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Figure 5.1: Histogram of the difference between MERRA-2 TS and MODIS LST in Kelvin.

Data quality flag of the MODIS LST was applied, as described in the MODIS LST user

guide [29].

A histogram of the difference between the MERRA-2 instantaneous skin temperature

and the down-sampled MODIS LST can be seen in Figure 5.1. Differences ranged from

−6.3 Kelvin to 5.6 Kelvin with an RMSE of 2.15 Kelvin, a standard deviation of 2.06

Kelvin and a mean error of -0.66 Kelvin. Note that 2.15 Kelvin is approximately 0.2

W/m2 sr µm in Terra/MODIS band 31, thus approximately 25% of the error displayed in

Table 4.7 (MLP-low-res), can be attributed to the use of the MERRA-2 skin temperature.

MERRA-2 skin temperature over water was also evaluated using two separate scenes.

MODIS Sea Surface Temperature (SST) [28] was used as validation. MODIS SST quality

bands indicates the quality of a measurement, and only the 0-flag (highest quality) data

was used in comparisons. According to the MODIS SST Guide document [30], data with

a 0-flag are considered accurate to ±0.4 degrees Celsius.



CHAPTER 5. ERROR ANALYSIS 41

Figure 5.2: Histograms of the differences between MERRA-2 TS and MODIS SST in
Kelvin for two scenes.

Figure 5.2 displays histograms of the errors for both scenes, with Figure 5.3 displaying

the associated RGB images of the MODIS scenes used for this analysis. The scene on the

left correspond to the histogram on the left and the scene on the right correspond to the

histogram on the right. There is significant variation between the scenes. The scene on

the left has an RMSE of 2.67 Kelvin, a standard deviation of 2.21 Kelvin and a mean error

of 0.84 Kelvin. The scene on the right has smaller errors with an RMSE of 0.47 Kelvin,

standard deviation of 0.46 Kelvin and a mean error of 0.10 Kelvin. The large difference

in RMSE between the two scenes might be due to the differences in the scenes used. The

graph on the left relates to the scene that was part land, part water, while the scene on the

right was completely over water, see Figure 5.3. The large variation in water temperature

differences (compared to the reference data) could explain between 5% and 23% of the

error over water, based on the RMSE of the MLP-low-res model.
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Figure 5.3: RGB images of the scenes used to compare MODIS SST and MERRA-2 skin
temperature. The scene on the left corresponds to the histogram on the left.

5.2 Comparing differences in spatial resolution

Another possible source of error in the model prediction could be due to the large differ-

ence in spatial resolution between the training data (MERRA-2) and the reference data

(Terra/MODIS). Various interpolation techniques yielded different results. A comparison

between a Terra/MODIS scene down-sampled to the MERRA-2 spatial resolution using

nearest neighbor and bilinear interpolation respectively resulted in differences in radiance

values with an RMSE of 0.177 W/m2 sr µm. Figure 5.4 displays the difference image be-

tween the two resampling methods for the Middle East scene (first test scene described in

Chapter 4). Bilinear interpolation was used throughout this work to mitigate this effect.

To emphasize the effect of down-sampling Terra/MODIS to MERRA-2 resolution,

three different regions of interest in a Terra/MODIS scene were inspected. Each region

of interest (one over water, one over land and the last with water, land and cloud in the

area) corresponded to the same size as one MERRA-2 pixel (approximately 50 × 70 km).
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Figure 5.4: Difference image between resampling methods used with MODIS data with
values in radiance units.

The minimum, maximum and average radiance values, as well as the standard deviation of

each region of interest is reported in Table 5.1. Bilinear interpolation, when down-sampled

from 1 × 1 km to 50 × 70 km pixel size, is equivalent to averaging the pixels. Over

water, the down-sampling had little effect on the averaged TOA thermal radiance value.

However, over mixed land cover, radiance values in the Terra/MODIS region of interest

ranged between 3.23 and 10.77 W/m2 sr µm, which resulted in a standard deviation of

1.52 W/m2 sr µm. Thus, part of the RMSE in the various models can be explained by the

effect of down-sampling Terra/MODIS to MERRA-2 resolution.
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Table 5.1: Comparing regions in a Terra/MODIS scene that has the same spatial dimen-
sions as one MERRA-2 pixel. Values displayed are in W/m2 sr µm.

Land Cover Min Max Mean Std Dev

Water 8.76 8.99 8.90 0.04

Land 9.10 12.43 11.44 0.90

Water/Land/Cloud 3.23 10.77 7.67 1.52

5.3 Predicting in-between MERRA-2 times

Since MERRA-2 variables used in this research are only available every three hours, the

MLP-low-res model was used to predict in-between the available three hourly window.

This was done by linearly interpolating the MERRA-2 variables that bracket the chosen

scene time. Three scenes were tested with mixed results. One scene, imaged 31 July 2013

at 14:15 over Argentina and both the Atlantic and Pacific oceans, is displayed in Figures 5.5

and 5.6. The image on the left is the Terra/MODIS reference image and on the right the

MLP-low-res TOA prediction. For this scene, the RMSE was 0.99 W/m2 sr µm. Another

scene imaged on 31 July 2015 at 00:55 GMT, Northern Australia, had a high RMSE of

1.64 W/m2 sr µm. This result was investigated and is displayed in Figure 5.7. The image

on the left is Terra/MODIS band 31 thermal radiance at 00:55 GMT followed by the

MLP-low-res model prediction for the same time. The predicted scene did not represent

clouds well. However, looking at the TOA thermal radiance predictions at 00:00 GMT and

03:00 GMT (two rightmost scenes), it is clear that the atmospheric data at 00:00 GMT

and 03:00 GMT did not indicate clouds either. Thus, the in-between radiance estimation

could not have predicted correct radiance values where clouds were present.

This is a limitation of using reanalysis data. If a phenomena is varying faster than the

MERRA-2 times, then it probably cannot be modeled by MERRA-2 data.
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Figure 5.5: Terra/MODIS band 31 at
14:15 GMT

Figure 5.6: MLP TOA thermal radiance
prediction at 14:15 GMT

Figure 5.7: Terra/MODIS reference data on the left with the MLP-low-res TOA prediction
at 00:55 GMT, followed by the MLP-low-res prediction at 00:00 GMT and on the right
the MLP-low-res prediction at 00:30 GMT.

5.4 Cloud and No-cloud models

Since the largest prediction errors occurred when clouds were present in a scene, one model

was created to predict sensor reaching radiance only when clouds were present, and another

to predict TOA radiance when no clouds were in a scene. These two separate MLP-low-

res models were built using only training instances where the training labels where either
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cloud or no-cloud (based on the MODIS cloud mask). Both models, when compared to the

single MLP-low-res model results for cloud and no-cloud cover individually (see Table 4.7),

performed better when tested on all six test scenes combined. The Cloud model RMSE

was 1.68 W/m2 sr µm compared to the results of the MLP-low-res model for cloud cover

(1.86 W/m2 sr µm). The No-cloud model had an RMSE of 0.71 W/m2 sr µm compared

to the cloudless pixels in the MLP-low-res model (0.91 W/m2 sr µm). However, these

models can only be used if prior knowledge of cloud cover is available. One method to

infer the presence of cloud based on these models, was to apply both No-cloud and original

MLP-low-res models to the test dataset, and then subtract the results from each other.

Pixels with large differences (based on a chosen threshold), would be flagged as a pixel

where cloud is present. The input data where clouds were inferred would then be modeled

by the cloud model, and the rest by the no-cloud model. The results were combined, but

initial errors were still higher than the original MLP-low-res model for various thresholds.

5.5 Total cloud area fraction variable

Another MERRA-2 variable that was investigated for the prediction of TOA thermal in-

frared radiance was the 2D total cloud area fraction variable (from the Aerosol Diagnostics

collection) with continuous values between zero and one. Visual comparison between the

MODIS cloud mask, the MERRA-2 total cloud area fraction variable, and the cloud pre-

dictions of the CIM model for all six test scenes suggested that the MERRA-2 cloud area

fraction variable did not present a better cloud model than the CIM cloud predictions.

Figures 5.8 and 5.9 display the MODIS cloud mask, the MERRA-2 cloud area fraction

variable and the CIM cloud prediction images for two of the test scenes. In both scenes
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the MERRA-2 total cloud area fraction variable does not predict clouds well compared

to the MODIS cloud mask. In Figure 5.9 the CIM model cloud prediction presented the

clouds better than the MERRA-2 total cloud area fraction variable.

Figure 5.8: Comparison of cloud masks, with the MODIS cloud mask on the left, the
MERRA-2 total cloud area fraction variable in the center, and the CIM cloud prediction
on the right.

Figure 5.9: Comparison of cloud masks, with the MODIS cloud mask on the left, the
MERRA-2 total cloud area fraction variable in the center, and the CIM cloud prediction
on the right.

One MLP-low-res model was built to include the MERRA-2 total cloud area fraction
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variable but this model did not perform better than the final model. Thus, this variable

was not used in the main research.

5.6 MERRA-2 coastline anomalies

Another variable available in MERRA-2 is the water skin temperature (TSKINWTR)

variable in the Ocean Surface Diagnostics collection. This 2D variable has values over

water only. A difference image was produced between this variable and the skin temper-

ature variable used in this research to see if the water skin temperature should replace

the skin temperature values over water. Figure 5.10 displays the difference image between

the two skin temperatures. The skin temperature values over land (where TSKINWTR

had no values) were set to zero. From this difference image it is clear that some error

occurs at the coastlines. For offshore water, the mean error is approximately 0.003 Kelvin

(standard deviation of 0.12 Kelvin). However at the coast it varies between -20 and +34

Kelvin. This might be explained by the large gsd of MERRA-2 (approx. 50 × 70 km).

It is possible that those coastal pixels are a combination of land and water, therefore the

water skin temperature assigns the coastline pixel a water temperature value and the skin

temperature assigns that same pixel a land temperature value. However, looking at the

difference image, it is unclear why the coastlines of Africa and Europe have warmer water

skin temperature (TSKINWTR) than skin temperature (TS), but the coastlines of the

Americas have colder water skin temperature (TSKINWTR) than skin temperature (TS).
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Figure 5.10: Difference image between skin temperature and water skin temperature vari-
ables in MERRA-2 for 12:00 GMT on July 31, 2013.

5.7 MLP input variables

The same four MERRA-2 variables used with the linear regression and SVR models, i.e.,

air temperature, relative humidity, instantaneous skin temperature, and time-averaged

skin temperature, were used as input to the MLP models. In addition, variables indicating

land cover, season, and latitude were included in some of the MLP models. Land cover

was used to simulate emissivity. The MODIS global land cover map consists of 17 land

cover labels and has a spatial resolution of 0.0833 deg. Table B.2 displays the labels and

associated variables used for the land cover classification. The land cover classification

map is generated [27] using the System for Terrestrial Ecosystem Parameterization (STEP)

database as training data for the MCD12Q1 product algorithm. The seasonal indicator,



CHAPTER 5. ERROR ANALYSIS 50

a discrete value from 1 to 4, was used to provide information about seasonal atmospheric

trends. It was surprising that by removing the land cover variable and seasonal indicator

from the input data, the MLP model performance improved, since the land cover variable

was thought to assist modeling emissivity, and the seasonal indicator was thought to

account for large scale seasonal atmospheric conditions.

No data normalization techniques applied resulted in a lower error for the MLP-low-res

model and thus the training data were not normalized. Various architectures and data

normalization techniques tested with resulting RMSE, are displayed in Appendix B. In

the best MLP-med-res and MLP-high-res models, all zero air temperature values were

replaced with the instantaneous skin temperature values.

5.8 MODTRAN without MERRA-2 atmoshperic profile

There are six pre-defined atmospheric profiles that can be used for MODTRAN simula-

tions. However, this research provided MODTRAN with user-defined atmospheric profiles

(MERRA-2 air temperature and relative humidity profiles). To investigate the model per-

formance between using a built-in profile and the MERRA-2 profiles, all six test scenes

were evaluated. Table 5.2 displays the results of both MODTRAN simulations for all

scenes combined. MODTRAN with the MERRA-2 profile performed better than MOD-

TRAN predictions with the generic built-in mid-lat summer profile, which provides merit

to this research.
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Table 5.2: RMSE, Standard deviation (STD) and Mean error [Mean] in W/m2 sr µm for
various land and cloud cover to compare MODTRAN with the MERRA-2 profiles and
MODTRAN with a standard atmospheric profile.

Total Land Water Cloud
Model RMSE (STD) [Mean] RMSE (STD) [Mean] RMSE (STD) [Mean] RMSE (STD) [Mean]

MODTRAN built-in 1.73 (1.72) [0.23] 1.12 (0.80) [0.77] 1.41 (1.40) [0.23] 2.66 (2.55) [-0.78]

MODTRAN with M2 profile 1.52 (1.50) [-0.26] 0.90 (0.67) [0.59] 0.58 (0.55) [-0.19] 2.67 (1.89) [-1.88]

5.9 Error Analysis summary

It was found that the difference between MERRA-2 skin temperature and MODIS LST

could account for 25% of the RMSE over land. For water, 5% to 23% of the error could be

explained by the accuracy of MERRA-2 skin temperature. The somewhat low spatial res-

olution of MERRA-2 (compared to MODIS) also accounts for roughly 0.117 W/m2 sr µm

when resampling MODIS to MERRA-2 resolution. When predicting in-between the avail-

able MERRA-2 three hourly window, results show that when atmospheric conditions vary

faster than the three hourly MERRA-2 window, accurate predictions might not be pos-

sible. Visual inspection of the MERRA-2 total cloud area fraction variable compared to

the MODIS cloud mask and CIM model cloud predictions resulted in the variable not

being used in this research. Mean errors between the MERRA-2 skin temperature and

skin water temperature varied between -20 and +34 Kelvin near or on the coastline, and

less than 0.003 Kelvin over water (not near the coast). ARTM predictions produced lower

RMSE over all land cover types compared to using MODTRAN with built-in atmospheric

profiles.



Chapter 6

SUMMARY

Thermal infrared data from satellites is widely used in environmental studies and cross-

calibration of other thermal sensors. However, thermal satellites have limited temporal

resolution. The objective of this research was to investigate the use of the Modern-Era

Retrospective analysis for Research and Applications, Version 2 (MERRA-2) to predict

TOA thermal infrared radiance. This investigation also sought to identify the major error

sources and limitations of using reanalysis data in predicting TOA radiance.

To estimate sensor reaching thermal radiance, seven models were developed using both

physics-based and machine learning approaches with MERRA-2 variables as input to the

models. The first two physics-based models used the atmospheric radiative transfer model

MODTRAN to predict TOA radiance, while the third model was created to estimate

MODTRAN predictions to minimize computation time. The machine learning models was

trained using 44 Terra/MODIS band 31 scenes with the temporally and spatially coincident

MERRA-2 data as input. Two regression models and two deep learning models were built.

Since Terra/MODIS band 31 was used as reference, all models were built to predict TOA

52
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thermal radiance with center wavelength 10.97µm (corresponding to Terra/MODIS band

31 band center).

The models developed in Chapter 3 was used to predict sensor reaching thermal in-

frared radiance. All models were evaluated using the same six test scenes. Results are

reported in RMSE, standard deviation and mean error for all six test scenes individually,

as well as combined. For the combined results, the MLP-low-res model predicted TOA

thermal radiance better than all other models over land, cloud and total scene. The ARTM

model had the lowest RMSE for scenes over water. Individually, the MLP model had the

lowest RMSE in two of the six test scenes. Except for one scene, the machine learn-

ing models produced the lowest individual total, land and cloud errors. To understand

how much the predicted thermal radiances differed from the reference data, the percent

prediction error was also calculated and reported in seven radiance ranges (between 1.5

and 14 W/m2 sr µm). Where the reference data were above 6 W/m2 sr µm (apparent

temperature above 271 Kelvin), most models predicted thermal radiance to within 10%.

Several possible sources of error were investigated. The first was the MERRA-2 skin

temperature variable. Since skin temperature plays a significant role in sensor reach-

ing thermal radiance, the MERRA-2 skin temperatures were evaluated using the MODIS

LST and SST products. Taking the difference between MERRA-2 skin temperature and

MODIS LST into account, 25% of the RMSE over land can be explained. The large

variation in water temperature differences (compared to the reference data) could further

explain between 5% and 23% of the error over water. Another source of error resulted

from the large difference in spatial resolution between the MERRA-2 input data and the

Terra/MODIS reference data. Different resampling methods were applied to the same

Terra/MODIS test scene. A comparison between the down-sampled test image using
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nearest neighbor and bilinear interpolation respectively resulted in an RMSE of 0.177

W/m2 sr µm. Another limitation of using the reanalysis data was found when predict-

ing in-between the available MERRA-2 three hourly window. Results show that when

atmospheric conditions vary faster than the three hourly MERRA-2 window, accurate

predictions might not be possible. While exploring the MERRA-2 data product, the to-

tal cloud area fraction variable was noticed. However, visual inspection of this variable

compared to the MODIS cloud mask and CIM model cloud predictions resulted in the

variable not being used in this research. Further analysis into the differences between

the MERRA-2 skin temperature and MERRA-2 skin water temperature variables lead to

the discovery of inconsistencies at coastlines. Mean errors varied between -20 and +34

Kelvin near or on the coastline, and less than 0.003 Kelvin over water (not near the coast).

Lastly, to confirm the importance of the MERRA-2 air temperature and relative humid-

ity profiles, a study comparing the ARTM model with MODTRAN simulations using the

built-in MODTRAN atmospheric profiles was undertaken. The results indicate that the

ARTM model had a lower RMSE over all land cover types compared to the MODTRAN

with built-in atmospheric profile predictions indicating that using the MERRA-2 data

improves TOA prediction.

This research showed that TOA thermal infrared radiance can be estimated from

MERRA-2 atmospheric data to within approximately 10% or better for typical mid-

latitude scene temperatures (between 271 and 328 Kelvin). Depending on the applica-

tion, and if prior knowledge of land cover type exists, either the MLP-low-res model or

the ARTM should be used to estimate sensor reaching radiance. All the models could be

extended to predict thermal radiance at other wavelengths if reference data is available at

those thermal wavelengths.
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6.1 Recommendations

To improve model performance and better understand errors associated with the models,

various additional studies are recommended, namely:

• A rigorous study to validate MERRA-2 skin temperature. For this, it is suggested

to repeat the studies done in Section 5.1 with a large number of test scenes for both

land and water temperatures.

• Further investigation into the coastline errors could lead to better understanding of

the MERRA-2 water and skin temperature variables.

• Since the largest prediction errors occur when clouds are present, a different process

to infer where clouds formed could be beneficial to accurately predict TOA thermal

radiance. Further investigation of other MERRA-2 variables could assist with better

cloud estimation. For example, MERRA-2 collections like the Cloud Diagnostics 3D

collection with variables like the in cloud optical thickness for liquid clouds and cloud

fraction for radiation could be used.

• If a better cloud mask could be created, then 1) the cloud and no-cloud models, as

described in Section 5.4, could be used in stead of the MLP-low-res model since they

produced lower errors, and 2) the CIM could be replaced with built-in MODTRAN

cloud settings for pixels where clouds are present.

• To improve the MLP-low-res model, ensembling could be used. This is a method

where several neural networks are trained and then combined to produce a better

result.
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• Lastly, the MLP-low-res model might improve with more training data (double the

current training set). Thus 44 Terra/MODIS scenes and the temporarily and spa-

tially coincident MERRA-2 scenes must be downloaded and formatted for input to

the MLP-low-res model. The test set could also be expanded (or changed) to include

more diverse scenes from a wider range of seasons (e.g. winter), latitude and land

cover type (less scenes over desert).
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MERRA-2 DATA

Most of the MERRA-2 collections are available from NASA’s Reverb ECHO website [31].

However, only full collections of data can be downloaded here. For more flexibility,

MERRA-2 collections and single variables can be found at the Goddard Earth Sciences

Data and Information Services Center (GES DISC) [32].

A complete file specification of all collections and variables with format and file orga-

nization can be found in the MERRA-2 File Specification paper produced by the Global

Modeling and Assimilation Office [33].

Data is available in .nc4 format, from January 1980 to the present. All collections

include the latitude and longitude data per pixel. The 3D variable collections also include

the level (hPa) data to correlate the variable profile to pressure. To easily open .nc and

.nc4 data files in IDL, install Coyote’s nCDF Browser library [34]. To georegister the data

in ENVI, write the downloaded variable to ENVI, and save as .img file. Update the .hdr

file as per Figure A.1.

MERRA-2 collection names are in the format freq dims group HV, for example: MER-
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RA2 400.inst1 2d asm- Nx.20130328.nc4, where the four attributes are:

• freq : time-independent (cnst), instantaneous (instF ), or time-averaged (tagvF ) where

F indicates the frequency (1 - hourly, 3 = 3-hourly, M = Monthly mean, U =

Monthly-Diurnal mean).

• dims: 2-dimensional or 3-dimensional fields.

• group: group abbreviation for the collection name.

• HV : horizontal (N = Native, C = Reduced, F = Reduced FV) and vertical (x =

horizontal only, p = pressure-level data, v = model layer centers, e = model layer

edges) grid.

The MERRA-2 data collections for both the skin temperature variables can be seen in

Table A.1 and Table A.2.

Figure A.1: MERRA-2 ENVI .hdr file format
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Table A.1: MERRA-2 collection: Single-Level Diagnostics
Frequency: 1-hourly from 00:00 GMT
Spatial Grid: 2D, single-level, full horizontal resolution
Dimensions: longitude(x) = 576, latitude(y) = 361, time(t) = 24

Name Dim Description Units
DISPH tyx zero plane displacement height m

PS tyx surface pressure Pa
QV10M tyx 10-meter specific humidity kg kg−1

QV2M tyx 2-meter specific humidity kg kg−1

SLP tyx sea level pressure Pa
T10M tyx 10-meter air temperature K
T2M tyx 2-meter air temperature K
TO3 tyx total column ozone Dobsons
TOX tyx total column odd oxygen kgm−2

TQI tyx total precipitable ice water kgm−2

TQL tyx total precipitable liquid water kgm−2

TQV tyx total precipitable water vapor kgm−2

TROPPB tyx tropopause pressure based on blended estimate Pa
TROPPT tyx tropopause pressure based on thermal estimate Pa
TROPPV tyx tropopause pressure based on EPV estimate Pa
TROPQ tyx tropopause specific humidity using blended TROPP estimate kg kg−1

TROPT tyx tropopause temperature using blended TROPP estimate K
TS tyx surface skin temperature K

U10M tyx 10-meter eastward wind ms−1

U2M tyx 2-meter eastward wind ms−1

U50M tyx eastward wind at 50 meters ms−1

V10M tyx 10-meter northward wind ms−1

V2M tyx 2-meter northward wind ms−1

V50M tyx tyx northward wind at 50 meters ms−1
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Table A.2: MERRA-2 collection: Surface Flux Diagnostics
Frequency: 1-hourly from 00:30 GMT
Spatial Grid: 2D, single-level, full horizontal resolution
Dimensions: longitude(x) = 576, latitude(y) = 361, time(t) = 24

Name Dim Description Units
BSTAR tyx surface bouyancy scale m s-2

CDH tyx surface exchange coefficient for heat kgm−2, s−1

CDM tyx surface exchange coefficient for momentum kgm−2, s−1

CDQ tyx surface exchange coefficient for moisture kgm−2, s−1

CN tyx surface neutral drag coefficient 1
DISPH tyx zero plane displacement height m
EFLUX tyx total latent energy flux W m−2

EVAP tyx evaporation from turbulence kgm−2, s−1

FRCAN tyx areal fraction of anvil showers 1
FRCCN tyx areal fraction of convective showers 1
FRCLS tyx areal fraction of nonanvil large scale showers 1

FRSEAICE tyx ice covered fraction of tile 1
GHTSKIN tyx Ground heating for skin temp W m−2

HFLUX tyx sensible heat flux from turbulence W m−2

HLML tyx surface layer height m
NIRDF tyx surface downwelling nearinfrared diffuse flux W m−2

NIRDR tyx surface downwelling nearinfrared beam flux W m−2

PBLH tyx planetary boundary layer height m
PGENTOT tyx Total column production of precipitation kgm−2 s−1

PRECANV tyx anvil precipitation kgm−2 s−1

PRECCON tyx convective precipitation kgm−2 s−1

PRECLSC tyx nonanvil large scale precipitation kgm−2 s−1

PRECSNO tyx snowfall kgm−2 s−1

PRECTOT tyx total precipitation from atm model physics kgm−2 s−1

PRECTOTCORR tyx Bias corrected total precipitation kgm−2 s−1

PREVTOT tyx Total column re-evap/subl of precipitation kgm−2 s−1

QLML tyx surface specific humidity 1
QSH tyx effective surface specific humidity kg kg−1

QSTAR tyx surface moisture scale kg kg−1

RHOA tyx air density at surface kgm−3

RISFC tyx surface bulk richardson number 1
SPEED tyx surface wind speed ms−1

SPEEDMAX tyx surface wind speed ms−1

TAUGWX tyx surface eastward gravity wave stress N m−2
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Table A.3: MERRA-2 collection: Surface Flux Diagnostics (continued)

Name Dim Description Units
TAUGWY tyx surface northward gravity wave stress N m−2

TAUX tyx eastward surface stress N m−2

TAUY tyx northward surface stress N m−2

TCZPBL tyx transcom planetary boundary layer height m
TLML tyx surface air temperature K
TSH tyx effective surface skin temperature K

TSTAR tyx surface temperature scale K
ULML tyx surface eastward wind ms−1

USTAR tyx surface velocity scale ms−1

VLML tyx surface northward wind ms−1

Z0H tyx surface roughness for heat m
Z0M tyx surface roughness m



Appendix B

MODEL ARCHITECTURES

B.1 Deep learning architectures

Numerous architectures were tested for the MLP-low-res model. Table B.1 displays a

detailed description of some of the architectures tested. The last two models were build

using only pixels with and without cloud respectively. If prior knowledge of clouds exists,

then these models would better estimate TOA thermal radiance for the given cloud/cloud-

free scene.

The model with the weighted temperature variables (weighted by including the skin

temperatures 5 times in the training instances) performed the best overall. However,

this is misleading since the test data has more cloud-free pixels than cloudy pixels. By

weighting the skin temperature, more focus is placed on a cloud-free scenario.

Variables indicating land cover, season, and latitude were included in some of the

MLP models. Land cover was used to simulate emissivity. The MODIS global land cover

map consists of 17 land cover labels and has a spatial resolution of 0.0833 deg. Table B.2
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Table B.1: Architectures tested for the MLP-low-res model with associated RMSE in
W/m2 sr µm

FC layers Variables Used Normalization(Layers) RMSE

20,6 T,RH,SSN,LAT,LCV None (42) 1.41

30,20,6 T,RH,SI,LAT,LCV One-hot (42) 2.32

30,20,6 T,RH,SI,LAT,LCV Standardized (42) 1.59

256,512,256,128,128,64 T,RH,SI,LAT,LCV None (42) 1.31

256,512,256,128,8 T,RH,SI,LAT,LCV None (42) 1.29

256,512,256,128,8 T,RH None (42) 1.27

256,512,256,128,8 T,TSH None (42) 1.99

256,512,256,128,8 T,TSH,TS,RH,CLD None (27) 1.27

256,512,256,128,8 T,TSH,TS,RH Scaled RH × 100 (27) 1.50

256,512,256,128,8 T,TSH,TS,RH Log transform (27) 1.82

256,512,256,128,8 T,TSH,TS,RH None (42) 1.30

256,512,256,128,8 T,TSH,TS,RH None (27) 1.22

256,512,256,128,8 T,TSH,TS,RH None (20) 1.22

256,512,256,128,8 T,TSH,TS,RH Replaced zero values with TS (27) 1.33

256,512,256,128,8 T,TSH,TS,RH Weight temperature × 5 (27) 1.20

256,512,256,128,8 T,TSH,TS,RH No-cloud pixels 0.71

256,512,256,128,8 T,TSH,TS,RH Only cloud pixels 1.68

displays the labels and associated variables used for the land cover classification. The

land cover classification map is generated [27] using the System for Terrestrial Ecosystem

Parameterization (STEP) database as training data for the MCD12Q1 product algorithm.

Results from cross-validation of the classification labels indicate an overall accuracy of 75%

correctly classified. However, the range of class-specific accuracies is large according to [27].

The seasonal indicator, a discrete value from 1 to 4, was used to provide information about

seasonal atmospheric trends.

Variables like the seasonal indicator, the latitude variable and the land cover variable

though relevant, decreased the MLP-low-res model performance.
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Table B.2: Land Cover Classification Legend

Value Label

1 Water

2 Permanent wetlands

3 Snow and ice

4 Evergreen Needleleaf forest

5 Evergreen Broadleaf forest

6 Deciduous Broadleaf forest

7 Deciduous Needleleaf forest

8 Mixed forest

9 Woody savannas

10 Grasslands

11 Cropland/Natural vegetation mosaic

12 Savannas

13 Croplands

14 Closed shrublands

15 Open shrublands

16 Barren or sparsely vegetated

17 Urban and built-up

B.2 Data normalization techniques applied

Since the data used in the supervised learning models ranged from the continuous relative

humidity variable with values between 0 and 1, the discrete variables (land cover, season,

latitude) to continuous variables ranging from 180 to 330 for all temperature fields, various

normalization techniques were applied and tested, namely:

• One-hot encoding (transforming categorical features into boolean vectors) was applied

to the discrete variables (LCV, SI and LAT) while the temperature variables were

divided by the maximum global temperature.

• Features were standardized by subtracting the mean and scaling to unit variance.
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• In models with relative humidity and temperature fields only, the relative humidity

variable was scaled (×100).

• Non-linear (log) transformation of the temperature variables were applied.

• Data points where the air temperature was zero (due to no data at that altitude), were

replaced by the skin temperature value for that pixel.

Various combinations of the listed normalization techniques were tested to optimize

the final models. However, none of the listed techniques improved the MLP-low-res model

performance.
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MODTRAN Tape5 file

Figure C.1 is an example of one tape5 radiosonde file used as input to MODTRAN for

the CIM model.
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Figure C.1: Example of a MODTRAN tape5 file for the CIM model



Appendix D

PYTHON CODE

The code to create, save and use the MLP and CNN models are available below. The

Keras library in Python was used to create the models.

D.1 Multi Layer Perceptron code

import pandas

import math

import csv

import numpy as np

import s c ipy . i o

import matp lo t l i b . pyplot as p l t

from numpy import i n f

from keras . models import Sequent ia l , mode l f rom json

from keras . l a y e r s import Dense , Dropout

68
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from keras . op t im i z e r s import SGD, Nadam, Adam

from keras . c a l l b a c k s import EarlyStopping

from s k l e a rn . p r e p r o c e s s i n g import StandardSca ler

from keras . l a y e r s . norma l i za t i on import BatchNormalizat ion

# IMPORT DATA

# load d a t a s e t − t r a i n

rd = open( ”C: / Users /garny/Documents/RIT/IDL/ DL project /

Train images / t ra in 20170119 . csv ” )

c s v r e a d e r = csv . r eader ( rd )

data = l i s t ( c s v r e a d e r )

data = np . asar ray ( data )

data = data . astype ( f loat )

# load d a t a s e t − t e s t

rd = open( ”C: / Users /garny/Documents/RIT/IDL/ DL project /

Test images / te s t 20170119 . csv ” )

c s v r e a d e r = csv . r eader ( rd )

d a t a t e s t = l i s t ( c s v r e a d e r )

d a t a t e s t = np . asar ray ( d a t a t e s t )

d a t a t e s t = d a t a t e s t . astype ( f loat )

# FORMAT DATA
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# format t r a i n i n g s e t and l a b e l s

t r a i n 1 = data [ 0 : 2 7 , : ]

t r a i n 2 = data [ 2 7 : 2 9 , : ]

t r a i n 3 = data [ 2 9 : 5 6 , : ]

t r a i n = np . concatenate ( ( t ra in1 , t ra in2 , t ra in2 , t ra in2 ,

t ra in2 , t ra in2 , t r a i n 3 ) , a x i s =0)

t r a i n [ t r a i n == − i n f ] = 0

t r a i n = np . nan to num ( t r a i n )

l a b e l s = data [ 5 7 , : ]

X = t r a i n .T

Y = l a b e l s .T

# format t e s t s e t and l a b e l s

t e s t 1 = d a t a t e s t [ 0 : 2 7 , : ]

t e s t 2 = d a t a t e s t [ 2 7 : 2 9 , : ]

t e s t 3 = d a t a t e s t [ 2 9 : 5 6 , : ]

t e s t = np . concatenate ( ( te s t1 , t e s t2 , t e s t2 , t e s t2 , t e s t2 ,

t e s t2 , t e s t 3 ) , a x i s =0)

t e s t [ t e s t == − i n f ] = 0

t e s t = np . nan to num ( t e s t )

l a b e l s t e s t = d a t a t e s t [ 5 7 , : ]
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X tes t = t e s t .T

Y tes t = l a b e l s t e s t .T

# CREATE AND FIT MODEL

# c r e a t e model

model = Sequent i a l ( )

model . add ( Dense (512 , input dim=X. shape [ 1 ] , i n i t=’ g lo ro t norma l ’

, a c t i v a t i o n=’ r e l u ’ ) )

model . add ( Dense (512 , i n i t=’ g lo ro t norma l ’ , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( Dense (256 , i n i t=’ g lo ro t norma l ’ , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( Dense (128 , i n i t=’ g lo ro t norma l ’ , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( Dense (8 , i n i t=’ g lo ro t norma l ’ , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( Dense (1 , i n i t=’ g lo ro t norma l ’ ) )

# compi le model

model . compile ( l o s s=’ mean squared error ’ , opt imize r=’adam ’ )

# Fit the model wi th v a l i d a t i o n s e t

l o s s l i s t = [ ]

v a l l o s s l i s t = [ ]

e s = EarlyStopping ( monitor=’ v a l l o s s ’ , pa t i ence =4, verbose =0,

mode=’ auto ’ )
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for in range ( 4 ) :

h i s t o r y = model . f i t (X, Y, v a l i d a t i o n s p l i t =0.1 ,

nb epoch =500 , b a t c h s i z e =100 , verbose =2, c a l l b a c k s =[ es ] )

model . opt imize r . l r . s e t v a l u e (np . f l o a t 3 2 (

model . opt imize r . l r . g e t v a l u e ( ) / 1 0 . 0 ) )

l o s s l i s t . extend ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] )

v a l l o s s l i s t . extend ( h i s t o r y . h i s t o r y [ ’ v a l l o s s ’ ] )

# EVALUATE MODEL

# e v a l u a t e the model

s c o r e s =model . eva luate (X, Y)

print ( ” Train ing %s : %.2 f MSE and %.2 f RMSE” %

( model . metr ics names [ 0 ] , s co re s , math . s q r t ( s c o r e s ) ) )

# t e s t the model

s c o r e s = model . eva luate ( X test , Y tes t )

print ( ” Test data : %s : %.2 f MSE and %.2 f RMSE” %

( model . metr ics names [ 0 ] , s co re s , math . s q r t ( s c o r e s ) ) )

# p l o t h i s t o r y f o r l o s s

p l t . p l o t ( l o s s l i s t )

p l t . p l o t ( v a l l o s s l i s t )
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p l t . t i t l e ( ’ model l o s s ’ )

p l t . y l a b e l ( ’mean square e r r o r ( l o s s ) ’ )

p l t . x l a b e l ( ’ epoch ’ )

p l t . l egend ( [ ’ t r a i n ’ , ’ v a l i d a t i o n ’ ] , l o c=’ upper l e f t ’ )

p l t . show ( )

D.2 Convolutional Neural Network code

import pandas

import math

import csv

import numpy as np

import matp lo t l i b . pyplot as p l t

from keras . models import Sequent i a l

from keras . l a y e r s import Dense , Dropout , Act ivat ion , F lat ten

from keras . l a y e r s import Convolution2D , MaxPooling2D ,

AveragePooling2D

from keras . op t im i z e r s import Adam

from keras . u t i l s import n p u t i l s

from keras . c a l l b a c k s import EarlyStopping

from keras . l a y e r s . norma l i za t i on import BatchNormalizat ion

# load d a t a s e t − t r a i n

f i l t e r s i z e = 9

rd = open( ”C: / Users /garny/Documents/RIT/IDL/ DL project /
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Train images / train CNN image . csv ” )

c s v r e a d e r = csv . r eader ( rd )

t r a i n = l i s t ( c s v r e a d e r )

t r a i n = np . asar ray ( t r a i n )

t r a i n = np . f l o a t 3 2 ( t r a i n )

C = (56 , f i l t e r s i z e ,−1 , f i l t e r s i z e )

t r a i n = np . reshape ( t ra in ,C)

t r a i n = np . r o l l a x i s ( t ra in , 2 ,1)

t r a i n = np . r o l l a x i s ( t ra in , 1)

t r a i n = np . r o l l a x i s ( t ra in , 2 ,1)

X = np . r o l l a x i s ( t ra in , 3 ,2)

# load d a t a s e t − t r a i n l a b e l s

rd = open( ”C: / Users /garny/Documents/RIT/IDL/ DL project /

Train images / tra in labe l s CNN image . csv ” )

c s v r e a d e r = csv . r eader ( rd )

l a b e l s = l i s t ( c s v r e a d e r )

l a b e l s = np . asar ray ( l a b e l s )

Y = np . f l o a t 3 2 ( l a b e l s )

# load d a t a s e t − t e s t

rd = open( ”C: / Users /garny/Documents/RIT/IDL/ DL project /

Test images / test CNN image . csv ” )
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c s v r e a d e r = csv . r eader ( rd )

t e s t = l i s t ( c s v r e a d e r )

t e s t = np . asar ray ( t e s t )

t e s t = np . f l o a t 3 2 ( t e s t )

C = (56 , f i l t e r s i z e ,−1 , f i l t e r s i z e )

t e s t = np . reshape ( t e s t ,C)

t e s t = np . r o l l a x i s ( t e s t , 2 ,1 )

t e s t = np . r o l l a x i s ( t e s t , 1)

t e s t = np . r o l l a x i s ( t e s t , 2 ,1 )

X tes t = np . r o l l a x i s ( t e s t , 3 ,2 )

# load d a t a s e t − t e s t l a b e l s

rd = open( ”C: / Users /garny/Documents/RIT/IDL/ DL project /

Test images / tes t labe l s CNN image . csv ” )

c s v r e a d e r = csv . r eader ( rd )

l a b e l s t e s t = l i s t ( c s v r e a d e r )

l a b e l s t e s t = np . asar ray ( l a b e l s t e s t )

Y tes t = np . f l o a t 3 2 ( l a b e l s t e s t )

#TRAIN MODEL

model = Sequent i a l ( )
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model . add ( Convolution2D (64 , 3 , 3 , border mode=’ same ’ ,

input shape=X. shape [ 1 : ] , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( AveragePooling2D ( p o o l s i z e =(2 , 2 ) ) )

model . add ( BatchNormal izat ion ( ) )

model . add ( Dropout ( 0 . 2 ) )

model . add ( Convolution2D (32 , 3 , 3 , border mode=’ same ’

, a c t i v a t i o n=’ r e l u ’ ) )

model . add ( AveragePooling2D ( p o o l s i z e =(2 , 2 ) ) )

model . add ( Flat ten ( ) )

model . add ( Dense (1 , i n i t=’ g lo ro t norma l ’ ) )

model . compile ( l o s s=’ mean squared error ’ , opt imize r=’adam ’ )

# Fit the model

l o s s l i s t = [ ]

v a l l o s s l i s t = [ ]

e s = EarlyStopping ( monitor=’ v a l l o s s ’ , pa t i ence =4, verbose=0

,mode=’ auto ’ )

for in range ( 3 ) :

h i s t o r y = model . f i t (X, Y, v a l i d a t i o n s p l i t =0.1 ,

nb epoch =50, b a t c h s i z e =100 , verbose =2, c a l l b a c k s =[ es ] )

model . opt imize r . l r . s e t v a l u e (np . f l o a t 3 2
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( model . opt imize r . l r . g e t v a l u e ( ) / 1 0 . 0 ) )

l o s s l i s t . extend ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] )

v a l l o s s l i s t . extend ( h i s t o r y . h i s t o r y [ ’ v a l l o s s ’ ] )

# EVALUATE MODEL

# e v a l u a t e the model

s c o r e s =model . eva luate (X, Y)

print ( ” Train ing %s : %.2 f MSE and %.2 f RMSE” %

( model . metr ics names [ 0 ] , s co re s , math . s q r t ( s c o r e s ) ) )

# t e s t the model

s c o r e s = model . eva luate ( X test , Y tes t )

print ( ” Test data : %s : %.2 f MSE and %.2 f RMSE” %

( model . metr ics names [ 0 ] , s co re s , math . s q r t ( s c o r e s ) ) )

D.3 Running and saving models

from keras . models import Sequent ia l , mode l f rom json

# s e r i a l i z e model to JSON

model j son = model . t o j s o n ( )

with open( ”C: / Users /garny/Documents/RIT/Python/

modelRMSE 1 20 . j son ” , ”w” )

as j s o n f i l e : j s o n f i l e . wr i t e ( model j son )
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# s e r i a l i z e w e i g h t s to HDF5

model . save we ight s ( ”C: / Users /garny/Documents/RIT/

Python/ model 1 20 . h5” )

print ( ”Saved model to d i sk ” )

# load j son and c r e a t e model

j s o n f i l e = open( ’C: / Users /garny/Documents/RIT/

Python/modelRMSE 1 23 . j son ’ , ’ r ’ )

l oaded mode l j son = j s o n f i l e . read ( )

j s o n f i l e . c l o s e ( )

loaded model = model f rom json ( loaded mode l j son )

# load w e i g h t s i n t o new model

loaded model . l oad we ight s ( ”C: / Users /garny/Documents

/RIT/Python/ model 1 23 . h5” )

print ( ”Loaded model from di sk ” )
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