Broadband nulling of a vortex phase mask

Grover Jr Swartzlander

Follow this and additional works at: http://scholarworks.rit.edu/article

Recommended Citation
Optical vortices enjoy a wide range of applications for quasi-monochromatic light, including optical spatial filtering, \(^1\) optical tweezers, \(^2\) quantum cryptography, \(^3\) and communication, \(^4\) high-resolution spectroscopy, \(^5\) and semiconductor patterning. \(^6\) This broad range of uses is afforded by robust attributes: vortices exist as natural modes in many systems, they exhibit a distinct point of destructive interference in coherent light, and they may be readily produced in the laboratory by various techniques. Additional applications may be possible once the broadband properties of vortices are fully explored. Colored vortices and other optical singularities have been investigated. \(^7\) Spectral anomalies have been reported, \(^8-10\) and temporal coherence properties under broadband illumination have been measured. \(^11\) Here we explore the broadband transmission properties of a vortex phase mask, giving special attention to the amount of light transmitted into the nonvortex mode. This latter mode limits the use of a vortex phase mask for spatial filtering applications such as the search for extrasolar planets. \(^12\) The topological dispersion \(^13\) of the vortex phase mask provides a means to both null the peak of light, and they may be readily produced in the laboratory. The frequencies satisfying \(\Delta d_m = n_0 \Delta \omega / \{ n_4(\omega_0) - n_0(\omega_0) \} \), \(d_{\text{base}}\) is the minimum thickness, \(m_0\) is the topological charge produced at the design wavelength \(\lambda_0\), and the refractive indices of the substrate and the surrounding media at the design wavelength are \(n_4(\omega_0)\) and \(n_0(\omega_0)\), respectively. The effective topological charge generated at any frequency \(\omega\) is given by

\[
m(\omega) = m_0 \left[\frac{n_4(\omega) - n_0(\omega)}{n_4(\omega_0) - n_0(\omega_0)} \right],
\]

where \(\omega_0 = 2\pi/\lambda_0\) is the design frequency and \(\omega\) is the angular frequency associated with the light source. We note that \(m(\omega)\) is not necessarily an integer. For most materials the factor in brackets in Eq. (4) differs much less than the ratio \(\omega/\omega_0\). For mathematical convenience we therefore assume \(n_4(\omega) - n_0(\omega) = n_4(\omega_0) - n_0(\omega_0)\), and we write

\[
m(\omega) = m_0 \omega/\omega_0.
\]

If \(m_0\) is an integer, then \(m = m_0 p\) is also an integer whenever \(\omega = p \omega_0\), where \(p = 1/m_0, 2/m_0, \ldots \). The frequencies satisfying \(\omega = p \omega_0\) will be called principal frequencies.

Although the topological charge varies continuously across the spectrum, it is sometimes advantageous \(^11,14\) to rewrite the field as a Fourier series of modes having an integer topological charge. For this purpose we write

\[
t(\theta, \omega) = \sum_{l=\infty}^{\infty} C_l(\omega) \exp(il \theta),
\]

(6a)

\[
C_l(\omega) = (2\pi)^{-1} \int_{-\pi}^{\pi} t(\theta, \omega) \exp(-il \theta) d\theta,
\]

(6b)

where \(C_l(\omega)\) shall be called the \(l\)th order vortex spectrum. Inserting Eq. (5) into Eq. (2), one may readily show that

\[
C_l(\omega) = \text{sinc}(m_0 \pi \omega/\omega_0 - l \pi).
\]

The vortex spectra, \(C_0(\omega)\) and \(C_{\pm 1}(\omega)\), are plotted in Fig. 1 for the case \(m_0 = 1\). As expected, at \(\omega = \omega_0\) only \(C_{\pm 1}\) has a nonzero value. We also see that \(C_0 = 0\) at the principal frequencies, varying linearly in the vicinity
Material dispersion in the thin layer has been ignored in Eq. (12). When the source spectrum is band limited and \(C_l(\omega) \) is an odd function over the spectral band, Eq. (12a) may be interpreted as a temporal Hilbert transform. In this case the peak of the pulse becomes zero valued.

The zeroth-order vortex spectrum, \(C_0(\omega) \), is of special interest because it is the only mode whose intensity does not vanish along the optical axis. From a spatial filtering point of view, this limits the nulling ability of a vortex mask. Thus we see that the Fourier series decomposition in Eq. (6) provides a means of quantifying the nulling efficiency of a vortex mask without the need to determine the net field. The net field is complicated and may contain vortices in different locations. \(^{14,15}\) Below we determine the relative fluence, \(\eta \), transmitted into this mode. For convenience we assume that the input field is planar, \(F(r,z=0) = 1 \):

\[
\eta = \frac{\int_{-\infty}^{\infty} |E_{l=0}(r,\theta,z=0;t)|^2 dt}{\int_{-\infty}^{\infty} |G(t)|^2 dt} = \frac{\int_{-\infty}^{\infty} |g_{l=0}(\omega)|^2 d\omega}{\int_{-\infty}^{\infty} |\tilde{g}(\omega)|^2 d\omega}.
\]

Parseval’s theorem has been invoked to obtain the right-hand side of Eq. (13).

The following analytical and numerical calculations establish important characteristics of Eq. (13). Analytical results are made possible by assuming a uniform band-limited spectrum. Let \(g(\omega) = (2\Delta \omega)^{-1/2} \) for \(\Omega - \Delta \omega \leq \omega \leq \Omega + \Delta \omega \) and \(g(\omega) = 0 \) otherwise, such that \(\int_{-\infty}^{\infty} |g(\omega)|^2 d\omega = 1 \). An evaluation of \(\eta \) is considerably simplified by assuming that \(\Omega = \omega_0 \), integrating over the variable \(\omega' = \omega/\Omega - 1 \), and expanding the integrand to \(O(\omega'^3) \), assuming that \(\omega'' \ll 1 \) and \(m_0 \) is an integer:

![Figure 2](image-url)
\[\eta = \frac{1}{2\Delta \omega} \int_{-\Delta \omega}^{\Delta \omega} \frac{\sin^2(m_0 \pi \omega/\Omega) \, d\omega}{(\omega^2 + 1)^2} \approx \frac{1}{3} \left(\frac{\Delta \omega}{\Omega} \right)^2. \]

(14)

Numerical integration of Eq. (13), whose values are plotted in Fig. 2, reveals that the right-hand side of relation (14) is an excellent approximation. Furthermore this result is seen in Fig. 2 to be valid in the broad bandwidth regime when \(\Omega \neq \omega_0 \). On the other hand, when the bandwidth is small, direct integration shows that \(\eta_{\Delta \omega(\omega) \rightarrow 0} = C_0^2(\omega_0) = \sin^2(m_0 \pi) \).

An ideal vortex-nulling filter requires that \(\eta \ll 1 \) over a broad bandwidth. In the small-bandwidth regime design parameter errors (\(\omega_0 \) or \(m_0 \)) significantly affect the nulling efficiency. An extinction of more than 8 orders of magnitude is shown in Fig. 2 when \(m_0 = 1, \Delta \omega = 0.1, \) and \(\omega_0 / \Omega \) is selected to coincide with the center frequency of the source, \(\Omega \). Errors in \(\omega_0 / \Omega \) as small as 0.1\% limit the extinction to, at best, 6 orders of magnitude. The limited performance of the mask is attributed to the linear frequency dependence of the effective topological charge shown in Eq. (4). In principle an ideal frequency-independent vortex mask may be produced by using a high-dispersion material.

The author is grateful to Greg Foo (University of Arizona) and David Palacios (Jet Propulsion Laboratory) for their comments. This work was supported by the U.S. Army Research Office and the State of Arizona. G. A. Swartzlander’s e-mail address is grovers@optics.arizona.edu.

References