








CHAPTER 3. PROPOSED METHODS

Pseudo-code 1 Training and testing LSTM network with m hidden states using
n-channel gyroscope signal.
1: Initialize hyper-parameters to build and train LSTM network
2: Build the LSTM network
3: Load the dataset
4: # Subject-based leave-one-out cross-validation
5: Divide the dataset into k_fold # k=number of patients
6: for Pn← 1; k_fold do
7: # Training LSTM model on all folds except fold #Pn
8: for Ei ← 1; max number of epochs do
9: Select NB seconds randomly on the training signal

10: Create NB segments that start from the NB seconds
11: Initialize the hidden and internal states of LSTM network with zeros
12: while no segment reached the end of the signal do
13: Construct a mini-batch of size NB from the segments
14: # training LSTM network using the mini-batch
15: for s← 1; last sample in the segments of mini-batch do
16: Linearly transform the samples s to a depth of m instead of n
17: Perform forward propagation on LSTM using the samples s
18: Linearly transform the hidden states of last sample to a depth of 2
19: Compute the loss using softmax cross entropy
20: Perform L2-norm regularization and find mean loss of the mini-batch
21: Perform back-propogation through time using an optimizer
22: # Finding and saving the training loss and the model from epoch Ei
23: for g← 1; last segment in the signal do
24: for s← 1; last sample in the segment g do
25: Linearly transform the sample s to a depth of m instead of n
26: Perform forward propagation on LSTM using the sample s
27: Linearly transform the hidden states of last sample to a depth of 2
28: Compute the loss of segment g using softmax cross entropy
29: Compute the average training loss
30: # Selecting and testing LSTM model on fold #Pn to find testing loss and
31: # other performance metrics
32: Select the trained model with lowest training loss
33: for g← 1; last segment in the signal do
34: for s← 1; last sample in the segment g do
35: Linearly transform the sample s to a depth of m instead of n
36: Perform forward propagation on LSTM using the sample s
37: Linearly transform the hidden states of last sample to a depth of 2
38: Pass them through a soft-max layer
39: Find the medication state for segment g
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Chapter 4
Results and Discussions

This chapter starts by explaining the parameters that were used to evaluate the

proposed methods. Next, it reports the evaluation results of the developed methods

on the two datasets that included recordings of 19 PD patients. Two scenarios were

considered: general training/classification and patient-specific where the former trains

and tests the algorithm using subject-based leave-one-out cross-validation for each of

the datasets, and the latter trains and tests the algorithm for each patient individually.

In patient-specific scenario, data that were recorded while patients were perform-

ing four activities in ON and OFF states was used to train a classifier for each pa-

tient, whereas, the rest of the data for the same patient were used for testing. These

activities are ambulation, drinking, arm resting and dressing that are used in the

routine clinical settings for rating dyskinesia severity in Unified Dyskinesia Rating

Scale (UDysRS) and Core Assessment Program for Surgical Interventional Therapies

in Parkinson’s disease (CAPSIT-PD). Hence, collecting the required data for training

patient-specific classifier will be through the existing PD clinical settings and will not

enforce additional burden to patients or clinicians. In addition, for patient-specific

scenarios, a new method is proposed to select the number and placement of sensors

for each patient.

The results of supervised classification using SVM and LSTM in the first scenario

are presented first, and they are compared with the results of patient-specific super-

vised and semi-supervised approach which reported next. After that, the method with
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CHAPTER 4. RESULTS AND DISCUSSIONS

the highest results is compared with other studies. Lastly, this chapter presents the

results of feature analysis to show the advantage of using the directional information

in X, Y, and Z axes vs. their magnitude.

4.1 Performance metrics

Three metrics were used to evaluate the trained classifiers to detect the two medication

states which are accuracy, sensitivity and specificity of the OFF state. The accuracy

is the percentage of correct medication state predictions that classify each second in

the recorded signals. Sensitivity of the OFF state is the percentage of correct OFF

medication state predications that classify each second in the recorded data during

the OFF state. Specificity of the OFF state is the percentage of correct ON state

predications that classify each second in the recorded data during the ON state.

4.2 Generally-trained Classifiers

4.2.1 Supervised Classification: SVM

Supervised classification method using SVM (refer to section 3.2) was trained and

validated using subject-based leave-one-out cross-validation. Equal amount of data

for each state for each patient selected in the training folds was used for training

and all the data for each patient selected in the validation folds was used for testing.

Using equal number of windows for each state prevents the SVM model from being

bias toward one of the states. Training and validation were performed separately

dataset 1 and 2. LibSVM library [63] was used to train and test the SVM classifier.

For dataset 1, if only one round of activities was recorded in the OFF state for a

patient, then it was used with one round of ON state for training, else all the rounds

were used for training for the patients selected in the training folds. This dataset

contains twelve patients, so 12-fold cross-validation was used. The eleven folds that
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CHAPTER 4. RESULTS AND DISCUSSIONS

were used for training each time had roughly 1.5 hours of recorded data that split

equally between the two states. The fold that was used for testing in each time had

about 15 minutes of recorded data.

For dataset 2, equal amount of recorded data that represents ON and OFF states

are used for training from each patient selected in the training folds. This dataset

contains seven patients, so 7-fold cross-validation was used. The six folds that were

used for training each time had roughly 5.5 hours of recorded data that split equally

between the two states. The fold that was used for testing in each time had about

two hours.

The data recoded using each of the sensors and a combination of the sensors

were used to train and validate the SVM classifier to experiment the effect of the

sensors placement on detecting the ON and OFF state for each patient and for all

of them. Three sensors from the first and second datasets were experimented which

were (wrist, trunk and ankle) and (wrist, thigh and ankle), respectively. Table 4.1

and 4.2 shows the average testing accuracy, sensitivity and specificity for the first

and second datasets, respectively. Medication state detection using data recorded

using sensor mounted on the ankle outperformed the detection that was based on

data recorded using wrist, trunk, or thigh sensors. Using two sensors increased the

accuracy for both first and second dataset, and using the ankle with trunk or with

thigh resulted in the highest accuracies which were 71.64 for the first dataset and

78.48 for the second dataset. Using three sensors together reduced the accuracy and

specificity and increased the sensitivity.

As a result, using two sensors mounted on ankle and trunk or ankle and thigh

had the highest accuracy in general. However, generalizing the same number and

placement of sensors was not the case for all the patients. Figure 4.1 and 4.2 shows

the results for each the patients for the first and second datasets, receptively. For

instance in dataset 1 as shown in Figure 4.1 , the highest accuracy that was obtained
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CHAPTER 4. RESULTS AND DISCUSSIONS

Table 4.1: Average testing results of SVM model that was generally training using patient-
based leave-one-out cross-validation (12 folds) on dataset 1. The results are the accuracy,
sensitivity and specificity for multiple experiments using single or a combination of sensors.

Sensors Used Accuracy Sensitivity Specificity

Wrist 65.65 72.26 63.41

Trunk 65.85 63.75 67.09

Ankle 67.37 66.9 68.17

Wrist and trunk 71.44 76.71 69.17

Wrist and ankle 68.67 72.59 67.86

Trunk and ankle 71.64 70.97 72.72

Wrist, trunk
and ankle

71.59 77.79 68.74

Table 4.2: Average testing results of SVM model that was generally training using patient-
based leave-one-out cross-validation (7 folds) on dataset 2. The results are the accuracy,
sensitivity and specificity for multiple experiments using single or a combination of sensors.

Sensors Used Accuracy Sensitivity Specificity

Wrist 64.94 62.69 70.64

Thigh 74.18 72.78 73.03

Ankle 77.27 75.99 72.66

Wrist and thigh 74.05 70.82 79.9

Wrist and ankle 77.22 75.34 79.45

Thigh and ankle 78.48 78.13 74.26

Wrist, thigh
and ankle

77.61 86.61 48.92
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CHAPTER 4. RESULTS AND DISCUSSIONS

for patient 1, 3 and 7 was for the wrist and trunk sensor, and for patient 2, 4, and

9 was for the ankle sensor. In addition, OFF sensitivity changed significantly if the

sensor that was used to training the SVM model was changed as shown for patient 2,

4, 7 and 9 in 4.1 and patient 1, 4 and 5 in Figure 4.2. Therefore, there is a need to

train a patient-specific classifier to cope with this variability between patients.

4.2.2 Supervised Classification: LSTM

Supervised classifier using LSTM network was trained and validated using subject-

based leave-one-out cross-validation. Datasets were divided for training and testing

data in the same way described before in the previous Section 4.2.1. TensorFlow [64]

was used to implement, train and test the LSTM network proposed in this thesis.

LSTM networks were trained for 300 epochs and the calculated training loss and

trained weights were saved after each epoch. Because both datasets are relatively

small, no validation set was used to select the best model for testing. Instead, the

model with the lowest loss on the training data was selected and validated on the

testing folds.

Table 4.3 contains the LSTM hyper-parameters that were examined. They were

mainly explored on data recorded using the ankle sensor which was shown in the previ-

ous section to provide the highest accuracy if only one sensor was used. In addition,

three types of optimizers are tested which are: adagrad [65], momentum [66], and

adam [67]. The following parameters were shown to yield the highest accuracy with

adam optimizer: 64 hidden states of two LSTM layers, truncated back-propagation

length = one second, learning rate = 0.001, min-batch size = 128, out-keep proba-

bility = 0.5, carry-out probability = 1. The learning rate and out-keep probability

had the highest effect on the LSTM performance. Using carry-out probability lower

than 1 on the internal states didn’t help improving the results. In addition, applying

carry-over probability on both internal and hidden sates reduced the oscillation in the
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Figure 4.1: Testing results of SVM model that was generally training using patient-based
leave-one-out cross-validation (12 folds) on dataset 1. The results are the accuracy, sensi-
tivity and specificity for multiple experiments using single or a combination of sensors for
each of the patients or the folds.
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Figure 4.2: Testing results of SVM model that was generally training using patient-based
leave-one-out cross-validation (7 folds) on dataset 2. The results are the accuracy, sensitivity
and specificity for multiple experiments using single or a combination of sensors for each of
the patients or the folds.
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Table 4.3: The LSTM Hyper-parameters that were explored in this thesis

# of Layers 1, and 2 # Units
32, 64,
128, and 256

Truncated Back-propagation

Length (sec)
1, and 5 Learning Rate

0.1, 0.025,
0.01, and 0.001

Batch Size
32, 64,
128, and 256

Out-keep

Probability
1, 0.7, and 0.5

Carry-over Probability
1, 0.7,
and 0.5

# Sensor Used
Ankle, and
(ankle and trunk)

training and testing losses, but at the same time reduced the testing accuracy signif-

icantly. Therefore, using carry-over probability less than 1 prevented LSTM model

from memorizing long sequences precisely, but at the same time the LSTM was less

dependent on patterns flow more than one second in the signal. In other word, this

method was forcing the model to learn from each window, so the internal and hidden

states of LSTM from the previous window will have small or no effects. To check this

behavior, the internal and hidden states was initialized to zero after each mini-batch

training and the results were similar to using carry-over probability=0.5. The trained

networks did not suffer from exploding gradient, so gradient clipping technique was

not applied.

The results of LSTM network are shown in Table 4.4 using data recorded using

only ankle sensor or both trunk and ankle in dataset 1. The accuracy of LSTM model

using only ankle sensor outperformed SVM classifier accuracy for this sensor by 5%.

However, the LSTM network was overfitting the training data very quickly using two

sensors which made it poorly generalize to the testing data. The reason for overfitting

was adding new channels to relatively small training data.

For the second dataset, the results of the LSTM network are shown in Table 4.5

using data recorded using only ankle sensor. Only ankle senor was used because it was

shown to have the highest performance and also using two sensors for small dataset
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Table 4.4: Average testing results of LSTMmodel that was generally training using patient-
based leave-one-out cross-validation (12 folds) on dataset 1. The results are the accuracy,
sensitivity and specificity using the ankle or a combination of trunk and ankle sensors.

Ankle Trunk and ankle

Patient # Acc. Sens. Spec. Acc. Sens. Spec.

1 89.14 88.77 89.30 89.95 81.81 93.48

2 82.34 62.2 89.24 68.99 61.04 71.71

3 60.57 67.56 58.21 46.65 94.59 30.47

4 93.85 93.98 93.81 88.85 93.44 87.23

5 80.15 86.52 78.01 69.06 59.06 72.42

6 75.33 24.55 92.36 42.85 76.64 31.52

7 75.33 56.52 93.9 74.62 70.65 78.67

8 54.14 29.91 78.51 50 28.49 71.63

9 80.79 51.47 90.71 69.26 88.72 62.68

10 61.94 71.12 58.59 62.94 87.7 53.9

11 56.53 80.58 30.76 64.51 93.35 33.61

12 64.46 47.11 84.85 62.78 49.33 78.59

Average 72.86 63.36 78.19 65.87 73.73 63.83

will lead to overfitting. LSTM for dataset 2 yielded approximately the same accuracy

and sensitivity for SVM, but it outperformed SVM specificity by about 10%.

To sum up, when only one sensor mounted on the ankle was used for general

training and testing, the algorithm based on LSTM performed better than SVM with

74.91%, 69.42%, and 80.55% for accuracy, sensitivity, and specificity, respectively,

whereas, SVM yielded 72.32% accuracy, 71.44% sensitivity, and 70.41% specificity.

4.3 Patient-specific Classifiers

Three methods which are supervised classification using SVM (refer to Section 3.2)

and semi-supervised using k-means or SOTM (refer to Section 3.3 and 3.4) were

trained for each patient specifically. Data that were recorded while patients were

performing four activities in ON and OFF states were used to train a classifier for
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Table 4.5: Average testing results of LSTMmodel that was generally training using patient-
based leave-one-out cross-validation (7 folds) on dataset 2. The results are the accuracy,
sensitivity and specificity using the ankle sensor.

Patient # Acc. Sens. Spec.

1 87.27 84.03 100

2 86.686 99.4 60.74

3 80.84 79.91 100

4 91.56 88.54 100

5 74.78 63.55 97.35

6 71.23 81.84 41.07

7 46.37 31.02 81.17

Average 76.96 75.47 82.9

each patient. These activities are ambulation, drinking, arm resting and dressing.

For dataset 1, the four activities were selected from two round, one for each

medication state, and were used to train the classifier for each patient individually,

whereas, the rest of the data from the same patient were used for testing. Total

time of the recorded data that was used for training and testing for each patient was

roughly four and ten minutes, respectively.

Despite the small amount of data used for training the patient-specific classifier

(about 250 feature vectors), supervised classification using SVM obtained higher ac-

curacy and sensitivity using single or a combination of sensors for each of the patients

as shown in Figure 4.3. However, SVM resulted in classification specificity that is ap-

proximately equal to the results of other two methods, or a little bit lower especially if

the trunk sensor was used. The second high performance was for the semi-supervised

using SOTM that achieved a little bit higher accuracy than using k-means for the

semi-supervised classification.

Figure 4.4 shows the results of patient-specific classification using SVM for each

patient using single or a combination of sensors. SVM was used because it yielded

the highest accuracy as compared before in Figure 4.3. It is clear that specific sensor
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Figure 4.3: The average classification accuracy, sensitivity and specificity of the testing
data using single or a combination of sensors for each of the patients after training patient-
specific models on features extracted from X, Y, and Z signals. The classification models
are semi-supervised using k-means or SOTM and supervised using SVM.
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placement for each patient plays vital role in medication state prediction with high

accuracy. For instance, ankle sensor for patient 12 yielded 96% accuracy while the

second highest accuracy was 80% for the trunk sensor. For patient 10, the trunk gave

the highest accuracy while for patient 5, a combination of the ankle and trunk had

the highest accuracy.

Inspecting UPDRS score for each patient and comparing it with the results in

Figure 4.4 showed that for patient with average change in UPDRS score between OFF

and ON states more than 20, one sensor mounted on the limb with highest change in

tremor score is sufficient to obtain high classification accuracy. An exception for this

case is if the patient shows approximately equal rest tremor on the face, upper and

lower extremities, then two sensors mounted on ankle and trunk or wrist (if trunk

sensor was not used) are preferred. Examples of this case were patient 1 and 12,

while patient 9 was an example for the exception. For patient with average change

in UPDRS score between OFF and ON states more than 10 and lower than 20, two

sensors mounted on upper body (trunk) and lower body (ankle) are sufficient to

obtain high classification accuracy. Examples for this case were patient 4, 5, 7, 10

and 11. For other patients with change in UPDRS lower than 10, using three sensors

are preferred to get consistent results and to prevent the model from being bias to

one of the states.

Based on the correlation between the average change in UPDRS score between

OFF and ON state for each patient and the presence of rest tremor, selecting the

number of sensors and their placement for each patient was proposed as shown in

Table 4.6. The low accuracy for patient 3, 6, 8 and 11 was because they had low

benefit from their medication as it is clear from their change in UPDRS score which

were 4.7, 6.7, 6.5 and 14.5, respectively. In addition, having dyskinesia during OFF

state was another reason for low performance for Patients 6 and 8, whereas, patient

3 showed higher tremor in one of the ON rounds than OFF rounds. The data used
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for training the model for patient 11 did not include tremor, whereas, this symptom

presented in testing data and it was the main reason for misclassification for this

patient. An example of the report generated by patient-specific SVM classifier is

shown in Figure 4.5 for patient 12 using the data recorded using ankle sensor. This

figure also shows the classification certainty for each second and it was low for the

transition between the two states and for activity 5 and 8 that were misclassified in

round 3.

The proposed method for selecting the number and placement of the sensors was

validated on the second dataset. After annotating the activities that the patient were

doing in dataset 2, the same four activities used before were selected for the two

medication states and were used to train the classifier for each patient individually,

whereas, the rest of the data from the same patient were used for testing. Each of

the selected activities was about two minutes. Total time of the recorded data that

was used for training and testing for each patient was roughly 15 and 105 minutes,

respectively.

Table 4.7 shows the detection results for dataset 2 based on the proposed selec-

tion of the number of sensors and their placement for each patient. Because sensor

mounted on trunk was not used in dataset 2, thus wrist sensor was used instead if

required. Patients 1 and 4 showed average change in UPDRS score > 20 and rela-

tively high wrist tremor, thus the sensor mounted on the wrist was used for them

instead of ankle sensor. Patient 7 showed average change in UPDRS score > 20 with

face, wrist and leg tremor, thus sensors mounted on wrist and ankle were used for

this patient. For other patients, the same proposed method for dataset 1 was used.

The highest accuracy was associated with patients who showed change in UPDRS >

20, and the lowest accuracy was for patients 2 and 6 who showed low improvement in

their UPDRS score after medication in addition to having tremor score in ON state

that was higher or equal to tremor score in the OFF state.
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Figure 4.4: Testing results of patient-specific SVM model for each of the patient in dataset
1. The results are the accuracy, sensitivity and specificity for multiple experiments using
single or a combination of sensors.
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Table 4.6: Average testing results of patient-specific SVM model for dataset 1. The results
are the accuracy, sensitivity and specificity using single or a combination of sensors based
on the average change in UPDRS score between OFF and ON state for each patient and
the presence of rest tremor.

Patient # Acc. Sens. Spec. Sensor used

Average Change
in UPDRS Score
between OFF

and ON
1 99.22 100 99 Ankle 22.7

2 63.26 87.78 58.73
Wrist, trunk
and ankle

9

3 43 100 33.06
Wrist, trunk
and ankle

4.7

4 98.64 100 98.39
Trunk and

ankle
15

5 95.89 90.67 96.77
Trunk and

ankle
12

6 41.18 80 34.02
Wrist, trunk
and ankle

6.7

7 82.54 70.16 95.03
Trunk and

ankle
15

8 64.38 51.17 77.76
Wrist, trunk
and ankle

6.5

9 94.28 85.62 95.66
Trunk and

ankle
24

10 85.47 40 93.85
Trunk and

ankle
13.7

11 63.86 99.68 27.92
Trunk and

ankle
14.5

12 95.45 91.28 100 Ankle 22
Average 77.26 83.03 75.84
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Figure 4.5: The classification results (1 OFF, 2 ON) with the certainty (continuous red
line between 0 and 1) for each round for patient 12 using patient-specific SVM trained and
testing on data recorded using ankle sensor in dataset 1. The activities are 1=ambulation,
2=arms resting, 3=cutting, 4=dressing, 5=drinking, 6=unpacking groceries, 7=hair brush
with left hand, and 8=hair brush with right hand.

To inspect if the selection of sensors was optimal for each patient in dataset 2,

patient-specific SVM classifier was trained and tested on all possible combination of

wrist, thigh and trunk sensors. The results for this experiment are shown in Figure

4.6. For all the patients, the selected sensors yielded the highest accuracy except for

patients 3 and 5, but the difference was not significant.

4.4 Patient-specific vs. Generally-trained Classifiers

To compare the results of generally-trained SVM classifier with patient-specific SVM

classifier, the highest results of using generally-trained SVM in Tables 4.1 and 4.2

are used which was based on using trunk and ankle sensors for dataset 1 and using

thigh and ankle sensors for dataset 2. In addition, highest results of generally-trained

LSTM network are used for the comparison. The comparisons are shown in Tables

4.8 and 4.9 for the first and second datasets, respectively.

Patient-specific SVM outperformed generally-trained SVM and LSTM by about

5% accuracy for both datasets. For the first dataset, the results of the three methods

were correlated for most patient. However, for some patients, the results were signifi-
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Table 4.7: Average testing results of patient-specific SVM model for dataset 2. The results
are the accuracy, sensitivity and specificity using single or a combination of sensors based
on the average change in UPDRS score between OFF and ON state for each patient and
the presence of rest tremor.

Patient # Acc. Sens. Spec. Sensor used

Average Change
in UPDRS Score
between OFF

and ON
1 96.64 97.93 90.3 Wrist 23

2 64.37 61.52 71.31
Wrist, thigh
and ankle

3

3 79.38 80.12 52.13
Wrist, thigh
and ankle

3

4 99.43 99.26 100 Wrist 34

5 78.18 79.1 76.2
Wrist and

ankle
13

6 63.94 59.02 81.58
Wrist and

ankle
10

7 92.68 91.24 96.26
Wrist and

ankle
22

Average 82.09 81.17 81.11
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Figure 4.6: Testing results of patient-specific SVM model for each of the patient in dataset
2. The results are the accuracy, sensitivity and specificity for multiple experiments using
single or a combination of sensors.
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Table 4.8: Average testing results of patient-specific SVM model vs. generally trained SVM
and LSTM models for dataset 1. Training patient-specific SVM used single or a combination
of sensors based on the average change in UPDRS score between OFF and ON state and
the presence of rest tremor for each patient, whereas, training generally-trained SVM and
LSTM used two sensor mounted on trunk and ankle, and only one sensor mounted on the
ankle, respectively.

Patient-specific
SVM

Generally-trained
SVM

Generally-trained
LSTM

Patient # Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.
1 99.22 100 99 92.32 94.52 91.37 89.14 88.77 89.30
2 63.26 87.78 58.73 63.97 38.73 72.58 82.34 62.2 89.24
3 43 100 33.06 49.83 82.03 38.98 60.57 67.56 58.21
4 98.64 100 98.39 98.91 100 98.53 93.85 93.98 93.81
5 95.89 90.67 96.77 88.7 64.44 96.86 80.15 86.52 78.01
6 41.18 80 34.02 60.78 50.75 64.14 75.33 24.55 92.36
7 82.54 70.16 95.03 88.21 84.03 92.47 75.33 56.52 93.9
8 64.38 51.17 77.76 43.41 49.64 37.16 54.14 29.91 78.51
9 94.28 85.62 95.66 42.57 81.78 29.33 80.79 51.47 90.71
10 85.47 40 93.85 92.62 79.91 97.2 61.94 71.12 58.59
11 63.86 99.68 27.92 71.11 83.41 58.07 56.53 80.58 30.76
12 95.45 91.28 100 67.19 42.41 95.94 64.46 47.11 84.85

Average 77.26 83.03 75.84 71.64 70.97 72.72 72.86 63.36 78.19

cant using specific method. The significant results were for patient 2, 9, 10 and 12 in

dataset 1 (as shown in bold font in Table 4.8). Patient-specific SVM yielded very high

accuracy that is more than 90% for patient 12, whereas generally-trained SVM and

LSTM classifiers poorly performed. For patient 2, LSTM network yielded the highest

accuracy. For patient 9, patient specific SVM and LSTM performed much better than

generally-trained SVM. For patient 10, SVM performed better than LSTM.

For the second dataset, the same correlated pattern between the methods results

occurred. However, LSTM performed very well for patient 2, but it performed poorly

on patient 7. In addition, for patients in dataset 2 with average change in UPDRS

> 20, generally-trained SVM classifier did not exceed 89% accuracy whereas Patient-

specific SVM yielded accuracy > 92% (as shown in bold font in Table 4.9). The
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Table 4.9: Average testing results of patient-specific SVM model vs. generally trained SVM
and LSTM models for dataset 2. Training patient-specific SVM used single or a combination
of sensors based on the average change in UPDRS score between OFF and ON state and
the presence of rest tremor for each patient, whereas, training generally-trained SVM and
LSTM used two sensor mounted on thigh and ankle, and only one sensor mounted on the
ankle, respectively.

Patient-specific
SVM

Generally-trained
SVM

Generally-trained
LSTM

Patient # Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.
1 96.64 97.93 90.3 88.52 88.68 87.89 87.27 84.03 100
2 64.37 61.52 71.31 62.92 54.4 80.28 86.686 99.4 60.74
3 79.38 80.12 52.13 82.32 84.1 45.71 80.84 79.91 100
4 99.43 99.26 100 87.34 83.1 99.21 91.56 88.54 100
5 78.18 79.1 76.2 83.64 80.59 89.76 74.78 63.55 97.35
6 63.94 59.02 81.58 58.09 61.02 49.79 71.23 81.84 41.07
7 92.68 91.24 96.26 86.49 95.01 67.18 46.37 31.02 81.17

Average 82.09 81.17 81.11 78.48 78.13 74.26 76.96 75.47 82.9

reason behind poor performance of generally-trained SVM for some of the patients is

the significant variability between PD subjects as mentioned before in the introduction

of this thesis and as will be explained at the end of this section.

LSTM network for both datasets yielded the highest specificity of the OFF state.

In addition, it outperformed patient-specific and generally-trained SVM for some

patients using only one sensor. This shows its adaptation ability to new patient

to cope with the variability between patients if more data were recorded for more

patients and used for training.

Feature analysis was performed on the extracted features from X, Y and Z signals

for all the patients in dataset 1 to illustrate the variability between patients on feature

selection. These signals were used before to train the patient-specific classifiers (refer

to Section 4.3). Feature selection was performed based on the statistical analysis

proposed in Section 3.2.3.1 on the features extracted from the three axes of sensors

mounted on wrist, trunk and ankle. Significant features were the features with p-value
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from the statistical analysis < 0.05. To inspect the effect of the variability between

patients on feature selection, the percentage of occurrence of the significant features

for at least one of the three axes of each sensor to the total number of patients was

determined as shown in Figure 4.7. The features were not selected uniformly for all

the patient, for instance, features number 1, 11, 16, 18, 23, 24 and 25 were selected for

one of the sensors of less than 70% of the patients. Therefore, nonuniform occurrence

of the significant features is an indication of the variability between patients. In

addition, selecting the features depended on the sensor location, for instance, feature

1, 2 16 had highest occurrence for wrist sensor, whereas, feature 23, 24 and 25 had

highest occurrence for ankle sensor.

Table 4.10 shows the number of selected features for each patient and for each

sensor location. Number of significant features was about 50 from the 69 features

extracted for each sensor. However, about 20 features were selected for patient 2, 11

and 12 using the ankle sensor, and 5 and 26 features were selected for patient 6 and

10, respectively, using the wrist sensor.

Furthermore, Significant feature as proposed by [28] was selected to show the

variability between patients in respect to the severity of PD symptoms. This feature

was the percentage of the powers for frequencies > 4 Hz. Figure 4.8 shows the box

plots of the log of the feature for three patients and two states. For each patient the

median of the two state are separable, but the median of ON and OFF states for two

patients can overlap such as the ON of patient 12 that overlap with OFF state of

patient 1 and 4.

4.5 Comparison to Other Studies

As mentioned in the literature review, many studies were published to discriminate

between OFF and ON medication states. Summary of these methods is shown in

Table 4.11. This section compares between the results of the published methods
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Figure 4.7: The percentage of occurrence of the significant features for at least one of the
three axes of sensors mounted on wrist, trunk and ankle to the total number of patients
in dataset 1 which is twelve. The features are 1-average jerk, 2-Peak-to-peak, 3-Signal
power 1-4 Hz, 4-Signal power 4-6 Hz, 5-Signal power 0.5-15 Hz, 6-Percentage of the powers
for frequencies > 4Hz, 7-Temporal Shannon entropy, 8-Standard deviation, 9-The number
of autocorrelation peaks, 10-The sum of autocorrelation peaks, 11-First autocorrelation
peak, 12-Lag of the first autocorrelation peak, 13-Gini Index, 14-Sample entropy, 15-Mean
16-Skewness, 17-Kurtosis, 18-Spectral entropy, 19-The peak in the power spectral density,
20-Dominant frequency, 21-The second peak in the power spectral density, 22-Secondary
frequency, 23-Cross-correlation between X and Y axes, 24-Cross-correlation between X and
Z axes, and 25-Cross-correlation between Y and Z axes.
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Table 4.10: The number of the selected features for each patient and for each sensor
location. Selected features have p-value < 5% significant level as a result of the statistical
analysis on the training data for each patient separately, and all the patients (shown in last
row). Number of selected features in bold represents relatively low number of significant
feature for that location.

Patient #
# Selected Features for

Each Location
Total #

Selected Features
Wrist Trunk Ankle

1 52 58 67 177

2 61 55 22 138

3 51 46 52 149

4 51 55 69 175

5 41 48 62 151

6 5 50 45 100

7 53 64 63 180

8 25 28 27 80

9 47 30 43 120

10 26 54 38 118

11 56 57 14 127

12 60 61 21 142

All Patients 59 57 58 174
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Figure 4.8: The box plots of the log of the feature (percentage of the powers for frequencies
> 4 Hz) for three patients and two states. The training data used to extract the feature
is four activities (ambulation, drinking, arm resting and dressing) from two rounds, one for
each MS. The dotted red rectangle shows the overlap between the medians of OFF state for
patient 4 and ON state of patient 12.
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that are activity-independent with the proposed patient-specific classification method

using SVM that is also activity-independent. The average accuracy, sensitivity and

specificity for the this method were 77.26, 83.03, and 75.84, respectively, for the first

dataset, and 82.09, 81.17 and 81.11 for the second dataset.

Hoff et al. proposed activity independent method based on 7 accelerometers

mounted on upper and lower externalities [27]. They validated their method 24

hours data for 15 patients and they obtained sensitivity (60%-71%) and specificity

(66%-76%) which are lower than the results in this thesis.

Salarian et al. published the results of medication state detection method that

was based on five accelerometer and gyroscope sensors and was trained and testing

using subject-based leave-one-out cross-validation on three to six hours recordings for

13 patients [9]. The minimum average change in UPDRS score was 16. They yielded

Sensitivity 90.1% and specificity 76.3%. To make a fair comparison, the results of

patients with average change in UPDRS score > 15 for both datasets (8 patients) were

determined which are accuracy 94.86%, sensitivity 91.94% and specificity 96.83%.

This result shows the correlation between the UPDRS score and good prediction and

it is higher than the results of Salarian et al. study.

Khan et al. suggested using a method based on SVM with RBF kernel to detect

hand and leg tremor, dyskinesias and ON state with dyskinesia [17]. They used

accelerometer sensor mounted on the waist to train the classifier using simulated

data and to test on 12 PD patients with mid to late stage disease. They reported

72% accuracy which is lower than the overall classification accuracy in this thesis for

dataset 1 and 2.

Hammerla et al. proposed using two sequences of Restricted Boltzmann Machines

to detect if the PD patient is asleep, in ON or OFF state or having troublesome

dyskinesia based on two accelerometers worn on each wrist [31]. They trained and

validated their model on overall 32 PD patients who were performing different activ-
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Table 4.11: Summary of the approaches in the published literature proposed to classify
the medication states, in addition to summary of patient-specific classification using SVM
proposed in this thesis.

References # Sensors # Patients
Data Duration

for Each Patient

Classification

Method

Activity-dependent

Model (Yes, No)

Patient-Specific

(Yes, No, Partial)
Results

Hoff et al. [27]
7 uni-axial

accelerometers
15 24 hours

Linear
discriminant

No Yes
Sens.: 60%-71%
Spec.: 66%-76%

Keijsers et al. [28]
One tri-axial
accelerometer

23 About 3 hours
Linear discriminant

and ANN
Yes

(excluding walking)

Partial (Tremor,
and non-tremor

groups)

Sens.: 97%
Spec.: 97%

Salarian et al. [9]

5 sensors
(gyroscopes

and
accelerometers)

13
Three to six

hours
Logistic regression No No

Sens.: 90.1%
Spec.: 76.3%

Sama et al. [24]
One tri-axial
accelerometer

20 About 1 hour
SVM and

linear discriminant
Yes (gait) No

Sens.: 84%
Spec.: 90%
Acc.: 94%

Khan et al. [17]
One tri-axial
accelerometer

12 About 1 hour SVM No No Acc.: 72%

Perez-Lopez et al. [29]
One tri-axial
accelerometer

7 About 6 hours Linear discriminant

Yes (walking and
not walking for
bradykinesia and

dyskinesia detection
,respectively)

Partial (Threshold
on Bradykinesia )

Sens.: 99.9%
Spec.: 99.9%

Rodriguez-
Molinero et al. [30]

One tri-axial
accelerometer

35
About 1.4 -
5.5 hours

Linear discriminant Yes (walking) Yes
Sens.: 96%
Spec.: 94%

Hammerla et al. [31]
Two tri-axial
accelerometer

32
4 hours (in lab)
1 week (in home)

Restricted
Boltzmann Machines

No No

In home, mean
f1-score: 60%
In lab, mean
f1-score: 76%

Fisher et al. [32]
Two tri-axial
accelerometer

32
4 hours (in lab)
1 week (in home)

ANN No No

In home,
Sens.: 50%
Spec.: 83%

In lab,
Sens.: 60%
Spec.: 83%

Ramji,
Hssayeni et al. [34, 68]

Three tri-axial
gyroscopes

18

Dataset 1:
15 minutes
Dataset 2:

about 2 hours

Semi-supervised
using k-means

and
supervised
using SVM

No Yes Acc.: 80%

Proposed

1, 2, or 3
tri-axial gyro.

based on change
in UPDRS for
each patient

19

Dataset 1:
15 minutes
Dataset 2:

about 2 hours

SVM with fuzzy
classification

No Yes
Acc.:80%
Sens.: 82%
Spec.: 78%
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ities for about 4 hours in the lab and for 1 week in the home. They reported peak

mean f1-score 0.76 for 7-fold cross-validation on lab data, and poor generalization

to home data. Using stratified 7-fold cross-validation instead of using subject-based

cross-validation might lead to high validation accuracy and low testing accuracy. In

this thesis, mean f1-score was calculated for each of the patients in dataset 2 using

patient-specific method, and it was (0.94, 0.62, 0.5, 0.99, 0.76, and 0.6) with a peak

of 0.99.

Fisher et al. reported the results of using ANN to detect if the PD patient is

asleep, in ON or OFF state or having troublesome dyskinesia. The same data and

validation procedure were used in the study of Hammerla et al. [31] were used in

Fisher et al. study. Average 55% sensitivity of OFF and specificity of OFF 82% on

lab and home data were obtained. In this thesis average sensitivity and specificity of

OFF state for both dataset were 82.1 and 78.48, respectively.

In recent study, Vegnish proposed patient-specific semi-supervised classification

using k-means that was based on tensor decomposition of multi-channels of three

gyroscope sensors. Dataset 1 and 2 used in this thesis were used in [34]. He reported

average accuracy of 80% for both datasets which is approximately equal to 79.68%

accuracy in this thesis. The advantage of this thesis is using lower number of sensors

for the majority of patients.

4.6 Directional Information vs. Magnitude

Analysis of the directional information was performed to check the importance of

using X, Y and Z for each sensor instead of using their magnitudes. Training data for

the patient-specific classifiers (refer to Section 4.3) was used in this analysis. First,

feature selection was performed based on the statistical analysis proposed in Section

3.2.3.1 on the features extracted from X, Y and Z axes or from the magnitude of

these axes for each patient and for the sensors mounted on wrist, trunk, and ankle.
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After finding the number of significant features, it was found that at least 5 features

were significant if they were extracted from X, Y or Z signals for each of the sensors

and not significant if they were extracted from the axes magnitude as shown in Table

4.12.

Additional experiment was performed to inspect the effect of extracting significant

features from the axes and not from their magnitudes. In this experiment, patient-

specific SVM classifier (refer to Section 4.3) was trained and testing separately on

significant features extracted from X, Y and Z and from their magnitudes. Figure

4.9 shows the results of this experiment for all the permutations of wrist, trunk and

ankle sensors. The average classification sensitivity of the OFF state after training

patient-specific SVM model on features extracted from X, Y and Z signals was higher

than the sensitivity of training and testing on features extracted from the magnitude

of the axes. The only cases where the sensitivity of using the magnitude was higher

were using the signals of the ankle sensor or trunk and ankle sensors. The same

case for OFF specificity, using the axes individually instead of their magnitude led

to higher specificity, except the case where the magnitude of the axes’ signals from

wrist or wrist and trunk sensors was used.

Inspecting the accuracy in Figure 4.9 indicates that using X, Y, and Z signals

resulted in higher or approximately equal accuracy than using their magnitude for

all the sensor combinations, except the case of using only the wrist sensor. As it was

mentioned before, higher specificity was obtained using the magnitude and because

the time for the ON state was higher than the time for OFF state in the testing data,

thus the accuracy was higher despite that the sensitivity using the three axes was

higher than using the magnitude. To sum up, maintaining the directional information

by extracted features from X, Y and Z directly resulted in better overall sensitivity

and specificity.
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Table 4.12: The number of significant features that are selected using the statistical anal-
ysis on features extracted from X, Y and Z axes or from the magnitude of these axes for
each patient and for the sensors mounted on wrist, trunk, and ankle. This table also shows
number of features that were significant if they were extracted from X, Y or Z signals for
each of the sensors and not significant if they were extracted from their magnitude, and vice
versa.

Patient #
# significant

features using

x, y and z axes

# significant

features using

x, y or z and

not using

the magnitude

# significant

features using

the magnitude

of the 3 axes

# significant

features using

the magnitude

and not using

x, y or z

1 177 6 67 1

2 138 12 22 0

3 149 6 52 2

4 175 8 69 0

5 151 7 62 1

6 100 13 45 3

7 180 5 63 0

8 80 19 27 6

9 120 21 43 2

10 118 15 38 2

11 127 13 14 1

12 142 16 21 2
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Figure 4.9: The average classification results of the testing data after training patient-
specific SVM model on features extracted from X, Y, and Z signals vs. features extracted
from their magnitude signal. The results of using single or multiple sensors are presented.
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Chapter 5
Conclusion and Future Work

Patients with mid-stage and advanced Parkinson’s disease are facing motor fluctua-

tions that significantly affect their way of living and thus they are a major focus of

clinical management. In this thesis, four supervised and semi-supervised classification

approaches are developed to automatically assess the ON and OFF medication states

using wearable sensors while PD patients are engaging in a variety of daily living ac-

tivities. These methods are supervised learning using SVM with fuzzy classification,

semi-supervised learning using k-means or using SOTM with fuzzy classification, and

supervised classification using LSTM as a deep learning method.

Multiple temporal and spectral features that are relevant to PD symptoms are

extracted from the three axes of gyroscope sensors. After performing dimensionality

reduction, the features are passed through to the first three methods, whereas the

signals of gyroscope’s axes are used to train and test LSTM networks without apply-

ing prior feature extraction. The developed methods were evaluated on two datasets

that included recordings of 19 PD patients. Two scenarios were considered: general

training/classification and patient-specific where the former trains and tests the al-

gorithm using subject-based leave-one-out cross-validation, and the latter trains and

tests the algorithm for each patient individually. Based on the reported results, the

following were concluded:

• The results of generally-trained SVM showed that in general using two

sensors mounted on ankle and trunk or ankle and thigh had the highest accuracy.
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However, inspecting the results of using combinations of gyroscopes mounted on

wrist, trunk, thigh, or ankle showed that one sensor or different sensor placement

led to higher accuracy for specific patients. Therefore, there is a need for an

algorithm that adapts with this variability between patients.

• The results of generally-trained LSTM showed LSTM generalization and

adaptation ability using only one sensor mounted on ankle. It obtained signif-

icant accuracy for some of the patients for whom generally-trained SVM was

not able to classify their medication states correctly.

• The algorithm based on LSTM performed better than SVM with over-

all 74.91%, 69.42%, and 80.55% for accuracy, sensitivity, and specificity, re-

spectively, when only one sensor mounted on the ankle was used in the general

training scenario. In addition, LSTM network for both datasets yielded the

highest specificity of the OFF state. Those promising results show the poten-

tial outcome of developing deep learning methods in this field.

• Patient-specific SVM outperformed the proposed semi-supervised method

using k-means or SOTM despite the small amount of data used for train-

ing. The second high performance in patient-specific scenario was for semi-

supervised method using SOTM.

• Number of sensors and their placement for each patient that associated

with the highest accuracy in patient-specific scenario were correlated with the

average change in UPDRS score between OFF and ON state for each patient and

the presence of rest tremor. Therefore, a method for selected the number and

placement of gyroscopes were proposed and integrated with the patient-specific

algorithm using SVM.

• In the comparison between generally-trained SVM and LSTM with
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patient-specific SVM classifier, Patient-specific SVM outperformed generally-

trained SVM and LSTM by about 5% accuracy for both datasets.

• Performing feature analysis showed the variability between PD patients and

also showed retaining the directional information by using X, Y, and Z instead

of their magnitude is beneficial for medication state classification.

To sum up, activity-independent classification using patient-specific SVM classifier

was selected as the winning method. The selection of the number of sensors and

their placement on patient’s body depended on the average change in UPDRS score

between ON and OFF medication states and the presence of tremor for that patient.

Average accuracy, sensitivity and specificity of OFF state for both datasets were

80%, 82% and 78% using the proposed patient-specific SVM classifier. For group of

patients who had change in their UPDRS score between the two states more than 15,

classification results were very high which were accuracy 94.86%, sensitivity 91.94%

and specificity 96.83%. Comparing the proposed approach with other studies showed

it had either the highest performance or equal performance with the advantage of

using lower number of sensors. These results are promising and thus this algorithm

can be potentially used in routine clinical practice to improve the quality of this group

of PD patients.

5.1 Future Work

The limitation of the patient-specific algorithm is the need for prior knowledge about

each patient and training data, thus there is a requirement for developing algorithm

that can generally adapt to the X, Y, and Z data of gyroscope or accelerometer

sensors mounted on the limb that is most affected by PD symptoms. This means

training a model that can predict medication states from signals regardless of their

sensors placement. In other words, train a model that is independent on patient’s
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activities and sensor’s number or placement. LSTM performance on these small

datasets shows its ability for adaptation and generalization. Therefore, our future

work includes developing generally-trained LSTM model that can predict medication

states with significant accuracy.

81



Bibliography

[1] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regular-
ization,” arXiv preprint arXiv:1409.2329, 2014.

[2] J. Jankovic, “Parkinson’s disease: clinical features and diagnosis,” Journal of
Neurology, Neurosurgery & Psychiatry, vol. 79, no. 4, pp. 368–376, 2008.

[3] W. Maetzler, J. Domingos, K. Srulijes, J. J. Ferreira, and B. R. Bloem, “Quantita-
tive wearable sensors for objective assessment of parkinson’s disease,” Movement
Disorders, vol. 28, no. 12, pp. 1628–1637, 2013.

[4] G. Fabbrini, J. M. Brotchie, F. Grandas, M. Nomoto, and C. G. Goetz,
“Levodopa-induced dyskinesias,” Movement disorders, vol. 22, no. 10, pp. 1379–
1389, 2007.

[5] J. Jankovic, “Motor fluctuations and dyskinesias in parkinson’s disease: clinical
manifestations,” Movement Disorders, vol. 20, no. S11, pp. S11–S16, 2005.

[6] C. G. Goetz, G. T. Stebbins, L. M. Blasucci, and M. S. Grobman, “Efficacy of a
patient-training videotape on motor fluctuations for on-off diaries in parkinson’s
disease,” Movement disorders, vol. 12, no. 6, pp. 1039–1041, 1997.

[7] J. M. Fisher, N. Y. Hammerla, L. Rochester, P. Andras, and R. W. Walker,
“Body-worn sensors in parkinson’s disease: evaluating their acceptability to pa-
tients,” Telemedicine and e-Health, vol. 22, no. 1, pp. 63–69, 2016.

[8] R. Prasad, S. Babu, N. Siddaiah, and K. Rao, “A review on techniques for diag-
nosing and monitoring patients with parkinson’s disease,” J Biosens Bioelectron,
vol. 7, no. 203, p. 2, 2016.

[9] A. Salarian, “Ambulatory monitoring of motor functions in patients with parkin-
sons disease using kinematic sensors,” Ph.D. dissertation, Citeseer, 2006.

[10] S. H. Roy, B. T. Cole, L. D. Gilmore, C. J. De Luca, and S. H. Nawab, “Resolving
signal complexities for ambulatory monitoring of motor function in parkinson’s
disease,” in Engineering in Medicine and Biology Society, EMBC, 2011 Annual
International Conference of the IEEE. IEEE, 2011, pp. 4836–4839.

[11] D. G. Zwartjes, T. Heida, J. P. Van Vugt, J. A. Geelen, and P. H. Veltink, “Am-
bulatory monitoring of activities and motor symptoms in parkinson’s disease,”
IEEE transactions on biomedical engineering, vol. 57, no. 11, pp. 2778–2786,
2010.

[12] B. T. Cole, S. H. Roy, C. J. De Luca, and S. H. Nawab, “Dynamic neural network
detection of tremor and dyskinesia from wearable sensor data,” in Engineering in
Medicine and Biology Society (EMBC), 2010 Annual International Conference
of the IEEE. IEEE, 2010, pp. 6062–6065.

82



BIBLIOGRAPHY

[13] S. H. Roy, B. T. Cole, L. D. Gilmore, C. J. Luca, C. A. Thomas, M. M. Saint-
Hilaire, and S. H. Nawab, “High-resolution tracking of motor disorders in parkin-
son’s disease during unconstrained activity,” Movement Disorders, vol. 28, no. 8,
pp. 1080–1087, 2013.

[14] D. Pan, R. Dhall, A. Lieberman, and D. B. Petitti, “A mobile cloud-based parkin-
son’s disease assessment system for home-based monitoring,” JMIR mHealth and
uHealth, vol. 3, no. 1, p. e29, 2015.

[15] H. Dai, P. Zhang, and T. C. Lueth, “Quantitative assessment of parkinsonian
tremor based on an inertial measurement unit,” Sensors, vol. 15, no. 10, pp.
25 055–25 071, 2015.

[16] A. Salarian, H. Russmann, C. Wider, P. R. Burkhard, F. J. Vingerhoets, and
K. Aminian, “Quantification of tremor and bradykinesia in parkinson’s disease
using a novel ambulatory monitoring system,” IEEE Transactions on Biomedical
Engineering, vol. 54, no. 2, pp. 313–322, 2007.

[17] F. M. Khan, M. Barnathan, M. Montgomery, S. Myers, L. Côté, and S. Loftus, “A
wearable accelerometer system for unobtrusive monitoring of parkinson’s diease
motor symptoms,” in BIBE, 2014 IEEE International Conference on. IEEE,
2014, pp. 120–125.

[18] R. Griffiths, K. Kotschet, S. Arfon, Z. Xu, W. Johnson, J. Drago, A. Evans,
P. Kempster, S. Raghav, and M. Horne, “Automated assessment of bradykine-
sia and dyskinesia in parkinson’s disease,” JOURNAL OF PARKINSONS DIS-
EASE, vol. 2, no. 1, pp. 47–55, 2012.

[19] B. M. Eskofier, S. I. Lee, J.-F. Daneault, F. N. Golabchi, G. Ferreira-Carvalho,
G. Vergara-Diaz, S. Sapienza, G. Costante, J. Klucken, T. Kautz et al., “Recent
machine learning advancements in sensor-based mobility analysis: Deep learning
for parkinson’s disease assessment,” in Engineering in Medicine and Biology So-
ciety (EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE,
2016, pp. 655–658.

[20] N. L. W. Keijsers, M. W. I. M. Horstink, and S. C. A. M. Gielen, “Automatic
assessment of levodopa-induced dyskinesias in daily life by neural networks,”
Movement disorders : official journal of the Movement Disorder Society, vol. 18,
no. 1, pp. 70–80, 2003.

[21] M. I. Chelaru, C. Duval, and M. Jog, “Levodopa-induced dyskinesias detection
based on the complexity of involuntary movements,” Journal of Neuroscience
Methods, vol. 186, no. 1, pp. 81–89, 2010.

[22] M. G. Tsipouras, A. T. Tzallas, D. I. Fotiadis, and S. Konitsiotis, “On automated
assessment of levodopa-induced dyskinesia in parkinson’s disease,” vol. 2011,
United States, 2011, pp. 2679–2682.

83



BIBLIOGRAPHY

[23] M. Tsipouras, A. Tzallas, G. Rigas, S. Tsouli, D. Fotiadis, and S. Konitsiotis, “An
automated methodology for levodopa-induced dyskinesia: Assessment based on
gyroscope and accelerometer signals,” AI in medicine, vol. 55, no. 2, pp. 127–135,
2012.

[24] A. Sama, C. Perez-Lopez, J. Romagosa, D. Rodriguez-Martin, A. Catala,
J. Cabestany, D. A. Perez-Martinez, and A. Rodriguez-Molinero, “Dyskinesia
and motor state detection in parkinson’s disease patients with a single move-
ment sensor,” vol. 2012. United States: IEEE, 2012, pp. 1194–1197.

[25] T. O. Mera, M. A. Burack, and J. P. Giuffrida, “Objective motion sensor as-
sessment highly correlated with scores of global levodopa-induced dyskinesia in
parkinson’s disease,” Journal of Parkinson’s disease, vol. 3, no. 3, p. 399, 2013.

[26] C. L. Pulliam, M. A. Burack, D. A. Heldman, J. P. Giuffrida, and T. O. Mera,
“Motion sensor dyskinesia assessment during activities of daily living,” Journal
of Parkinson’s disease, vol. 4, no. 4, pp. 609–615, 2014.

[27] J. Hoff, V. Van Der Meer, and J. Van Hilten, “Accuracy of objective ambula-
tory accelerometry in detecting motor complications in patients with parkinson
disease,” Clinical neuropharmacology, vol. 27, no. 2, pp. 53–57, 2004.

[28] N. L. Keijsers, M. W. Horstink, and S. C. Gielen, “Ambulatory motor assessment
in parkinson’s disease,” Movement Disorders, vol. 21, no. 1, pp. 34–44, 2006.

[29] C. Pérez-López, A. Samà, D. Rodríguez-Martín, A. Català, J. Cabestany,
E. de Mingo, and A. Rodríguez-Molinero, “Monitoring motor fluctuations in
parkinson’s disease using a waist-worn inertial sensor,” in Advances in Compu-
tational Intelligence. Springer, 2015, pp. 461–474.

[30] A. Rodríguez-Molinero, A. Samà, D. A. Pérez-Martínez, C. P. López, J. Ro-
magosa, À. Bayés, P. Sanz, M. Calopa, C. Gálvez-Barrón, E. de Mingo et al.,
“Validation of a portable device for mapping motor and gait disturbances in
parkinson’s disease,” JMIR mHealth and uHealth, vol. 3, no. 1, p. e9, 2015.

[31] N. Hammerla, P. Andras, L. Rochester, and T. Ploetz, “Pd disease state assess-
ment in naturalistic environments using deep learning,” 2015.

[32] J. M. Fisher, N. Y. Hammerla, T. Ploetz, P. Andras, L. Rochester, and R. W.
Walker, “Unsupervised home monitoring of parkinson’s disease motor symptoms
using body-worn accelerometers,” Parkinsonism & Related Disorders, vol. 33,
pp. 44–50, 2016.

[33] M. D. Hssayeni, M. A. Burack, and B. Ghoraani, “Automatic assessment of
medication states of patients with parkinson’s disease using wearable sensors,”
in EMBC, 2016 IEEE 38th Annual International Conference of the. IEEE,
2016, pp. 6082–6085.

84



BIBLIOGRAPHY

[34] V. Ramji, “Tensor decomposition of multi-channel wearable sensors for parkin-
son’s disease assessment,” 2016.

[35] C. L. Pulliam, D. A. Heldman, E. B. Brokaw, T. O. Mera, and M. A. Burack,
“Continuous assessment of levodopa response in parkinson’s disease using wear-
able motion sensors,” Submitted-2017.

[36] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[37] J. Platt et al., “Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods,” Advances in large margin classifiers,
vol. 10, no. 3, pp. 61–74, 1999.

[38] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information
theory, vol. 28, no. 2, pp. 129–137, 1982.

[39] M. Kyan, P. Muneesawang, K. Jarrah, and L. Guan, Self-Organizing
Tree Map. Wiley-IEEE Press, 2014, pp. 288–. [Online]. Available: http:
//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6836694

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[41] K. Altun and B. Barshan, “Human activity recognition using inertial/magnetic
sensor units,” in International Workshop on Human Behavior Understanding.
Springer, 2010, pp. 38–51.

[42] K. Altun, B. Barshan, and O. Tunçel, “Comparative study on classifying human
activities with miniature inertial and magnetic sensors,” Pattern Recognition,
vol. 43, no. 10, pp. 3605–3620, 2010.

[43] J. L. Reyes-Ortiz, A. Ghio, X. Parra, D. Anguita, J. Cabestany, and A. Catala,
“Human activity and motion disorder recognition: towards smarter interactive
cognitive environments.” in ESANN. Citeseer, 2013.

[44] J. L. R. Ortiz, Smartphone-based human activity recognition. Springer, 2015.

[45] S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. Growdon, D. Standaert, M. Akay,
J. Dy, M. Welsh, and P. Bonato, “Monitoring motor fluctuations in patients with
parkinson’s disease using wearable sensors,” IEEE transactions on information
technology in biomedicine, vol. 13, no. 6, pp. 864–873, 2009.

[46] A. Weiss, S. Sharifi, M. Plotnik, J. P. van Vugt, N. Giladi, and J. M. Haus-
dorff, “Toward automated, at-home assessment of mobility among patients with
parkinson disease, using a body-worn accelerometer,” Neurorehabilitation and
neural repair, vol. 25, no. 9, pp. 810–818, 2011.

85

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6836694
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6836694


BIBLIOGRAPHY

[47] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity recognition
and monitoring using multiple sensors on different body positions,” in Wearable
and Implantable Body Sensor Networks, 2006. BSN 2006. International Work-
shop on. IEEE, 2006, pp. 4–pp.

[48] I. Cleland, B. Kikhia, C. Nugent, A. Boytsov, J. Hallberg, K. Synnes, S. McClean,
and D. Finlay, “Optimal placement of accelerometers for the detection of everyday
activities,” Sensors, vol. 13, no. 7, pp. 9183–9200, 2013.

[49] L. Atallah, B. Lo, R. King, and G.-Z. Yang, “Sensor placement for activity de-
tection using wearable accelerometers,” in Body Sensor Networks (BSN), 2010
International Conference on. IEEE, 2010, pp. 24–29.

[50] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using ap-
proximate entropy and sample entropy,” American Journal of Physiology-Heart
and Circulatory Physiology, vol. 278, no. 6, pp. H2039–H2049, 2000.

[51] O. Tunçel, K. Altun, and B. Barshan, “Classifying human leg motions with
uniaxial piezoelectric gyroscopes,” Sensors, vol. 9, no. 11, pp. 8508–8546, 2009.

[52] A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees, “Accuracy of clinical
diagnosis of idiopathic parkinson’s disease: a clinico-pathological study of 100
cases.” Journal of Neurology, Neurosurgery & Psychiatry, vol. 55, no. 3, pp.
181–184, 1992.

[53] L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration
data,” in International Conference on Pervasive Computing. Springer, 2004,
pp. 1–17.

[54] M. Stikic, K. Van Laerhoven, and B. Schiele, “Exploring semi-supervised and
active learning for activity recognition,” in Wearable computers, 2008. ISWC
2008. 12th IEEE international symposium on. IEEE, 2008, pp. 81–88.

[55] W. Wu, S. Dasgupta, E. E. Ramirez, C. Peterson, and G. J. Norman, “Classifica-
tion accuracies of physical activities using smartphone motion sensors,” Journal
of medical Internet research, vol. 14, no. 5, p. e130, 2012.

[56] T. W. Anderson and D. A. Darling, “A test of goodness of fit,” Journal of the
American statistical association, vol. 49, no. 268, pp. 765–769, 1954.

[57] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics bulletin,
vol. 1, no. 6, pp. 80–83, 1945.

[58] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.

[59] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[60] B. Ghoraani and S. Krishnan, “Discriminant non-stationary signal features’ clus-
tering using hard and fuzzy cluster labeling,” EURASIP Journal, vol. 2012, no. 1,
pp. 1–20, 2012.

86



BIBLIOGRAPHY

[61] N. Y. Hammerla, S. Halloran, and T. Ploetz, “Deep, convolutional, and re-
current models for human activity recognition using wearables,” arXiv preprint
arXiv:1604.08880, 2016.

[62] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent neural
networks for multimodal wearable activity recognition,” Sensors, vol. 16, no. 1,
p. 115, 2016.

[63] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27,
2011, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[64] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[65] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

[66] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[67] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[68] V. Ramji, M. Hssayeni, M. A. Burack, and B. Ghoraani, “Parkinson’s disease
medication state management using data fusion of wearable sensors,” in Biomed-
ical & Health Informatics (BHI), 2017 IEEE EMBS International Conference
on. IEEE, 2017, pp. 193–196.

87

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://tensorflow.org/

