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1. Introduction 

Healthcare Associated Infections (HAIs) or nosocomial infections have a major impact on 

healthcare systems worldwide, affecting both patients and healthcare providers. HAIs are 

infections that a patient acquires while in a healthcare setting which aggravate the conditions 

they were originally hospitalized for [1]. The World Health Organization (WHO) Patient Safety 

Unit is committed to raising awareness of HAIs and reducing their occurrence through process 

improvements [2]. Their HAI fact sheet states that this problem spans both developed and 

developing countries, affecting anywhere from 7-10% of hospitalized patients, with a larger 

impact on patients admitted to intensive care units [3]. In the United States, both the Centers for 

Disease Control and Prevention (CDC) and the Department of Health and Human Services 

(HHS) have made it a public health priority to look for means to prevent and mitigate the 

occurrence of HAIs [1]. As of 2014 the CDC lists 18 different infectious diseases and organisms 

of concern in health care settings, including: influenza, norovirus, methicillin-resistant 

Staphylococcus aureus (MRSA), and Clostridium difficle [4]. Often these infections occur as a 

result of central-line catheterizations, urinary catheter placement, surgical site infection, or 

ventilator usage [5].   

Data compiled from 2011 by the CDC estimated that over 700,000 patients acquired an infection 

during their stay in the hospital, and approximately 75,000 of those patients died during the 

course of their hospitalization [6].  According to the National Institute for Health (NIH), one in 

twenty inpatients at any time experience some form of a HAI [1]. Similarly, HHS estimates that 

one in twenty-five inpatients at any given time is dealing with an infection they acquired while in 

the hospital [7].  

HAIs aggravate the conditions that patients were originally hospitalized for, contributing to tens 

of thousands of patient deaths per year [1]. They also, at a minimum, can result in longer lengths 

of stays and subsequent additional expenses. In 2013, Waknine [8] estimated that more than $9.8 

billion is spent each year in the United States to treat HAIs, with some infections adding more 

than $40,000 to the patient’s hospital bill.  

The incidence of HAIs can also impact hospitals financially as well as affect patient satisfaction. 

Hospitals extensively track their patient satisfaction and HAI rates, publishing these data to get a 

promotional edge over neighboring hospitals. The 2010 Affordable Care Act (ACA) made 
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changes to Medicare reimbursement incorporating the hospital’s HCAHPS (patient satisfaction) 

scores in the reimbursement formula used for paying providers for their services [9]. In addition 

to patient satisfaction affecting reimbursement levels, hospitals can be forced to assume the cost 

of dealing with HAIs. For example, Medicare reimbursement changes have reduced or 

completely eliminated reimbursement to hospitals for treatment of certain HAIs [10, 11]. The 

ACA also penalizes reimbursement rates for hospitals with the top 25% HAI rates [12].  These 

costs add up to billions of dollars across the entire health care system each year [8]. Hospitals 

can achieve substantial savings and better patient care by effectively controlling HAIs. Those 

savings can then be used to implement programs to better test and treat patients, leading to 

overall better patient outcomes. 

The focus on HAIs thus far has been to raise awareness in order to prevent HAIs. Process 

changes and using different materials on equipment are common approaches to reduce the 

chance of patients acquiring an infection during their stay. Some of these are rather simple, such 

as increased focus on cleaning, hand washing, and changing PPE (personal protective 

equipment) between patient contacts. Other methods include the use of isolation rooms, negative 

pressure rooms that prevent germs from exiting a room, and antimicrobial surfaces, both on hard 

surfaces as well on textiles including uniforms and linens [13, 14]. The CDC has published 

extensive material on the prevention of HAIs [15]. One of the best ways to reduce nosocomial 

incidence is through proper hand hygiene, as dirty hands are the most common way infectious 

disease are spread [16]. On both the CDC and WHO websites, there are a number of additional 

toolkits to help educate and implement prevention measures for various pathogens and routes of 

infection, as well as materials to assess the effectiveness of implemented control measures. 

The hospital environment and medical equipment used on patients are also common sources of 

infecting agents [17]. In order to minimize this risk, there are several things hospitals can do. For 

example, hospitals work to reduce infectious agents (particles) in hallways, which could reduce 

the chance of a patient getting an HAI. Infectious agents are spread both by direct and indirect 

contact, and some can survive in areas outside the body (such as hospital hallways) for a long 

period of time [18]. Elimination of these agents reduces the chance that a patient might come in 

contact with an infecting agent, thus preventing the infection. There is a problem with relying 

solely on this type of control, as infectious particles will inevitably continue to migrate into 
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common areas, either through the motion of air currents, or various individuals entering/exiting 

rooms and coming into contact with public surfaces. Short of continuously cleaning the hallway, 

having an isolated air supply for each room, and having a decontamination station for the room, 

it would be impractical to completely eliminate infectious particles from the hallway.  

In 2016, the CDC published a status update on the efforts to raise awareness and prevent HAIs. 

Looking at data through 2014, this update found that most areas being tracked (surgical site 

infections, central-line catheterizations, MRSA, and C. difficile) had seen a significant decrease 

(2-50%) in the reported number of infections from the baseline year of 2011 (varying by HAI 

type) [19]. Despite the general improvement, the decrease has not been monotonic. For example, 

C. difficle infections increased by 4% from 2013 to 2014, even though they were down 8% 

overall since 2011 [19]. These statistics show that although progress has been achieved in 

controlling HAIs, there is still significant work needed to control and mitigate HAIs. 

As a result of this, nosocomial infections can impact the entire hospital system. As previously 

mentioned there are financial implications due to increased costs of treating these infections and 

reduced reimbursements from Medicare. Patient care quality suffers due to patients needing 

additional treatments. Additionally, staff time is required to diagnose and care for these 

infections. Operational processes within a hospital system are also affected by the need to control 

HAIs. For example, bed assignments are made more difficult as a patient with an infectious 

disease needs to be separated from other patients. This is especially a concern in units using 

multi-occupancy rooms, as only patients who do not pose a risk to each other can share a room. 

When using multi-occupancy rooms, any time a new patient is admitted, there may be a need to 

rearrange other patients in order to have a feasible bed arrangement in which patients assigned to 

the same room do not pose a risk to each other. We refer to the bed reassignment for an inpatient 

as an “internal movement”. Internal movements are time consuming with little added value 

towards patient care. For example, to admit new patients, unit managers need to determine the 

new bed-patient arrangement. Nursing time is used up to prepare and move the patients instead 

of providing patient care; environmental service staff have additional rooms to clean, as the room 

a patient is coming from and going to must be cleaned. These cleaning procedures may not be 

100% effective, potentially leaving infectious particles behind. Operationally, the simplest 

approach to mitigate HAIs by reducing internal movements would be to use only single rooms 
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leading to each patient being isolated from all other patients. Recent publications support using 

only single rooms. A 2011 study by Boardman and Forbes [20] finds a net social benefit for 

construction of private rooms over semi-private rooms. More recently, in 2016 Sadatsafavi et al. 

[21] published a study suggesting that increased costs from construction and operation of single 

patient rooms are more than offset by the decreased costs of treating nosocomial infections. 

However despite these benefits, using only single rooms has the draw-back of severely reducing 

unit capacity, resulting in lower numbers of patients receiving treatment. In units that have high 

demand or in developing countries where multi-occupancy rooms are necessary, using only 

single rooms is not an available option. 

2. Problem Statement 

The main question addressed in this study is: how should hospitals that utilize multi-occupancy 

rooms assign patients to beds while considering isolation constraints? This patient-to-bed 

assignment problem needs to be solved while still ensuring high occupancy rates, minimizing 

rearrangement of previously admitted patients, and incorporating realistic medical protocols that 

ensure the most critical patients receive timely treatment. Specifically, we look to address the 

following questions: 

1. What is the optimal bed configuration for a selection of length-of-stay and arrival rate 

distributions? 

2. Should units carry out batch admissions, and if so what is the ideal waiting time before 

making admission decisions? 

3. What differences are there between utilizing a centralized and decentralized admission 

policy? A centralized policy involves a centralized administrator making bed assignment 

decisions for the entire hospital, which allows patients to be assigned to any open bed in 

the hospital. A decentralized policy is where the unit makes their own bed decisions, 

restricting patients to a single unit during their entire stay.  

In order to solve this problem, this study proposes a new bed assignment mathematical 

formulation that builds on the model proposed by Cignarale et al. [42] in 2013. This model has 

been further developed, using practical knowledge that better incorporates patient-admission 

protocols, and results in a two-stage problem approach. First, maximizing the number of 

admitted patients, and second, minimizing the movements required to accommodate the admitted 
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patients. The bed assignment model includes many of the features of Cignarale et al.’s [42] bed 

assignment model, such as gender and isolation constraints, while also allowing for solutions 

involving multiple independent units within a hospital, and allowing patients to be placed in non-

preferred units for a penalty cost. Using this model we explore the effects of unit demand, 

frequency of admissions, and centralized admitting procedures to determine the effect that each 

of these factors has on the level of internal movements, and ultimately the risk of a patient 

acquiring an HAI which is a consequence of controlling HAIs by safe bed-assignments. 
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3. Literature Review 

Using optimization models for scheduling in medicine has been explored in a variety of areas 

including: bed scheduling, elective admissions, nursing staff scheduling, and operating room 

schedules [22-42]. Despite clear benefits from the use of optimization models, implementation 

has not been widely adopted due to cost concerns, the need to uniquely configure the solution for 

each implementation site, lack of decision-making systems in hospital settings, and the ability to 

pass the cost of inefficiencies off as part of the cost of patient care.   

3.1 Bed Allocation 

Since the 1980s, simulation has commonly been used as the approach of choice to address bed 

allocation problems. Williams [29], Dumas [30], Vassilacopoulos [31], and Khare et al. [32] 

each focused on determining the optimal allocation of beds to units while still ensuring hospital 

operation efficiency through use of simulation studies. Williams [29] in 1983 and Khare et al. 

[32] found in separate studies that increasing the efficiency of the emergency room can benefit 

downstream units through decreased patient lengths-of-stays. In 1984, Dumas [30] assigned 

patients to a unit based on their expected treatment needs. This results in patients being assigned 

to less-than-ideal units if the best unit was full, and then later being moved if a space in the best 

unit became available. In 1985 Vassilacopoulos [31] tried to determine the optimal number of 

beds for hospital units using a policy that immediately assigns emergency patients to hospital 

beds. All of these studies used simulation as the basis for their analysis. However, their primary 

focus was determining the number of beds to allocate to a unit and not how to match specific 

patients to beds within a unit. None of the aforementioned studies considered the effects of 

isolation conditions that prohibit patients with certain conditions from occupying a room. 

Vassilacopoulos [31] considered an admitting interval as part of their bed allocation model 

(immediate for a select group of patients), however did not look at the effects of any other 

admitting intervals on bed allocation. 

3.2 Bed Assignment 

Another group of studies have focused more on matching patients to beds under both static 

(unchanging patient condition) and dynamic (varying patient parameters during the course of 

their admission) conditions. In 2010, Demeester et al. [33] proposed a heuristic considering how 

to assign beds as part of scheduling admissions. The model considers factors specific to each 
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patient, such as admission date, discharge date, gender, quarantine conditions and needed 

treatments, as well as patient preferences for a private or shared room, and admission to a 

specific department. The study differed from the approaches taken up to that point, which 

focused on hospital efficiency and not specific patient cases. Demeester et al. [33] was one of the 

first to tackle a computational integer program approach to solve a bed assignment problem. This 

approach consisted of an integer program that was soon found to be impractical due to lengthy 

solution times. Instead a bed assignment solution was successfully implemented by using a local 

neighborhood tabu search procedure. Although the solution comes to find a successful 

implementation, there were some shortcomings that impacted its general adoption, such as 

requiring patients’ arrival and discharge time to be known beforehand. Additionally in the 

model, if a patient had an infectious disease it was simply required to be quarantined. 

Ceschia and Schaerf [34] expanded upon Demeester et al. [33] by reformulating the model to 

improve search times and proposing two additional local search procedures. The authors 

recognized that the beds in a shared room are functionally equivalent, so the patient does not 

need to be assigned to a specific bed, but rather to a room. In order to make this change, a 

capacity constraint was proposed for each room, ensuring that the capacity could not be 

exceeded when assigning patients to a room. The second change condensed the penalties for 

violating patient preferences into a single matrix as opposed to individual penalties for each 

patient room-preference violation. Reformulating the model with these changes and 

implementing their own local search procedures outperformed Demeester et al. [33] in speed to 

obtain a solution. This solution did not address the problem of needing to know the admission 

date in advance, but the authors proposed the groundwork necessary for implementing a dynamic 

approach to solving the model when patient admissions are not planned in advance.  

In 2012 Ceschia and Schaerf [35] revisited their model to integrate information on unplanned 

admissions and uncertain lengths of stay. To do this they simulated patient admission using both  

registration and admission dates, with the patients often registering a few days in advance of 

their desired admission day. The registration date represents the day when all relevant patient 

information becomes available to be used in upcoming admission decisions. Some patients were 

classified as emergency patients and their planned admission date was the same as when they 

registered. The problem was solved daily based on those patients currently “registered”. A 
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penalty was also added to mitigate any delay in admission beyond the patient’s planned 

admission date. The authors developed both an integer linear program and a local neighborhood 

search algorithm to solve this new problem under both “dynamic” (including emergency 

patients, uncertain length-of stays, admission delays) and “static” (patients known in advance,  

length-of-stay and admission date does not change)  scenarios. The integer program was unable 

to find an optimal solution for large “dynamic” instances due to complexity, so the problem was 

simplified to not allow any delays in admission date. Both the integer linear program and local 

neighborhood search yielded similar results for small dynamic scenarios, but only the local 

search algorithm was able to provide a solution in large cases.  When comparing the solutions of 

the simplified no-delays problem to the problem allowing delays, they found an average 4.4% 

improvement when allowing for delayed admissions. When comparing solutions of “static” 

versus “dynamic” problems, they found the “static” problems produced 5.5% better results, but 

noted that having all patient admission data in advance is not practical. Despite making progress 

on a “dynamic” model, the solver still struggles to provide a feasible solution for large scenarios 

in a timely manner. 

Vancroonenburg et al. [36] proposed their own version of a “dynamic” model that also extends 

Demeester et al.’s [33] previously established patient bed assignment problem to a more dynamic 

state by performing two changes. First, this model allows the patient’s arrivals and departures to 

be revealed throughout the planning horizon instead of being known at the beginning of the 

simulation to better reflect what happens in real life. To do this, the model implements a 

registration date which tracks when the patient becomes available to the model for consideration 

in planning bed assignments. Additionally, the length-of-stay is considered an estimated value 

with the potential to change. This allows the model to compensate for patients exceeding their 

expected length-of-stay. These two changes are what the authors deemed to be an “online 

dynamic state” as opposed to an “offline” state without the changes. Both models were 

incorporated into a Monte Carlo simulation.  Their first model was an offline model and was 

used to determine a baseline system performance. Their second model was an online anticipatory 

model which considered future arrivals revealed to the system. The study concludes that that “the 

anticipatory models consistently outperformed the reactive models” [36]. The authors also found 

that allowing internal movements may result in longer solution times and/or worse bed 

assignments. This model still has the shortcoming of Demeester et al.’s [33] original model, as it 



9 

 

does not account for different infectious diseases that may be present, and so forbids patient 

transfers potentially resulting in underutilization of beds. This is because beds may be 

quarantined when another patient with the same infectious disease could use it. 

Range et al. [37] sought to provide a new algorithm for solving the patient assignment 

scheduling problem originally put forth by Demeester et al. [33] by implementing a column 

generation procedure. The study compares its solution to benchmarks published by both 

Demeester et al. [33] and Ceschia and Shaerf [34]. They found that their approach resulted in 

marginally better solutions due to the formulation having tighter bounds, and that their method is 

better for solving small versions of Demeester et al.’s [33] patient admission scheduling 

problem. However like previous models, it still fails to be solved in a timely fashion when the 

time horizons for planning surpass 14 days. 

To this point, much bed assignment work has focused on scheduling bed utilization across the 

hospital over a large time horizon and modifying the original model proposed by Demeester et 

al. [33] to make it run more efficiently. Breaking away from this traditional model proposed by 

Demeester et al. [33], Tsai and Lin [38] recognized the impact that the hospital admissions 

process can have on bed turnover rates, unnecessary occupation of beds, and quality of care. The 

authors proposed a multi-attribute value theory model as a method to assign beds in the hospital 

[38]. A ranked waiting list of patients seeking a specific bed in the hospital is generated and 

updated.  In order to generate the waiting list, a set of weighted preferences is assigned to 

patients to best match patients to beds in different wards based on the preferences specified on 

their admission orders. The use of the ranked waiting lists deviates from the traditional approach 

of treating bed assignment as a scheduling program and instead develops a series of preference 

rules. The paper reports significant improvement in the percentage of patients being matched to 

beds meeting their preferences. The major limitation of the study is the limited number of factors 

considered to differentiate a patient’s suitability for a bed, which can result in more than one 

patient being eligible for a bed.  

In an effort to reduce hospital costs while still providing high quality care, Thomas et al. [39] 

summarized the results of a bed assignment optimization model iteratively applied to multiple 

bed assignment problems until every bed in a hospital has been filled up or the queue of patients 

seeking admission has been exhausted. This process is carried out while still accounting for 
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attributes associated with each of the beds in order to maximize the total benefit received from 

bed assignments and minimize any violation of hospital requirements. The proposed MIP model 

is solved iteratively for progressively smaller groups of patients and units. After an iteration, a 

set of bed assignments is fixed, leaving a smaller instance of the same problem to be solved in 

subsequent iterations. The implementation of this model found that 90% of the time, patients 

were assigned to a bed meeting all their specified requirements and assignments were occurring 

an average of 23% faster than without the MIP model. This suggests that a bed assignment 

model does not need to solve the configuration entirely for a time period in a single pass, and 

there may be benefits to solving in smaller sets of beds and patients. 

Barz and Rajaram [40] proposed a model for scheduling elective patient admissions with 

constrained resources while also considering ongoing changes in the patient’s condition and 

well-being. This is accomplished using a heuristic that accounts for the randomness in patient 

arrival and condition. Simpler rules for scheduling patient admissions often fail to account for 

this randomness in the data. Authors report that their model anticipated this random variation and 

outperformed the simple rules that providers often use. 

3.3 Bed Assignment with Unique Isolation Conditions 

In 2013, Pinker and Tezcan [41] looked at patient transfers and bed configurations in a limited 

space unit to explore the effect of isolation requirements. However, the study only looked at two 

admitting policies, one based on a first-come-first-serve policy and one that aimed to maximize 

unit revenue. Based on studying these two policies they concluded that a combination of single 

and double rooms provided the most revenue for a unit. 

In a similar study, Cignarale et al. [42] proposed an MIP formulation that admits critical patients 

to a hospital unit for a single time period while at the same time minimizes the number of 

internal movements necessary to accommodate such admissions. All admissions and movements 

were subject to constraints such as room capacity, isolation and gender requirements, as well as 

the preferences (often specified by the admitting provider) of the patient seeking admission. This 

model specifically adds a missing isolation constraint, allowing for patients with the same 

isolation requirements to share a room, as opposed to designating a patient as simply requiring 

quarantine as in the original Demeester et al. [33] model. This model is incorporated in a Monte 

Carlo simulation experiment, where it is solved for specified arrival rate and LOS distribution 
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scenarios for a single unit facing high utilization. The model simultaneously minimizes the 

number of internal movements and tries to maximize the criticality of patients treated in the unit 

by fusing these multiple objectives by their relative weights. Unfortunately, any solution to the 

model is highly dependent on the value of these relative weights and may cause a decrease in 

utilization in order to reduce internal movements. This approach does not properly reflect what 

happens in practice, as admitting staff first try to maximize the number of patients that can be 

admitted and worry about internal movements afterwards.  

Cignarale et al. [42] also developed a multi-period bed assignment model that considers potential 

future patient admission data when making bed assignments for the current day. The authors 

concluded that including future knowledge did not have a significant effect on the number of 

internal movements over a given planning horizon. Instead, the authors concluded that a single 

period model appears to be the best to support bed assignment problems for the critical care unit 

considered. A limiting factor in the study is the assumption that patient discharges occur 

immediately upon the patient reaching their discharge date, which may not reflect actual hospital 

operations.  

Our study aims to expand upon Cignarale et al.’s [42] work by exploring isolation requirements 

in a multiple unit environment, the batching of arrivals and discharges, and different room 

configurations, while only solving for a single period at a time. Our model modifies this model to 

a multi-objective integer program that first maximizes criticality then minimizes internal 

movement, better reflecting actual practices. Our model also expands upon a single unit in order 

to consider how multiple units function in unison. 

Bed assignment policies, as shown in previous literature, benefit the departments in which they 

are implemented as they reduce the time and labor needed to determine and implement a new 

bed arrangement. Other work has also been done in patient bed assignment which suggests it 

may benefit other departments in the hospital as well, in addition to the department 

implementing the assignment model. In 2010, Pauze et al. [43] found that simply implementing a 

policy of rapid bed assignment and transfer resulted in decreased length of stay for patients in the 

emergency department. If simply implementing a policy is able to realize these benefits in the 

emergency department, then developing a system which automatically does bed assignment 
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would undoubtedly have tangible benefits for both the implementing unit and units sending 

patients to the receiving unit. 

3.4 Bed Pooling 

Cohen et al. [44], Lapierre et al. [45], Bekker et al. [46] and Kuntz et al. [47] have discussed the 

idea of sharing beds across units. These studies ultimately conclude that sharing beds is a 

complex task that will be different for each hospital. However, if it is done, the units should not 

be analyzed independently of one another when looking at bed capacity and unit utilization [44]. 

Bekker et al. [46] looked at different techniques of bed pooling. Based on their analysis, the best 

ways to approach the problem are to merge units while reserving beds for priority patients or to 

maintain an overflow unit after the merge. All these studies [44-47] undertook the complex task 

of bed pooling, however failed to consider that sharing beds among units do not come at the 

same cost. It may be more difficult to provide care if the patient is in a non-preferred unit. It is 

also possible that the patient movement to a different unit may be more expensive (nursing time, 

movement distance, etc.) than staying within the preferred unit. In order to correct for this, when 

developing our multi-unit model we implement a user-defined penalty for a pair of units which is 

considered upon making the initial admission decision and any subsequent movements of the 

patient. 

3.5 Bed Configuration within Units 

With regards to determining if a specific bed configuration is acceptable, previous studies [47-

51] have tended to use a combination of occupancy rate (percentage beds occupied) and refusal 

rate (number of patients not admitted due to bed unavailability). Bagust et al. [48], Holm et al. 

[49], and Kuntz et al. [47] all argue that an admission system should have restrictions on their 

occupancy in order to maintain safe occupancy rates. Harper and Shahani [50] and de Bruin et al. 

[51] combine both measures, evaluating configurations based on both the refusal rate and 

occupancy rate.  Other studies find that occupancy rates can affect both the efficient operation of 

units and the HAI rate [48, 52, 53]. Ahyow et al. [52] in a 2013 cohort study found that wards 

with greater than 80% occupancy had C. difficle infection rates 56% higher than units with 70% 

or less occupancy. Weissman et al. [53] found evidence that 10% increase in unit occupancy 

results in as much as a 15% increased risk for adverse patient care events. Bagust et al. [48] 
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found that when the occupancy rate surpasses 85% there is an occasional risk of having bed 

shortages, and when surpassing 90% there are consistently bed shortages. 

3.6 Need for a New Bed Assignment Model 

The literature thus far has focused extensively on different bed assignment models [33- 42] and 

improving upon Demeester et al.’s [33] original model. It appears only Pinker & Tezcan [41] and 

Cignarale et al. [42] has considered specific isolation requirements beyond a simple quarantine 

flag in the bed assignment model, although these studies only look at a single unit. Up to this 

point there does not appear to be any work looking at bed assignment specifically as a way to 

reduce infectious disease spread. Furthermore most models do not explore different bed 

assignment policies and recommendations on policies to optimize the bed assignment process. 

Therefore there is a need for a bed assignment model which can consider isolation requirements 

across multiple units and produce results that can be used for suggesting optimal bed assignment 

policies for a variety of unit configurations. 
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4. Methodology Overview 

In order to address our research questions, we propose a 2-stage bed assignment integer program 

(IP) model that assigns patients to inpatient beds. The first stage maximizes the admitted 

patients, ensuring that the most sick receive service first. The second stage minimizes the number 

of internal movements to accommodate those patients. We incorporate this IP model in a series 

of Monte Carlo simulation experiments that evaluate the model and provide recommendations 

for different unit arrangements. Unique experimental scenarios are set up by varying inpatient 

demand and the number of single and double rooms within each unit. Three sets of experiments 

are considered. First, one in which we consider that patients can be admitted in a single unit and 

admissions are performed once per day. Second, we allow multiple admissions in a day by 

implementing batch admissions. Finally we experiment with a centralized admitting policy, 

allowing multiple units within a hospital to share bed capacity. Each unique experimental 

scenario utilizes a randomly generated stream of patients. Figure 1 shows an overview of the 

methodology utilized for this study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Overview of study methodology 



15 

 

4.1 Bed Assignment IP Model 

The current integer program bed assignment optimization model used in the Monte Carlo 

simulations is described in this section. The proposed model is a multi-objective problem which 

seeks first to maximize the admission of patients with highest criticality, and then minimizes the 

number of internal movements required to achieve a feasible arrangement. Inputs known for this 

model are the hospital units, rooms, capacity of each room, admitted patient population, their 

current bed assignment, gender, isolation conditions, and movement restrictions. A stream of 

patients seeking admission is also known, along with their gender and isolation conditions. The 

unknown variable being solved for is whether a patient is assigned to a specific room. Figure 2 

shows the flow of patients through each stage of the IP model. The model formulation and 

detailed explanation is shown on the following pages. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Patients moving through 2-stage IP model. Stage 1 solves in order to maximize the total criticality 
of admitted patients based on patients already admitted and patients seeking admission. Stage 2 solves to 

minimize internal movements required to accommodate the patients admitted during stage 1. 
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Sets 

𝑈:   𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 

𝑃𝐴𝑢:      𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 𝑡𝑜 𝑢𝑛𝑖𝑡 𝑢 ∈ 𝑈 

𝑃𝑁𝑢:      𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑠𝑒𝑒𝑘𝑖𝑛𝑔 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑜 𝑢𝑛𝑖𝑡 𝑢 ∈ 𝑈 

𝑃:            𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠, ∪𝑢 ∈ 𝑈 (𝑃𝑁𝑢 ∪ 𝑃𝐴𝑢) 

𝐼:             𝑠𝑒𝑡 𝑜𝑓 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝐺:            𝑠𝑒𝑡 𝑜𝑓 𝑔𝑒𝑛𝑑𝑒𝑟𝑠 

𝑇:            𝑠𝑒𝑡 𝑜𝑓 𝑡𝑟𝑖𝑎𝑔𝑒 𝑟𝑜𝑜𝑚𝑠 

𝐷:            𝑠𝑒𝑡 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑟𝑜𝑜𝑚𝑠 

𝑅𝑠:          𝑠𝑒𝑡 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑡𝑟𝑖𝑎𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑟𝑜𝑜𝑚𝑠,    𝑇 ∪ 𝐷 

𝑅𝑈𝑢:       𝑠𝑒𝑡 𝑜𝑓 𝑟𝑜𝑜𝑚𝑠 𝑓𝑜𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑢𝑛𝑖𝑡 𝑢 ∈ 𝑈 

𝑅:            𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑜𝑜𝑚𝑠 𝑖𝑛 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙,    ∪𝑢 ∈ 𝑈 (𝑅𝑠 ∪ 𝑅𝑢) 

Parameters 

𝑏𝑗:            𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑒𝑑𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑟𝑜𝑜𝑚 𝑗 ∈ 𝑅 

𝑔𝑖:            𝑔𝑒𝑛𝑑𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 

𝑙𝑖:             𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 

𝑐𝑖:            𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃,   𝑑𝑒𝑓𝑎𝑢𝑙𝑡 0  

Δ𝑖:           𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑙𝑎𝑔  {
0; 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑐𝑎𝑛 𝑏𝑒 𝑚𝑜𝑣𝑒𝑑

1; 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑚𝑜𝑣𝑒𝑑
 

𝑦𝑖𝑗′ :        𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑙𝑎𝑔 {
0; 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑤𝑎𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑜𝑚 𝑗′ ∈ 𝑅

1; 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑤𝑎𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑜𝑚 𝑗′ ∈ 𝑅
 

𝛼𝑗′𝑗:       𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑜𝑟 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑚 𝑗′ ∈ 𝑅 𝑡𝑜 𝑟𝑜𝑜𝑚 𝑗 ∈ 𝑅 

𝑎𝑖:         𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑙𝑎𝑔 {
0; 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑

1; 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑖𝑠 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑
 

𝑝𝑖𝑢:         𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑡𝑜 𝑢𝑛𝑖𝑡 𝑢 ∈ 𝑈 

𝑑𝑐:         𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑙𝑎𝑔 {
0; ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑢𝑠𝑒𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑜𝑙𝑣𝑖𝑛𝑔

1; ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑢𝑠𝑒𝑠 𝑑𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑜𝑙𝑣𝑖𝑛𝑔
 

Variables 

𝑥𝑖𝑗 :        {
0; 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑜𝑚 𝑗 ∈ 𝑅

1; 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑜𝑚 𝑗 ∈ 𝑅
 

𝛿ℎ𝑗 :       {
0; 𝑔𝑒𝑛𝑑𝑒𝑟 ℎ ∈ 𝐺 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑟𝑜𝑜𝑚 𝑗 ∈ 𝑅 | 𝑏𝑗 > 1

1; 𝑔𝑒𝑛𝑑𝑒𝑟 ℎ ∈ 𝐺 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑟𝑜𝑜𝑚 𝑗 ∈ 𝑅 | 𝑏𝑗 > 1
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𝛾𝑖𝑗 :        {
0; 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖 ∈ 𝐼 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑟𝑜𝑜𝑚 𝑗 ∈ 𝑅 | 𝑏𝑗 > 1

1; 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖 ∈ 𝐼 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑟𝑜𝑜𝑚 𝑗 ∈ 𝑅 | 𝑏𝑗 > 1
 

𝛽𝑖𝑗′𝑗:    𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑜𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 ∈ 𝑃 𝑓𝑟𝑜𝑚 𝑟𝑜𝑜𝑚 𝑗′ ∈ 𝑅 𝑡𝑜 𝑗 ∈ 𝑅 
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Stage 1 

Objective 

Maximize:     ∑ ∑ 𝑐𝑖𝑥𝑖𝑗𝑗∈𝑅\𝑅𝑠𝑖∈𝑃  

Constraints: 

(1)         ∑ 𝑥𝑖𝑗 = 1𝑗∈𝑅\𝑅𝑠                           ∀ 𝑢 ∈ 𝑈, 𝑖 ∈ 𝑃𝐴𝑢 

(2)         ∑ 𝑥𝑖𝑗 = 1𝑗∈𝑅\𝐷                             ∀ 𝑢 ∈ 𝑈, 𝑖 ∈ 𝑃𝑁𝑢  

(3)         𝑥𝑖𝑗 ≤ 𝛿𝑔𝑖𝑗                                      ∀ 𝑖 ∈ 𝑃, ∀ 𝑗 ∈ 𝑅 | 𝑏𝑗 > 1 

(4)         𝑥𝑖𝑗 ≤ 𝛾𝑙𝑖𝑗                                       ∀ 𝑖 ∈ 𝑃, ∀ 𝑗 ∈ 𝑅 | 𝑏𝑗 > 1 

(5)         ∑ 𝛿ℎ𝑗 = 1ℎ∈𝐺                                ∀ 𝑗 ∈ 𝑅\𝑅𝑠 | 𝑏𝑗 > 1 

(6)         ∑ 𝛾𝑖𝑗 = 1𝑖∈𝐼                                   ∀ 𝑗 ∈ 𝑅\𝑅𝑠 | 𝑏𝑗 > 1 

(7)         ∑ 𝑥𝑖𝑗 ≤ 𝑏𝑗𝑖∈𝑃                                 ∀ 𝑗 ∈ 𝑅 

(8)         𝑥𝑖𝑗 = 0                                            ∀ 𝑢 ∈ 𝑈, 𝑖 ∈ 𝑃𝐴𝑢 | 𝑗 ∈ 𝑇  

(9)         ∑ 𝑥𝑖𝑗 = 0𝑗∈𝑅|(𝑏𝑗=1,𝑗≠𝑗′)               ∀ 𝑖 ∈ 𝑃, ∀ 𝑗′ ∈ 𝑅 | (𝑏𝑗′ = 1, 𝑦𝑖𝑗′ = 1)  

(10)         𝑥𝑖𝑗 ≥ Δ𝑖𝑦𝑖𝑗                                     ∀ 𝑖 ∈ 𝑃, ∀ 𝑗 ∈ 𝑅 

(11)        ∑ 𝑥𝑖𝑗 = 1𝑗∈𝑅𝑈𝑢∪ 𝑇                          ∀ 𝑢 ∈ 𝑈, 𝑖 ∈ (𝑃𝐴𝑢 ∪ 𝑃𝑁𝑢) | 𝑑𝑐 = 1 

  



19 

 

Stage 2 

Objective 

Minimize:     ∑ ∑ ∑ 𝛽𝑖𝑗′𝑗𝑗∈𝑅𝑗′∈𝑅𝑖∈𝑃|𝑎𝑖=1  

Constraints: 

(5) - (7), (10) from previous stage 

(12)         ∑ 𝑥𝑖𝑗 = 1𝑗∈𝑅\𝑅𝑠                         ∀ 𝑢 ∈ 𝑈, 𝑖 ∈ 𝑃𝐴𝑢 | 𝑎𝑖 = 1 

(13)         ∑ 𝑥𝑖𝑗 = 1𝑗∈𝑅\𝐷                           ∀ 𝑢 ∈ 𝑈, 𝑖 ∈ 𝑃𝑁𝑢 | 𝑎𝑖 = 1 

(14)         𝑥𝑖𝑗 ≤ 𝛿𝑔𝑖𝑗                                    ∀ 𝑖 ∈ 𝑃, ∀ 𝑗 ∈ 𝑅 | 𝑏𝑗 > 1 | 𝑎𝑖 = 1 

(15)         𝑥𝑖𝑗 ≤ 𝛾𝑙𝑖𝑗                                     ∀ 𝑖 ∈ 𝑃, ∀ 𝑗 ∈ 𝑅 | 𝑏𝑗 > 1 | 𝑎𝑖 = 1 

(16)         𝑥𝑖𝑗 = 0                                         ∀ 𝑢 ∈ 𝑈 , 𝑖 ∈ 𝑃𝐴𝑢 | (𝑎𝑖 = 1, 𝑗 ∈ 𝑇)  

(17)         ∑ 𝑥𝑖𝑗 = 0𝑗∈𝑅|(𝑏𝑗=1,𝑗≠𝑗′)             ∀ 𝑖 ∈ 𝑃, ∀ 𝑗′ ∈ 𝑅 | (𝑎𝑖 = 1, 𝑏𝑗′ = 1, 𝑦𝑖𝑗′ = 1)  

(18)        ∑ 𝑥𝑖𝑗 = 1𝑗∈𝑅𝑈𝑢∪ 𝑇                        ∀ 𝑢 ∈ 𝑈, ∀ 𝑖 ∈ (𝑃𝐴𝑢 ∪ 𝑃𝑁𝑢) | (𝑎𝑖 = 1, 𝑑𝑐 = 1) 

(19)        𝛽𝑖𝑗′𝑗 = 𝛼𝑗′𝑗𝑥𝑖𝑗                               ∀ 𝑖 ∈ 𝑃, ∀ 𝑗, 𝑗′ ∈ 𝑅\𝑅𝑠 | 𝑦𝑖𝑗′ = 1 

(20)        𝛽𝑖𝑗′𝑗 = 𝑝𝑖𝑢𝑥𝑖𝑗                                ∀ 𝑢 ∈ 𝑈, ∀ 𝑖 ∈ 𝑃, ∀ 𝑗′ ∈ 𝑇, ∀ 𝑗 ∈ 𝑅𝑈𝑢 |(𝑎𝑖 = 1, 𝑦𝑖𝑗′ = 1)  

(21)        ∑ 𝑥𝑖𝑗𝑗∈𝑅\𝑅𝑠 = 𝑎𝑖                           ∀ 𝑖 ∈ 𝑃 

(22)       𝛽𝑖𝑗′𝑗 ≥ 0      
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4.2 Model Explanation 

This model solves in two stages. First, it decides whom to admit in order to maximize the 

criticality of patients in the system, ensuring the most ill receive treatment first. After choosing 

which patients to admit, a second stage makes bed assignments in order to minimize patient 

movements. A single patient movement from one room to another in the same unit is considered 

one movement.  

It is not always possible to accommodate patients in their preferred unit due to space restrictions. 

When patients are placed in a non-preferred unit, it incurs a penalty, increasing the cost of that 

movement. This allows the system to move patients to non-optimal units, but incentivizes 

making internal movements in the same unit.  

Constraints (1) and (12) ensure that any patient previously admitted occupies a bed in the 

hospital, and is not assigned back to triage or discharged prematurely. Constraints (2) and (13) 

ensure that patients seeking admission are either given a bed assignment, or remain in triage 

awaiting bed assignment. Constraints (3) and (14) ensure that a patient is only assigned to a room 

if it is empty or a matching gender is present in the room. Similarly, constraints (4) and (15) 

ensure that a patient is only assigned to a room if it is empty or a matching isolation requirement 

is present in the room.  Constraint (5) ensures that only one gender is present in a room. 

Constraint (6) ensures that only one isolation condition is present in a room. Constraint (7) 

ensures that the total number of patients assigned to a room does not exceed the bed capacity of 

the room. Constraints (8) and (16) make sure that all patients previously admitted are not 

assigned back to the triage room. Constraints (9) and (17) ensure that a patient occupying a 

single room is not reassigned to a different single room. Constraint (10) prevents patients being 

moved who have been flagged ineligible for movement (e.g. when restricting patient movements 

to once per day). Constraints (11) and (18) are used in decentralized admission policy, allowing 

patients only to be assigned to rooms within their current unit. Constraint (19) defines the penalty 

movement for moving previously admitted patient to a new room. Similarly, constraint (20) 

defines the penalty for admitting a patient to a non-preferred unit. Constraint (21) ensures that 

any patient selected for admission in the first problem is assigned a room. Finally constraint (22) 

ensures non-negativity on the movement variables, which allows their sum to be minimized. 
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4.3 Experiments Overview 

This study relies on a Monte Carlo simulation that solves the integer program bed assignment 

model for different problem instances of a set of experimental scenarios. The model tests 

different bed assignment policies in order to answer the questions set out in the problem 

statement. For each experimental scenario in the following sections, there are 50 replications of 

365 days, with a 100 day warm up period prior to data collection in each replication. This results 

in 50 years of data for each arrangement. During each scenario patient demand is sampled from 

arrival rate and length-of-stay distributions. Using these distributions, we apply Little’s law to 

predict the long-term number of patients in the multi-occupancy unit. Arrival and length-of-stay 

distributions are chosen to mimic situations where the expected patients in the system are 18, 24, 

28, 31, and 38 patients. Table 1 shows the distribution names and the corresponding expected 

number of patients for that distribution. The original distribution (PCU38A) was estimated using 

the distributions from Cignarale et al. [42], which was empirically acquired from an actual 

hospital unit. The remaining distributions were created by modifying the arrival rate distribution 

to reach a certain expected number of patients, while maintaining the same variance as the 

original distribution. 

 

 

 

 

 

The following data are collected at each time interval: number of internal movements, total 

number of patients admitted to each unit, unit utilization rate, criticality level for each unit and 

the entire hospital, number of discharged patients, number of patients leaving without being seen 

(their discharge date having come before a room became available for them), and the penalty 

value, which only applies to centralized admissions as a measure of placing patients in a non-

preferred unit. Figure 3 illustrates an overview of the simulation for each experimental scenario 

Distribution Name Expected Number of Patients

PCU18A 18.14

PCU24A 23.99

PCU28A 28.13

PCU31A 31.09

PCU38A 38.75

Patient Demand Distributions

Table 1: Expected number of patients for each unit demand distribution 
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At the beginning of each replication patient demand is randomly generated for the entire length 

of the replication. Each time interval begins by discharging any patient whose discharge time has 

arrived. Following this the remaining admitted patients and patients seeking admission at the 

current time are fed into stage one of the bed assignment IP model. Then the admitted patients 

are sent to the second stage of the IP model for bed assignment and the necessary assignments 

are made. If the warm-up period has been completed then results are collected prior to advancing 

to the next time interval. The process repeats for the next time interval, starting with discharging 

patients. After all the time intervals have been completed the replication advances causing a new 

stream of random patient demand to be generated. This process repeats itself until all replications 

are complete at which point the simulation ends for the current experimental scenario. 

To understand how different admissions policies affect a unit, it is necessary first to analyze units 

individually, evaluating how they function independent of the whole. It then becomes possible to 

explore how multiple units within the entire hospital function, and to determine whether they run 

more efficiently under a decentralized (each unit making their own decisions) or centralized 

(data from every unit considered in the decision making process) admission procedure. Figure 4 

shows the three overarching themes of our experiments and how the results of earlier 

experiments are utilized in the later experiments. 

Figure 3: Simulation overview for each scenario 
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Figure 4: Overview of experiments 

Experiment A focuses on varying patient demand for the unit and modifying the number of beds 

contained in each room. This determines an optimal room configuration for each unit, which is 

then used to create scenarios for later experiments. Experiment B determines if there is an 

optimal time interval that should pass before making admission decisions. Both experiments A 

and B utilize a single unit. Experiment C incorporates the previous results as it looks at a multi-

unit hospital using both decentralized and centralized admitting policies. This experiment 

determines if there is an advantage when units pool bed capacities, allowing patients to be 

admitted to any unit instead of only their preferred unit. 

4.4 Assumptions 

A number of assumptions are adopted in this study. The arrival rate and length-of-stay 

distributions are known and invariable for each scenario. Each unit is allocated a number of 

rooms that can either be configured as a single or double room. However, the room type does not 

change from single to double or vice-versa during the simulation. No patient admission requests 

are known prior to their arrival in the system. The patient’s length of stay, criticality, and 

isolation conditions are fixed and do not change during a simulation run, even if a patient 

admission is delayed. There are 8 isolation conditions and each have an equal likelihood of 

occurring. Experiments A and B are run as a single unit simulation. During experiment A the 

model is used to generate bed assignments only once per day. Additionally, this study does not 

consider factors such as disease spread within the hospital, patients who have multiple isolation 

conditions, or staffing models. 
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5. Experiments and Results 

The following section looks at the setup and results for each of the previously described three 

experiments. 

5.1 Experiment A: Unit Demand 

Setup 

In order to answer questions about the effect of unit demand patterns, the arrival rate, length-of-

stay distributions, and bed configurations are varied. A single unit with 18 rooms is used and the 

bed configuration changed to consider all possible room configurations, from 18 single rooms to 

18 double rooms. This gives a minimum unit capacity of 18 patients (18 single rooms) and a 

maximum unit capacity of 36 patients (18 double rooms). These capacities along with the 

expected number of patient options lead to patient demand varying between 50% and 200% of 

unit capacity, depending on bed configuration. These values also create expected unit utilization 

rates that have been shown in the literature to affect HAIs and which match actual hospital 

utilization averages [52-54]. Figure 5 shows the available options for each experimental scenario, 

choosing one unit demand and one room arrangement for each scenario. 

This experimental setup results in 95 unique scenarios combining the different demand and room 

arrangements. Each scenario is simulated for 50 replications with a 100 day warm up period and 

365 days of data collection resulting in 23,250 days simulated. Counting all 95 scenarios, this 

results in a total of 2,208,750 days simulated. 

  

Single Rooms 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Double Rooms 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unit Demand
Choose one demand 

pattern

Choose single/double 

room pair

Experiment A Experimental Scenarios

PCU24A PCU28A PCU31A PCU38APCU18A

Figure 5: Options for experiment A scenarios. There are 2 factors, with 5 levels for unit demand and 19 levels for room 
configuration of the unit, giving 95 total experimental scenarios. 
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Results for Experiment A: Unit Demand 

The results for varying unit demand and the number of beds per room are shown in the following 

section. Figure 6 shows the average number of internal movements per day as a function of the 

number of single rooms, organized by each unit demand distribution. A 95% confidence interval 

is drawn around each datum point. 

As can be seen in the graph, when there is a mix of single and double rooms we see a higher 

number of internal movements. In a unit with 18 single rooms there are 0 internal movements, 

since in such a unit there is no need for rearrangement. The drawback however is that such a 

unit’s capacity is severely limited. In units with only double rooms we also find a local minimum 

for the number of internal movements per day, since in such units there is a higher chance for a 

patient to match with a room before do any rearrangements. This suggests that maximizing the 

number of double rooms allows a unit to treat more patients while also reducing the number of 

internal movements. 

Figure 6: Average number internal movements per day vs. room configuration; by unit demand. 95% confidence 
intervals also shown. 
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Figure 7 shows the average number of movements per day as a function of the utilization 

percentage (percent of available beds currently occupied). This figure shows results for differing 

unit demand distributions. 

As can be seen in this graph, once the utilization rate begins to surpass 80%, the number of 

internal movements and the variability in the number of movements begins to increase 

significantly. This suggests that in order to reduce the number of internal movements it is 

advantageous to keep average unit utilization under 80%. 

  

Figure 7: Average number of internal movements per day vs. utilization percentage; by unit demand 
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