + 1 \geq 9)P^{2n+1} \) is a PL sphere.

The identification \(D^2 \times \Sigma_{-\sigma}^{2n-1} \cup \tilde{W}/S^1 \times D^{2n} \cong S^{2n+1} \) provides a PL embedding \(S^1 \subset S^{2n+1} \) and exhibits \(i(S^1 \times D^{2n}) \subset S^{2n+1} \) as a representative for the PL normal microbundle to this embedding. We apply a
theorem due to Lashof and Rothenberg (Thm. 7.3 in [13]) to obtain a
piecewise differentiable homeomorphism \(g: S^{2n+1} \to S^{2n+1} \) so that \(g \circ i: S^1 \times D^{2n} \to S^{2n+1} \) is the smooth vector bundle to the smooth embedding \(g \circ i: S^1 \to S^{2n+1} \). By smoothly unknotting this circle and applying the
smooth tubular neighborhood theorem we obtain a diffeomorphism \(h: S^{2n+1} \to S^{2n+1} \) so that

\[
\begin{align*}
\lambda \downarrow & \uparrow j \\
h \circ g \circ i: S^1 \times D^{2n} & \to S^{2n+1} \\
S^1 \times D^{2n} & \to S^{2n+1}
\end{align*}
\]

commutes where \(j \) is the standard embedding and \(\bar{\lambda} \) is a vector bundle isomorphism. Hence, the restriction map

\[
h \circ g \mid: S^{2n+1} - i(S^1 \times D^{2n}) \to S^{2n+1} - j(S^1 \times D^{2n})
\]

defines a piecewise differentiable homeomorphism

\[
\Lambda: \left[D^2 \times S^{2n-1}_\sigma \cup \bar{\lambda} \mathrm{W} \right] \to D^2 \times S^{2n-1}
\]

which restricts as \(\lambda = \bar{\lambda} \) on the boundary. Finally, we observe that (cf.
Cor. 10.13 in [19]) we may choose a smooth triangulation of \(D^2 \times S^{2n-1} \)
so that \(\Lambda \) is PL. Now, using the homeomorphisms \(\Lambda \) and \(\eta \) we define a PL homeomorphism:

(1) \(\varphi_{\sigma}: \xi \to \partial r_{n+1}(CP^1) \)

where \(\xi \) is the \(S^{2n-1} \) bundle over \(CP^1 = S^2 \) defined by \(\lambda^{-1}. \):

\[
\xi = D^2_\sigma \times S^{2n-1} \cup \lambda_\sigma, D^2_+ \times S^{2n-1}
\]

\[
\Lambda^{-1} \cup \id \to D^2 \times S^{2n-1}_\sigma \cup \rho \mathrm{W}^2 \cup \id D^2_+ \times S^{2n-1}
\]

\[
(id \times \alpha_\sigma) \cup \eta \cup (id \times \alpha_\sigma) \to D^2_\sigma \times S^{2n-1} \cup \rho \mathrm{W} \cup D^2 \times S^{2n-1}
\]

\[
= D^2_\sigma \times S^{2n-1} \cup \rho D^2_+ \times S^{2n-1} = \partial r_{n+1}(CP^1)
\]

From the next lemma to the effect that two non-isomorphic sphere
bundles over \(S^2 \) cannot be PL homeomorphic it follows that the existence
of the map \(\varphi_{\sigma} \) itself guarantees that \(\xi \) and \(\partial r_{n+1}(CP^1) \) are the same bundle.

Lemma. For \(m \geq 3 \) the unique non-trivial orthogonal \(S^m \) bundle over \(S^2 \),
\(\xi \), is not PL homeomorphic to \(S^2 \times S^m \).
Proof. Suppose \(t: \xi \to S^2 \times S^m \) is a PL homeomorphism. Let \(E \) be the non-trivial \(D^{m+1} \) bundle over \(S^2 \) with \(\partial E = \xi \) and define the PL manifold

\[M^{m+3} = E \cup_j D^3 \times S^m \]

\(M \) is the union of simply connected spaces over a path connected intersection. Hence, \(\pi_1(M) = \{1\} \). For \(m \geq 3 \) the homotopy exact sequence of the fibration \(S^m \to \partial E \to S^2 \) implies that \(p_*: \pi_2(\partial E) \to \pi_2(S^2) \) is an isomorphism, and by the Whitehead theorem so is the inclusion \(H_2(\partial E) \to H_2(E) \). Hence, in the Mayer-Vietoris sequence

\[\cdots \to H_j(S^2 \times S^m) \xrightarrow{\psi_j} H_j(E) \oplus H_j(D^3 \times S^m) \to H_j(M) \to \cdots \]

\(\psi_j \) is an isomorphism for \(j \leq m + 1 \). Trivially, \(H_{m+2}(M) = 0 \), and again we have an \((m+2)\)-connected \((m+3)\)-dimensional PL manifold which is consequently a PL sphere.

Then, \(E \cup_j D^3 \times S^m = S^{m+3} \) defines the vector bundle \(E \) as a PL normal micro-bundle to the embedding of its zero section \(S^2 \hookrightarrow S^{m+3} \). By Zeeman's PL unknotting theorem and the uniqueness [7] of stable PL normal microbundles, we see that \(E \) and \(S^2 \times D^{m+1} \) must be micro-bundle isomorphic. Let \(S^2 \to BO \to BPL \) be trivial, and as by smoothing theory the fiber \(PL/0 \) is 6-connected we see that \(b \) is homotopically trivial. As \(E \) was assumed non-trivial as a vector bundle the PL homeomorphism \(t \) cannot exist.

Thus, we define

\[\varphi_a: \partial v_{n+1}(CP^1) = \xi \to \partial v_{n+1}(CP^1) \] from (1) as required.

Next we show that the \(\varphi_a \) just constructed is indeed a self-knotting and that it will suffice for Theorem A.

Recalling from bundle theory that every \(S^N \) bundle over \(S^2 \) for \(N \geq 2 \) has a section, we show

Proposition. Any orientation preserving PL homeomorphism \(\varphi: v \to v \), \(v \) an orthogonal \(S^N \) bundle over \(S^2 \), which embeds a section \(S^2 \hookrightarrow v \) homotopically to itself is homotopic to the identity.

Proof. A tubular neighborhood of the section \(j(S^2) \) is a \(D^N \) bundle \(U \) in the same stable bundle class as \(v \). \(\varphi(U) \) PL embeds this bundle in \(v \) with an inherited smooth structure. By the main theorem of smoothing
theory ([8] or [13], Thm. 7.3) and the uniqueness of smoothings on S^2 we can piecewise differentially isotope this embedding to a smooth embedding of $U \to \nu$. We may easily make the isotopy ambient. Next, we smoothly unknot the core sphere of U and apply the smooth tubular neighborhood theorem. We have, therefore, P.D. isotoped φ so that restricted to U it is a D^N bundle isomorphism. Since $\pi_2(\text{SO}(N)) = 0$ we can isotope this bundle mapping to the identity through bundle isomorphisms on U all of which extend to ν as U is a sub-bundle. Thus, we have isotoped φ so that it is the identity on U. Now, $\nu - U \cong U$ as each fiber of U is a hemisphere of a fiber in ν. We isotope $\varphi_{rel(U)}$ so that it is the identity on the zero section of the bundle $\nu - U$. Finally, we homotope φ to the identity by collapsing the fibers of $\nu - U$ to the zero-section.

We observe that the φ_σ constructed above satisfies the hypothesis of this last proposition as follows: φ_σ is orientation preserving by construction. Also, as the original Brieskorn knot embedded a fiber S^{2n+1} homotopically to the usual embedding, we know that φ_σ does also. That is $(\varphi_\sigma)_\#(\partial\nu) = [\partial\nu]$ and $(\varphi_\sigma)^*(e^{2n-1}) = e^{2n-1}$, where $e^{2n-1} \in H^{2n-1}(\partial\nu)$ is the class represented by inclusion of a fiber. By Poincaré Duality, then, $(\varphi_\sigma)_\#(e_2) = e_2$ for $e_2 \in H_2(\partial\nu)$ the class dual to e^{2n-1}. This implies by the Hurewicz Theorem that φ_σ induces the identity homomorphism on $\pi_2(\partial\nu)$, which is generated by the inclusion of a section.

The map φ_σ constructed in section C embeds a fiber S^{2n-1} onto the image of the Brieskorn knot. Hence, in the decomposition
$$\hat{\mathbb{C}P}^n = [\mathbb{C}P^n - \nu_{n+1}(\mathbb{C}P^1)] \cup_{\varphi_\sigma} [\nu_{n+1}(\mathbb{C}P^1)]$$
the identification is in the order:
$$\varphi_\sigma : \partial[\mathbb{C}P^n - \nu] \to \partial\nu.$$
To show, therefore, that $\hat{\mathbb{C}P}^n \leftrightarrow (0, \ldots, 0, \sigma)$ we must extend φ^{-1}_σ to a homotopy equivalence $\varphi^{-1}_\sigma : \nu \to \nu$ with transverse-inverse image of a fiber being the Milnor or Kervaire manifold M^{2n}_0. Note that any extension will be a homotopy equivalence as $\nu \cong S^2$ and φ^{-1}_σ induces the identity on $\pi_2(\partial\nu) = \pi_2(\nu)$.

Proposition. The PL homeomorphism $\varphi^{-1}_\sigma : \partial\nu_{n+1}(\mathbb{C}P^1) \to \partial\nu_{n+1}(\mathbb{C}P^1)$ constructed above extends to $\varphi^{-1}_\sigma : \nu_{n+1}(\mathbb{C}P^1) \to \nu_{n+1}(\mathbb{C}P^1)$ with transverse-inverse image
$$(\varphi^{-1}_\sigma)^{-1}(D^{2n}) = M^{2n}_0$$
Proof. \((\varphi^{-1}_o)^{-1}(S^{2n-1}) = \varphi_o(S^{2n-1}) = \Sigma^{2n-1}_o \subset \partial \nu\) by the construction of \(\varphi_o\). Moreover, the restriction \(\varphi^{-1}_o|: D^2 \times \Sigma^{2n-1}_o \to D^2_+ \times S^{2n-1}\) is a product map. Now, \(\Sigma^{2n-1}_o\) bounds a fiber \(F^{2n} \subset W^{2n+1}\) whose other boundary component is a fiber \(S^{2n-1}\) of \(\partial \nu\). Let \(D^{2n} \subset \nu\) be the fiber whose boundary is this same sphere. Then, \(F^{2n} \cup D^{2n} = M^{2n}_o\) by the definition of \(F^{2n}\). By pushing \(F^{2n}\) into \(\nu\) along a vector field normal to \(\partial \nu\) and smoothing the corner at \(S^{2n-1}\) between \(F^{2n}\) and \(D^{2n}\) we obtain a smooth embedding \(M^{2n}_o \hookrightarrow \nu\) extending
\[
\partial M^{2n}_o = \Sigma^{2n-1}_o \subset \partial \nu.
\]
Moreover, this embedding will have trivial normal \(D^2\) bundle as \(H^1(M^{2n}_o, \mathbb{Z}) = 0\). Hence, we can extend the product map
\[
\varphi^{-1}_o: D^2 \times \Sigma^{2n-1}_o \to D^2_+ \times S^{2n-1}
\]
to a bundle map \(\hat{\varphi}^{-1}_o: D^2 \times M^{2n}_o \to D^2_+ \times D^{2n}\) covering a degree one extension \(M^{2n}_o \to D^{2n}\). Since \([\nu - D^2_+] \times D^2_- \times D^{2n} = D^{2n-2}\) there are no cohomology obstructions to extending
\[
\varphi^{-1}_o \cup \hat{\varphi}^{-1}_o \text{ to } \varphi^{-1}_o: \nu \to \nu
\]
with the required transverse-inverse image built in.

References

Received March 24, 1980.

UNIVERSITY OF ROCHESTER
ROCHESTER, NY 14627