


Figure 3.58: QPSK- Gardner technique, SNR vs. BER plot
Finally, the following table states the values of MSE that are corresponding to the SNR

values for the original convergence plots.

SNR 2dB 4 dB 6 dB 8 dB 10 dB

MSE 22.1758 21.9947 15.6789 12.7358 12.5737

Table 3.9: states SNR values with MSE value for QPSK-Gardner technique
Now, it is important to mention about the five techniques that are included in the following
sections. Actually, the five techniques, which are used to improve timing recovery for
BPSK-Gardner technique, are also used to improve the timing recovery for QPSK-Gardner
technique. The results of the five techniques for QPSK state that they have the same features that
are mentioned when the five techniques are used for BPSK. These features are in terms of

convergence plots, SNR vs. BER plots, MSE tables, and the level of complexities of wireless
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communication systems. As a result, the explanation and the evaluation of each technique are not
repeated again. So for more information, the five techniques that are used for BPSK modulation
scheme can be reviewed again.
3.16 Summary and comparison of the five techniques - QPSK

It is worthwhile to summarize the five techniques that are introduced to work with QPSK
modulation scheme. Moreover, the summary gives a clear picture about the benefits and features
each technique. In order to facilitate the process of comparison, the convergence plots when SNR
is equal to (10 dB) are be included. Furthermore, the tables of Mean Squared Error (MSE) are

stated for each technique.

Convergence plot for QPSK- Baseline Technique
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Figure 3.59: QPSK- Baseline technique and first technique, SNR=10 dB
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Figure 3.60: QPSK- second technique and third technique, SNR=10 dB

Convergence plot for QPSK- Fourth Technique
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Convergence plot for QPSK- Fifth Technique
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Figure 3.61: QPSK- fourth technique and fifth technique, SNR=10 dB
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SNR 2dB 4dB 6 dB 8dB 10 dB
MSE_Gardner 22.1758 21.9947 15.8474 12.7358 12.5737
technique
MSE first 58.5205 43.2153 29.9405 24.8537 17.6574
technique
MSE second 61.3295 44.8932 33.0179 19.9195 18.0674
technique
MSE _third 27.3726 22.2947 20.9895 16.3242 13.5200
technique
MSE fourth 55.3126 35.4495 22.5968 15.4326 9.7863
technique
MSE fifth 34.9042 23.1337 16.7316 12.6284 8.5189
technique

Table 3.10: Summary of MSE of all techniques for QPSK-Gardner technique
3.17 Alamouti technique with and without Gardner technique

In this section, the baseline Matlab code for the Alamouti technique is presented. Alamouti
scheme includes two transmitters and a one receiver. In addition, the new Matlab code that allows
for the Alamouti technique to work with the Gardner technique is introduced. As mention
previously in the introduction, Alamouti [2] assumes that his technique works with digital
receivers that are perfectly synchronized. In this thesis, The Alamouti technique is adapted with
the Gardner technique to make the Alamouti technique works with digital receivers that are not
perfectly synchronized. Consequently, this achieves a completely wireless system that works in
realistic environment which has the Rayleigh fading and noise. In other words, this new technique

reduces the effects of the Rayleigh fading by using the Alamouti technique; in addition, the new
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technique improves the timing recovery by implementing the five techniques that depend on the
Gardner technique.

The QPSK data is generated, and it then splits into two streams. Then, the initial values for
the Alamouti technique with the Gardner technique are provided. The (h11 and h22) are generated
to be used as a channel gain. Then, the (h1 and h2) represent the effect of a slow fading which
change every symbol in the data. Also, the noise is produced, and the noise changes every sample
per symbol. Next, the pulse shape is applied on the each stream of the data. Next, the initial values
that are used by the baseline code of the Alamouti technique is provided. The initial values include
the channel gain (hpl and hp2). The noise is also generated to be used in the Alamouti algorithm.
The following code demonstrates how to generate these initial values. The next Matlab code

includes the data generation, initial values, and the pulse shape:

QPSKAlamouti Gardner.m: Data generation, initial values, and the pulse shape.

%% Data generation

N=15*10"5; ¥Amount of data

Qpsk=[1+1i 1-11 -1+1i -1-1i]; $Four possibilities for QPSK
data= Qpsk(randi(4,1,N))./sgrt(2); %The data

Tsym=100; No.of samples per symbol
xhl=data(l:2:end) ; %$The first stream
xh2=data(2:2:end) ; $The second stream

%% Initial Parameter for Alamouti technique with Gardner technique
hll=(randn(1,N/2)+1li*randn(1,N/2))./sqgrt(2);

%Generating random numbers for hl
h22=(randn(1,N/2)+1li*randn(1,N/2)) ./sqgrt(2) ;

%$Generating random numbers for h2

hl=kron (hll, ones(1,Tsym)) ; %$The first channel gain
h2=kron (h22, ones(1l,Tsym)) ; %$The second channel gain

noisel=(randn(1l,N*Tsym/2)+1li*randn(1,N*Tsym/2) ./sqrt(2)) ;
%Generating random numbers for nl

noise2=(randn(1l,N*Tsym/2)+1li*randn(1,N*Tsym/2) ./sqrt(2)) ;
%Generating random numbers for n2
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%% pulse shape

p = sin(2*pi* (0:Tsym-1)/(2*Tsym)); %Sinusoidal wave

data up =zeros(1l,length(xhl) *Tsym) ; A memory of zeros

data up(1l:Tsym:end) = xhl; %$Interpolation the data

S11 = conv(data up,p); %$The convolution operation
S1=S11(l:end-99) ; $Remove last 99 bits that are

%added due to the convolution
%% pulse shape

p = sin(2*pi* (0:Tsym-1)/(2*Tsym)); %Sinusoidal wave

data up = zeros(1l,length(xh2)*Tsym) ;%A memory of zeros

data up(1l:Tsym:end) = xh2; %$Interpolation the data

S22 = conv(data_up,p); %$The convolution operation
S2=822(1l:end-99) ; %Remove last 99 bits that are

%added due to the convolution
%% Initial Parameter for baseline Alamouti technique
hpl=(randn(1,N/2)+1li*randn(1,N/2))./sqrt(2);

%$The first channel gain
hp2=(randn(1,N/2)+1li*randn(1,N/2))./sqgrt (2) ;

$The second channel gain
noisepl=(randn(1,N/2)+1li*randn(1,N/2)./sqgrt(2));

%$Generating random numbers
noisep2=(randn(1l,N/2)+1li*randn(1,N/2)./sqrt(2)) ;

%Generating random numbers

After providing the initial values, the Signal to Noise (SNR) values are included, and the
range of SNR is from (5 to 25 dB). The sigma value is found to be used in generating the noise
(npl and np2) and to apply the Alamouti algorithm. Then, the noise is added to find the two
received streams at the receiver (rr1 and rr2). After that, the two combined streams are found
(S1 _est and S2 est) by using the two received streams.

After that, the two combined streams are recombined to create a one stream data
(xenlast). Then, the simulated Bit Error Rate (BER) is calculated by comparing the real and
imaginary parts of the combined stream with the real and imaginary parts of the original data
respectively. The following Matlab code demonstrates the baseline Alamouti technique (part #1)

and BER calculation:
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QPSKAlamouti_Gardner.m: Baseline Alamouti technique and BER calculation.

SNRAB=5:5:25; $Signal to Noise Ratio
SNR=10." (SNRAB/10) ; $The linear values of noise
for cv=1:1length (SNRAB) %Generate a loop
%% Alamouti technique with perfect synchronization (part #1)
sigma=sqrt (1) /sgrt (2*SNR (cVv) ) ; $¥Sigma generation
npl=sigma*noisepl; %Generate the part#l of noise
np2=sigma*noisep?2; %Generate the part#2 of noise

rrl = xhl.*hpl + xh2.*hp2 + npl; %The received signal at (t)

rr2=-conj (xh2) . *hpl+conj (xhl) . *hp2+np2;

%$The received signal at (t+T)

S1 est=conj (hpl) .*rrl+hp2.*conj (rr2) ;

$Stream#l of combined signals

S2 est=conj (hp2) .*rrl-hpl.*conj (rr2) ;

$Stream#2 of combined signals
xenlast=zeros (1,N) ; %A memory for preallocating

Q

% Combining the two streams
for m=1:N/2

xenlast (2*m-1)=S1 est (m) ; $#1 stream in odd order
xenlast (2*m) =82 est (m) ; $#2 stream in even order

end

%% Calculating the simulated BER for part #1

Error PS=0; $Initial error for part #1
for k=1:N $Hard decision is used
if (real(xenlast(k))> 0 && real (data(k)) ———l/sqrt )] ...
(real (xenlast (k))< 0 && real (data (k) 1/sqrt 2))
Error PS=Error PS+1;
end
if (imag(xenlast(k))> 0 && imag(data (k)) ==—l/sqrt )] ..
(imag (xenlast (k) )< 0 && imag(data(k l/sqrt 2))
Error PS=Error PS+1;
end
end
BERps_sim(cv)=Error_ PS/ (N) ; %Calculate errors/bits
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The next step is how to find the BER in realistic environment that involves a digital
receiver that is not perfectly synchronized. This step is the main contribution of this thesis. This
code (part #2) starts with using values of noise (nl and n2) to find the two received streams
(rl and r2). Then, the two received streams are used to find the two combined streams
(S1g_est and S2g est). When the two combined streams are produced, they are fed to the
Gardner technique. Each combined stream is represented by complex numbers, so each stream has
real part and imaginary part. Consequently, there are four streams of bits that can be used in the
timing error detection. After producing the four streams of bits, the initial values for the operation
of error detection and correction are introduced. The following code connects the Alamouti

technique with the Gardner technique and sets the initial values:

QPSKAlamouti Gardner.m: Baseline Alamouti technique and BER calculation.

%% Alamouti technique with Gardner technique (part #2)

nl=sigma*noisel; $Generate the first part of noise
nZ2=sigma*noise?2; $Generate the second part of noise

rl = S1.*hl + S2.*h2 + nl; %The received signal at (t)
r2=-conj (S2) .*hl + conj(Sl).*h2 + n2;

%$The received signal at (t+T)
Slg est=conj (hl).*rl + h2.*conj(r2);

$Stream#l of combined signals
S2g_est=conj (h2) .*rl - hl.*conj(r2);

$Stream#2 of combined signals

% Clock recovery Gardner technique

 Feed the first stream of bits to Gardner technique

S1 real=zeros(l, N*Tsym/2); %A memory for preallocaing

S1 imag=zeros(l, N*Tsym/2); S$A memory for preallocaing

for tr=1:N*Tsym/2

S1 real(tr)= [real(Slg est(tr))];%Real bits(In-phase channel)

S1 imag(tr)= [imag(Slg est(tr))];%Imaginary bits (Quadrature
%channel)

O o

end
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% Feed the second stream of bits to Gardner technique

S2 real=zeros(l, N*Tsym/2); %A memory for preallocaing
S2 imag=zeros(l, N*Tsym/2); %A memory for preallocaing

for tr=1:N*Tsym/2
S2 real(tr)= [real(S2g est(tr))];%Real bits(In-phase channel)
S2 imag(tr)= [imag(S2g est(tr))];%Imaginary bits (Quadrature

%channel)
end
%% Detection and correction
tau=0; %Initial value for tau
delta=Tsym/2; %$The shifting value before and after
tthe midway sample
center=60; %The assumed order for the first

o)

midway sample

memory for preallocaing

memory for preallocaing

memory for preallocaing

memory for preallocaing

memory for preallocaing

Six values of Gardner algorithm are
sused to

al=zeros (1,N/2-1);
a2=zeros (1,N/2-1);
( )
)

>

4

a3=zeros(1,N/2-1
ad=zeros (1,N/2-1
remind=zeros (1,N-1);
avgsamples=6;

4

>

o 00 o° o0© o° o° 0O o
e

%find the average

stepsize = 1; % Correction step size

rit=0; % Iteration counter

GApl = zeros (l,avgsamples) ;%A memory for preallocaing
GAp2 = zeros(l,avgsamples) ;%A memory for preallocaing
apl=zeros (1,N/2-1); %A memory for preallocaing
ap2=zeros (1,N/2-1); %A memory for preallocaing
tauvector=zeros(1,1900); %A memory for preallocaing
uor=0; %A counter for the tau vector

After producing the initial values, a loop is created for sampling operation. This includes
four main sections (two sections for each combined streams), and each combined stream is used to
find error samples (GAp1l and GAp2) which are used to find the average of the Gardner algorithm
(gardaverage). Then, the loop filter is used to shift the samples depending on the value of tau.

In addition to the loop filter, the next Matlab code shows how to save “remind’ values which are
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necessary to plot the convergence behavior. The code also illustrates how to find the tau vector that
is important to find the Mean Squared Error (MSE). Moreover, the next code demonstrates how to

achieve the correction operation.

QPSKAlamouti_Gardner.m: Sampling, error detection, loop filter, and correction.

for ii= (Tsym/2)+1:Tsym:length(S1 real)-(Tsym/2)+1
rit=rit+1; %A counter

o)

% Sampling the real part for stream#l

midsamplel=S1 real (center); %$The midway sample
latesamplel=S1 real (center+delta); %The late sample
earlysamplel=S1 real (center-delta); %The early sample
al(rit)=earlysamplel; $Save samples
subl=latesamplel-earlysamplel; %Subtraction operation

Q

% Sampling the imaginary part for stream#l

midsample2=S1 imag (center); %The midway sample
latesample2=S1 imag (center+delta); S%The late sample
earlysample2=S1 imag (center-delta); %The early sample

a2 (rit)=earlysample?2; %Save samples
sub2=latesample2-earlysample?; sSubtraction operation

¢}

% Error detection for streamil

GApl (mod (rit,avgsamples) +1)=subl*midsamplel+sub2*midsample?;
%Gardner Algorithm

% Sampling the real part for stream#?2

midsamplelp2=S2 real (center); 3The midway sample

latesamplelp2=S2 real (center+delta); %The late sample

earlysamplelp2=S2 real (center-delta);%The early sample

a3 (rit)=earlysamplelp?2; %Save samples

sublp2=latesamplelp2-earlysamplelp?2; %$Subtraction operation

% Sampling the imaginary part for stream#?2

midsample2p2=S2 imag (center); %The midway sample

latesample2p2=S2 imag(center+delta); %The late sample

earlysample2p2=S2 imag (center-delta);sThe early sample

ad (rit)=earlysample2p?2; %Save samples

sub2p2=latesamplel2p2-earlysample2p?2; S%$Subtraction operation

$ Error detection for stream#2

GAp2 (mod (rit,avgsamples)+1)=sublp2*midsamplelp2+. ..
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sub2p2*midsamplel2p?;
%$Gardner Algorithm
gardaverage=mean (GApl+GAp2) ; %Finding the mean

% Loop filter
if gardaverage> 0
tau = -stepsize; %$Shift by decreasing
else
tau = stepsize; %$Shift by increasing
end
% Safe remind values
remind (rit)=rem( (center-Tsym/2),Tsym);%Save remind values to
%find convergence plots
% tau vector
if rit>=100 && rit<2000 %tau vector from 100 to
%2000 where the convergence happens
uor=uor+l;
tauvector (uor)= (remind(rit)- (Tsym/2))."2;
end 3Difference between the
%estimated tau & the optimal tau
% Correction
center=center+Tsymt+tau; $Adding the tau value
if center>=length(S1 real)-(Tsym/2)+1 %Break the loop when
%the midway sample reaches to 51
$samples before the last sample
break;
end
end

Next, the Mean Squared Error (MSE) is computed. After computing the MSE, bits of the
first stream are combined, and the same thing happens to bits of the second stream. Then, the all
bits are combined to have the final received bits that are used in the BER calculation. After that,
the speed of convergence is plotted for each SNR value. Then, the simulated BER is calculated for
the part #2 which involves using the Alamouti technique with the Gardner technique. Finally, the
simulated BER baseline code (part #1) and the simulated BER of new Alamouti-Gardner

technique (part #2) are plotted by using the next code:
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QPSKAlamouti_Gardner.m: MSE, data combination, BER calculation (part #2), convergence plot,
and BER plot.

o)

% Mean Squared Error (MSE)
MSE (cv) =mean (tauvector) ; %Finding Mean Squared Error
% Combine bits of stream#l
for f=1:N/2-1
apl(f)=[(al(f))+ (a2 (f)*1i)];%Recombine complex numbers

end
% Combine bits of stream#2
for f=1:N/2-1
ap2(f)=[(a3(f))+(ad4 (f)*1i)],; %Recombine complex numbers

end
% Combine all bits
for f=1:N/2-1
a(2*f-1:2*f)=[apl(f) ap2(f)];%Recombine complex numbers of

end %all bits
%% convergence plot
figure

symbols = 200;

subplot(2,1,1);

plot (remind (1l:symbols), "*=");

hold on

1iml=40*ones (1, symbols) ;
1lim2=60*ones (1, symbols) ;

plot (1iml, 'r');

hold on

plot (1im2, 'r');

title('Convergence plot for QPSK-Alamouti-Gardner');
ylabel ('tau axis'), xlabel('iterations')
legend( ['SNRdAB=' int2str (SNRdAB(cv))]):;
axis ([l symbols 0O Tsym]);
subplot(2,1,2);

symbols = 2000;

plot (remind (1l:symbols), "*=");

hold on

1liml=40*ones (1, symbols) ;
1im2=60*ones (1, symbols) ;

plot (1iml, 'r');

hold on
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plot (1im2, 'r');

title ('Convergence plot for QPSK-Alamouti-Gardner');
ylabel ('tau axis'), xlabel('iterations')

legend( ['SNRdAB=' int2str (SNRdAB(cv))]):;

axis ([l symbols 0O Tsym]);

%% Calculating the simulated BER for part #2

Error=0; %Initial error
for k=1:N-2 $Hard decision is used
if (real(a(k))> 0 && real(data(k))==-1/sqgrt(2))|]|...
(real(a(k))< 0 && real (data(k))==1/sqgrt(2))
Error=Error+1;
end

)===1/sqgrt(2)) | 1]...

if (imag(a(k))> 0 && imag(data (k)
(k))==1/sgrt(2))

(imag(a(k))< 0 && imag(data
Error=Error+1;

end
end
BER sim(cv)=Error/ (N-4); %Calculate errors/bits
end

%% Plot BER Vs SNR

figure

semilogy (SNRAB, BERps sim, 'b-', 'LineWidth',2);%Plot SNR Vs. BER
(part #1)

hold on

semilogy (SNRdAB,BER sim, 'r—-', "LineWidth',2); %Plot SNR Vs. BER
(part #2)

title('SNR Vs. BER plot for QPSK-Alamouti-Gardner');
legend ('Baseline Alamouti', 'Alamouti-Gardner');
ylabel ('"log BER');

xlabel ("SNR in dB'");

The above Matlab codes represent the new baseline codes of the Alamouti technique and
the Gardner technique which work with each other for the first time. The following figures states

the convergence plots for QPSK- Alamouti - Gardner (QAG) technique with SNR vs. BER plot:
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Figure 3.62: QPSK- Alamouti-Gardner technique, SNR=5 dB
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Figure 3.63: QPSK- Alamouti-Gardner technique, SNR=10 dB
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Figure 3.64: QPSK- Alamouti-Gardner technique, SNR=15 dB
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Figure 3.65: QPSK- Alamouti-Gardner technique, SNR=20 dB
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Figure 3.66: QPSK- Alamouti-Gardner technique, SNR=25 dB
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Figure 3.67: QPSK- Alamouti-Gardner technique, SNR vs. BER plot
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The next table reveals the MSE values that are corresponding to the SNR values for the
new QPSK- Alamouti - Gardner (QAGQG) technique.

SNR 5dB 10 dB 15dB 20 dB 25dB

MSE 12.9716 7.7863 6.0137 5.1711 5.1016
Table 3.11: states MSE vs. SNR values for QPSK- Alamouti - Gardner (QAG) technique

The five techniques are used with QPSK - Alamouti - Gardner technique. The results
illustrate that features and characteristics of these five techniques are the same as those that are
mentioned in BPSK - Gardner technique. This thesis consider the QAG - third technique as the
best technique because its features. These features include a faster convergence and less
complexity in the design of wireless communication systems. The third technique also has the
same SNR vs. BER plot that results from the QPSK - Alamouti - Gardner (QAG) technique.
Additionally, the QAG - third technique has MSE values that are close to the MSE values of the
QAG technique (see table 3.13). The following section explains the QAG - third technique and

states its results.

3.18 The third technique to improve the QPSK-Alamouti- Gardner (QAG)
Technique

The third technique uses the Matlab code of QPSK-Alamouti- Gardner (QAG) technique
except the average filter code. This technique eliminates the average filter from the error detection
operation, so the value of the Gardner algorithm is directly used in the loop filter. Also, the step

size, which is used in this technique, is equal to 2. The following code demonstrates that:

QAG _thirdtechnique.m: Error detection and loop filter.

¢}

% Error detection for stream#l
GApl=subl*midsamplel + sub2*midsample?; %$Gardner Algorithm

[e)

% Error detection for stream#2
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GAp2=sublp2*midsamplelp?2 + sub2p2*midsamplel2p?; sGardner Algorithm
%"”"gardaverage” finding

gardaverage=GApl+GAp2;

% Loop filter
if gardaverage> 0

tau = -stepsize; sShift by decreasing
else

tau=stepsize; %$Shift by increasing

end
The convergence plots and SNR vs. BER plot are shown below:
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Figure 3.68: QAG - third technique, SNR=5 dB
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Figure 3.69: QAG - third technique, SNR=10 dB
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Figure 3.70: QAG - third technique, SNR=15 dB
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Figure 3.71: QAG - third technique, SNR=20 dB
i Convergence plot for QAG - Third Technique

[—+— SNRdB=25 |

G 1 1 1 1 1 1 1 1 1
20 40 a0 80 100 120 140 180 180 200

iterations

— Convergence plot for QAG - Third Technique

[—— sNRdB=25 |

200 400 600 B00 1000 1200 1400 1600 1800 2000
iterations

Figure 3.72: QAG - third technique, SNR=25 dB



SNR Vs. BER plot for QAG - Third Technique
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Figure 3.73: QAG - third technique, SNR vs. BER plot

The next table reveals the MSE values that are corresponding to the SNR values for the

QPSK- Alamouti - Gardner (QAG) - third technique.

SNR 5dB 10 dB 15 dB 20 dB 25dB

MSE 14.4800 9.4526 6.4126 5.0232 3.7600

Table 3.12: states MSE vs. SNR values for QPSK- Alamouti -Gardner (QAG)- third technique

3.19 Summary and comparison of the five techniques that work with QPSK-

Alamouti -Gardner (QAG) Technique

It is worthwhile to summarize the five techniques that are introduced to work with QPSK-

Alamouti -Gardner (QAG) technique. Moreover, the summary gives a clear picture about the
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benefits and features each technique. In order to facilitate the process of comparison, the
convergence plots, when SNR is equal to (25 dB), are included. Furthermore, the tables of Mean

Squared Error (MSE) are stated for each technique.
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Figure 3.74: QAG -Baseline technique and first technique , SNR=25 dB
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Figure 3.75: QAG- second technique and third technique, SNR=25 dB
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Figure 3.76: QAG- fourth technique and fifth technique, SNR=25 dB
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SNR 5dB 10 dB 15dB 20 dB 25 dB
QAG 12.9716 7.7863 6.0137 5.1711 5.1016
technique
QAG first 21.0232 12.7121 7.7305 6.0637 4.2716
technique
QAG second 45.7153 36.9111 35.3679 34.0842 33.8011
technique
QAG third 14.4800 9.4526 6.4126 5.0232 3.7600
technique
QAG fourth 12.2179 5.6453 3.8116 2.7189 2.2516
technique
QAG fifth 7.2853 4.0642 3.7274 2.4884 2.0600
technique

Table 3.13: Summary of MSE of all techniques with QAG technique

The analysis of the above results states that all five techniques have a faster convergence.
Moreover, all the five techniques have the same SNR vs. BER plot, so they have the same BER
behavior. In term of the MSE values, each technique has different MSE values. However, behavior
of the BER proves that these MSE values do not affect the performance of the five techniques. In
term of the complexity of the wireless receiver design, each technique also has its own complexity
because it depends on the use of filters in the structure. Generally, the third technique presents
good solutions which include increasing in convergence speed, reducing the complexity of the
wireless receiver design with having the same BER behavior and reasonable MSE values.

Finally, analyzing the results state that the first hypothesis has been realized which states
that “the new algorithms improve the digital communication system performance in term of the

convergence speed with reducing the complexities of the communication system design”.

115



3.20 Limitations

One of the important things that should be taken into consideration in wireless
communication system is data rates. When high data rates are used in a wireless communication
system, this allows for the researcher to get a clear picture and accurate results. However, the high
data rates require a high speed in the processing to avoid being late. As a result, to increase the
speed of processing, this requires a big memory and a high CPU speed in the lab computer. These
big memory and high CPU speed are usually expensive.

The other limitation is the noise that is produced from external and internal environment
which is not known. The external noise is the noise that comes from outside sources such as
atmospheric noise, extraterrestrial noise, and industrial noise. The internal noise is the noise that
is generated within communication systems such as thermal noise. Because these kinds of noise

are not known, it is hard to estimate their impacts in the proposed algorithms.
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Chapter 4

Conclusion and Future Research

4.1 Conclusion

The importance Symbol synchronization techniques have increased due to the increased
demand on the bandwidth and the quality of services. Wireless communication systems face
difficulties due to the increased noise and Rayleigh fading. The additional components, which are
added to improve wireless systems, may increase the processing time and computational
complexities of wireless communication systems. In addition, using wireless networks are
growing rapidly which increases the problem of multipath fading.

The Alamouti technique is used to reduce the Rayleigh fading effects in the digital
communication systems. Moreover, this thesis uses Quadrature Phase Shift Keying (QPSK) which
has the ability to transmit high data rates. Furthermore, the Gardner technique is a symbol
synchronization technique that is improved by this thesis. This thesis introduces new techniques to
improve the performance of symbol synchronization by reducing complexities in wireless receiver
design and by increasing the convergence speed with having the same BER measurements and
reasonable Mean Squared Error (MSE) values.

In this thesis, the Alamouti space-time code technique is written for QPSK modulation
scheme to work in realistic environment that involves a timing synchronization technique. We
compare the bit error rate (BER) of the Alamouti decoder when synchronized using the proposed
algorithms with the ideal results found in the literature, and we find them to be similar, proving

that the synchronization algorithm is in fact achieving optimum synchronization.
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4.2 Future Research

The modulation schemes that are used in this thesis are BPSK and QPSK. So, it will be a
good idea to use different modulation schemes to evaluate the performance of the new five
techniques. In addition, the channel conditions that are involved in this thesis include Additive
white Gaussian noise (AWGN) and Rayleigh fading. Consequently, other types of fading can be
taken into the consideration to analysis the performance of the five techniques.

For the timing correction, this thesis assumes simulate the impact of the interpolator by
assuming that there are 100 samples per symbol. So, other interpolation techniques can be
implemented for the timing recovery. Another scenario of Alamouti technique can be implemented
by using two transmitters and two receivers. Furthermore, hardware implementation can be
accomplished to obtain results and verify them with the simulation results in terms of convergence
speeds, MSE values, BER measurements, and the level of complexities in wireless

communication systems.
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