Automated Quality Assessment of Printed Objects Using Subjective and Objective Methods Based on Imaging and Machine Learning Techniques.

Ritu Basnet
rb5279@rit.edu

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
Automated Quality Assessment of Printed Objects Using Subjective and Objective Methods Based on Imaging and Machine Learning Techniques.

by

Ritu Basnet

B.E. in Electronics and Communication Engineering

Tribhuvan University, 2010

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in the Chester F. Carlson Center for Imaging Science of the College of Science Rochester Institute of Technology

April 5, 2017

Signature of the Author: __

Accepted by: __

Coordinator, M.S. Degree Program Date
The M.S. Degree Thesis of Ritu Basnet
has been examined and approved by the
thesis committee as satisfactory for the thesis
requirement for the
M.S. degree in Imaging Science

Dr. Jeff B. Pelz, Thesis Advisor

Dr. Susan Farnand

Dr. Gabriel Diaz

Date
This thesis work is dedicated to my mom, dad, brother and my husband for their endless love, support and encouragement.
Estimating the perceived quality of printed patterns is a complex task as quality is subjective. A study was conducted to evaluate how accurately a machine learning method can predict human judgment about printed pattern quality.

The project was executed in two phases: a subjective test to evaluate the printed pattern quality and development of the machine learning classifier-based automated objective model. In the subjective experiment, human observers ranked overall visual quality. Object quality was compared based on a normalized scoring scale. There was a high correlation between subjective evaluation ratings of objects with similar defects. Observers found the contrast of the outer edge of the printed pattern to be the best distinguishing feature for determining the quality of object.

In the second phase, the contrast of the outer print pattern was extracted by flat-fielding, cropping, segmentation, unwrapping and an affine transformation. Standard deviation and root mean square (RMS) metrics of the processed outer ring were selected as feature vectors to a Support Vector Machine classifier, which was then run with optimized parameters. The final objective model had an accuracy of 83%. The RMS metric was found to be more effective for object quality identification than the standard deviation. There was no appreciable difference in using RGB data of the pattern as a whole versus using red, green and blue separately in terms of classification accuracy.

Although contrast of the printed patterns was found to be an important feature, other features may improve the prediction accuracy of the model. In addition, advanced deep learning techniques and larger subjective datasets may improve the accuracy of the current objective model.
Acknowledgements

I would first like to thank my advisor Dr. Jeff B. Pelz for giving me this excellent opportunity to work in this research project. I am grateful for his continuous support and guidance throughout this project. This thesis would not have been possible without his constant advice, help and supervision.

I also want to thank my thesis committee members. I am grateful to Dr. Susan Farnand for her support, guidance and constant encouragement throughout this project. She was always willing to share her knowledge and insightful suggestions and helped me a lot in improving write-up of this thesis. I am indebted to Dr. Gabriel Diaz for taking time to serve in my thesis committee. I am also thankful to all the faculty and staff of Center for Imaging Science.

My gratitude goes out to all members of Multidisciplinary Vision Research Lab group who supported during this project. Many thanks to Susan Chan for helping me staying in right track during the stay at CIS. I would like to acknowledge the financial and academic support of CIS during my stay at RIT. I also want to thank everyone that directly or indirectly helped me during my years at RIT.

My deepest gratitude goes to my parents for their love and support. I would like to thank my husband Bikash for his unwavering love and care.
Table of Contents

ABSTRACT ... IV

ACKNOWLEDGEMENT .. V

TABLE OF CONTENTS .. VI

LIST OF FIGURES ... IX

LIST OF TABLES .. XII

1. INTRODUCTION ... 1
 1.1 OVERVIEW .. 1
 1.2 OBJECTIVES .. 2

2. LITERATURE REVIEW .. 4
 2.1 PRINTED PATTERN QUALITY ... 4
 2.2 SUBJECTIVE AND OBJECTIVE TEST ... 4
 2.3 MACHINE LEARNING ... 7
 2.3.1 CLASSIFICATION ... 7
 2.3.2 SUPPORT VECTOR MACHINE ... 8
 2.4 GRAPH-CUT THEORY BASED IMAGE SEGMENTATION .. 9

3. SUBJECTIVE TESTS .. 11
 3.1 OVERVIEW .. 11
 3.2 PROBLEM AND DATA DESCRIPTION .. 12
 3.2.1 SAMPLES ... 13
 3.2.2 TEST PARTICIPANTS .. 15
 3.2.3 TEST ENVIRONMENT ... 15
3.3. **PROCEDURE** ... 17

3.3.1. **Z-score** .. 18

3.3.2. **STANDARD ERROR OF THE MEAN CALCULATION** .. 19

3.4. **RESULTS AND DISCUSSION** ... 20

3.5. **Z-SCORES DATA PLOT OF ALL OBSERVERS FOR EACH OBJECT TYPE** 26

3.6. **Z-SCORES DATA PLOT OF FEMALE OBSERVERS FOR EACH OBJECT TYPE** 27

3.7. **Z-SCORES DATA PLOT OF MALE OBSERVERS FOR EACH OBJECT TYPE** 28

3.8. **Z-SCORES DATA PLOT OF OBSERVERS WITH IMAGING SCIENCE MAJOR AND OTHER MAJORS FOR EACH OBJECT TYPE** .. 29

3.9. **CONCLUSION** .. 33

4. **OBJECTIVE TEST** ... 34

4.1. **OUTLINE OF PROCEDURE** .. 34

4.2. **IMAGE PRE-PROCESSING** .. 35

4.2.1. **FLAT-FIELDING** .. 35

4.2.2. **CROPPING** .. 37

4.2.3. **SEGMENTATION USING GRAPH-CUT THEORY** .. 40

4.2.4. **SPIKES REMOVAL AND BOUNDARY DETECTION OF OUTER RING** 43

4.2.5. **UNWRAPPING** ... 44

4.2.5.1. **DAUGMAN’S RUBBER SHEET MODEL** ... 44

4.2.5.2. **UNWRAPPING RESULTS** ... 45

4.2.5.3 **UNWRAPPING ISSUE WITH SOME IMAGES** ... 46

4.2.5.4. **AFFINE TRANSFORM (ELLIPSE TO CIRCLE TRANSFORMATION)** 47

4.3. **CLASSIFICATION** ... 48

4.3.1. **TRAINING DATA (FEATURE) SELECTION** ... 48

4.3.2. **DATA AUGMENTATION** ... 49
4.3.3. SUPPORT VECTOR MACHINES ... 51

4.3.3.1. CROSS-VALIDATION ... 52

4.3.4. CLASSIFICATION RESULTS ... 53

4.3.4.1. DATA AUGMENTATION RESULTS .. 59

4.4. DISCUSSION AND CONCLUSION .. 60

5. CONCLUSION AND FUTURE WORK ... 62

REFERENCES .. 66

APPENDIX .. 73
List of Figures

Figure 1. Object image .. 11
Figure 2. Example of good and bad anchor pairs .. 14
Figure 3. Experiment set-up ... 16
Figure 4. Mean z-scores for three type H objects (Error bars represent +/-1SEM) 21
Figure 5. Mean z-score for four type J objects (Error bars represent +/-1SEM) 21
Figure 6. Mean z-score for five type K objects (Error bars represent +/-1SEM) 22
Figure 7. Mean z-score for ten type L objects (Error bars represent +/-1SEM) 22
Figure 8. Mean z-score for ten type M objects (Error bars represent +/-1SEM) 23
Figure 9. Mean z-score for four type P objects (Error bars represent +/-1SEM) 23
Figure 10. Mean z-score for two type S objects (Error bars represent +/-1SEM) 24
Figure 11. Mean z-score for eight type T objects (Error bars represent +/-1SEM) 24
Figure 12. Mean z-score for five U objects (Error bars represent +/-1SEM) 25
Figure 13. Mean z-score for eleven W objects (Error bars represent +/-1SEM) 25
Figure 14. Plot of average z-score vs. number of object with SEM 27
Figure 15. Plot of average z-score vs. number of object with SEM for female observers ... 28
Figure 16. Plot of average z-score vs. number of object with SEM for male observers 29
Figure 17. Plot of average z-score vs. number of object with SEM for observers labeled ‘expert’. ... 31
Figure 18. Plot of average z-score vs. number of object with SEM for observers labeled naïve. ... 32
Figure 19. Plot of average z-score vs. number of object with SEM for female observers labeled naïve. ... 32
Figure 20. Flowchart of Image processing ... 34
Figure 21. Test image ... 35
Figure 22. First Example of flat-fielding ... 36
Figure 23. First preprocessing steps in cropping ... 38
Figure 24. Illustration of morphological operations(Peterlin, 1996) 39
Figure 25. Cropping example for flat-field image of P-type. 40
Figure 26. A graph of 3*3 image (Li et al., 2011) ... 41
Figure 27. Segmentation of test image .. 42
Figure 28. Segmentation of anchor image ... 42
Figure 29. Segmented test image ... 42
Figure 30. Segmented anchor image ... 42
Figure 31. Image Masking for spikes removal ... 44
Figure 32. Daugman’s Rubber Sheet Model (Masek, 2003) 45
Figure 33. Unwrapped outer circular part ... 46
Figure 34. Unwrapping problem illustration .. 46
Figure 35. Ellipse to circular transformation and unwrapping of outer ring 48
Figure 36. Unwrapping the object at different angles for augmentation 50
Figure 37. Linear Support Vector machine example (Mountrakis et al., 2011) 51
Figure 38. K-fold Cross-validation: Each k experiment use k-1 folds for training and the remaining one for testing (Raghava, 2007) ... 53
Figure 39. Classification accuracy plots for Original RGB data; training (left) and test (right) .. 55
Figure 40. Classification accuracy plots for Original SD data; training (left) and test (right) 56
Figure 41. Classification accuracy plots for Original RMS data; training (left) and test (right) .. 56
Figure 42. Classification accuracy plots for Red SD data; training (left) and test (right) 57
Figure 43. Classification accuracy plots for Green SD data; training (left) and test (right) 58
Figure 44. Classification accuracy plots for Blue SD data; training (left) and test (right) 58
Figure 45. Classification accuracy plots for Red RMS data; training (left) and test (right) 58
Figure 46. Classification accuracy plots for Green RMS data; training (left) and test (right) 59
Figure 47. Classification accuracy plots for Blue RMS data; training (left) and test (right) 59
Figure 48. Classification accuracy plots for RMS RGB data; training (left) and test (right) 60
Figure 49. Box plot for mean z-score of H object ... 73
Figure 50. Box plot for mean z-score of J object... 73
Figure 51. Box plot for mean z-score of K object .. 73
Figure 52. Box plot for mean z-score of L object ... 73
Figure 53. Box plot for mean z-score of M object ... 74
Figure 54. Box plot for mean z-score of P object ... 74
Figure 55. Box plot for mean z-score of S object ... 74
Figure 56. Box plot for mean z-score of T object ... 74
Figure 57. Box plot for mean z-score of U object ... 74
Figure 58. Box plot for mean z-score of W object ... 74
Figure 59. Plot of average z-score vs. number of object with SEM for observer using glass/contact lenses for visual correction ... 75
Figure 60. Plot of average z-score vs. number of object with SEM for observer not using glass/contact lenses .. 75
List of Tables

Table 1. Sub-categories of acceptable and unacceptable objects .. 12
Table 2. Number of total and selected test objects .. 13
Table 3. Description of Participants .. 15
Table 4. Noticeable features of objects ... 26
Table 5. Comparison of acceptance threshold for observers from different groups 30
Table 6. Categories of 3 Classes ... 49
Table 7. Classification Accuracy Table for Original RGB, SD and RMS data 54
Table 8. Classification Accuracy for SD and RMS for red, green and blue data 57
Table 9. Classification Accuracy for RGB RMS data ... 60
1. Introduction

1.1 Overview

This thesis work focuses on the study of image quality properties of printing patterns on circular objects. It is essential to assess the quality of the object in order to maintain, control, and enhance these objects’ printed pattern quality. In this study, an application is developed that implements an algorithm with a goal to, as close as possible, resemble how a person would perceive printed quality of the objects. Since humans are the ultimate user of the colored objects, first a subjective test was performed to best determine what good and bad quality of these objects are. Subjective quality assessment methods provide accurate measurements of the quality of image or printed patterns. In such an evaluation, a group of people are collected, preferably of different backgrounds, to judge the printed pattern quality of objects. In most cases, the most reliable way to determine printed pattern quality of objects is by conducting a subjective evaluation (Mohammadi et al., 2014; Wang et al., 2004).

Since subjective results are obtained through experiments with many observers, it is sometimes not feasible for a large scale study. The subjective evaluation is inconvenient, costly and time consuming operation to perform, which makes them impractical for real-world applications (Wang et al., 2004). Moreover, subjective experiments are further complicated by many factors including viewing distance, display device, lighting condition, subjects’ vision ability, and
subjects’ mood (Mohammadi et al., 2014). Therefore, it is sometimes more practical to design mathematical models that are able to predict the perceptual quality of visual signals in a consistent manner. An automated objective evaluation that performs in just a matter of seconds or minutes would be a great improvement. So, an objective test was introduced as a means to automate the quality check of the circular objects. Such an evaluation, once developed using mathematical model and image processing algorithms, can be used to dynamically monitor image quality of the objects.

1.2 Objectives

The main objective of this study is to develop a prototype that can calculate a quality rating for a printed pattern in round objects. The final goal of the study is to test whether the developed objective printed pattern quality algorithm matches the quality perceived by the average person, as determined in the subjective evaluation.

The main objectives of this thesis are:

- Conduct subjective test to evaluate the quality of printed patterns in the objects from the reference objects

- Produce an automatic, objective software system for predicting human opinion on the print quality of patterns in given objects
- Assess the accuracy of the developed objective printed pattern quality algorithm by comparing with the quality as determined in the subjective evaluation.

This thesis is organized into three sections. The first section is Chapter 2 where the literature review is discussed. This chapter gives a brief overview on major methods used in this thesis. Chapter 3 and 4 are the experimental part of the thesis. In Chapter 3, the assessment of product quality using subjective methodology and its results are discussed. Subjective methods provide a reliable way of assessing the perceived quality of any data product. Chapter 4 presents the procedure and methodology of an automated objective method to evaluate the visual difference and quality in printed objects. Finally, the conclusions of the thesis are discussed in Chapter 5.
2. Literature Review

2.1. Printed pattern quality

The quality of printed pattern in objects can be determined using several approaches. In order to determine if a printed pattern is good or bad, we first have to define what a good quality pattern is. According to (de Ridder and Endrikhovski, 2002) a good quality pattern can be determined by three factors:

- **Fidelity**: describes the reproduction accuracy of a test object compared to a reference object.
- **Usefulness**: refers to image suitability for the task.
- **Naturalness**: refers to the match between an image the observer’s memory of such a scene (de Ridder and Endrikhovski, 2002).

2.2. Subjective and objective test

Subjective testing is one popular way of measuring the quality of printed objects. According to (Wang and Bovik, 2006), among different ways to assess image quality, subjective evaluation is one of the most reliable ways. Thus subjective test is extended to quality of printed pattern objects in this study. In the past many researchers have chosen subjective testing to determine object quality. For example, Mohammadi, Ebrahimi-Moghadam and Shirani, (2014) consider subjective testing to be the most reliable method for accessing the quality of images.

Due to various drawbacks that subjective methods suffer from, they are limited in their application. Further, subjective methods cannot be applied to real-time applications. Next, there is a great amount of dependence on physical conditions and emotional state of the subjects under
consideration. Moreover, display device, lighting condition and such other factors also affect the results (Mohammadi et al., 2014).

Since subjective tests require manual work, test subjects and time, objective tests were introduced as a means to automate the quality check problem. Test targets and algorithms can form the basis for objective methods (Nuutinen et al., 2011).

Previous efforts to evaluate image quality mainly focus on finding the correlation between subjective tests and objective tests. As an example, Eerola et al., (2014) performed image quality assessment of printed media. First, they performed a psychometric subjective test of the printed papers where observers were asked to rank images from 1 to 5 with 5 being the high ranked quality image. Then those results were compared with a set of mathematical image quality metrics using correlation techniques. They found a good correlation between image quality metrics and subjective quality evaluations. The authors concluded five of the metrics performed better than others but a single metric outperforming all others was not found.

Similar observations were made in another study. Sheikh, Sabir and Bovik, (2006) performed a large subjective quality assessment study for a total 779 distorted images that were derived from 29 source images with five distortion types. Using the results of this subjective human evaluation, several algorithms (image quality metrics) were evaluated for objective testing. The performance of different metrics varied between different groups of datasets and a best single metric could not be found, similar to earlier study.

Pedersen et al., (2011) argue that since image quality is complex, it is difficult to define a single image quality metric that can correlate to overall image quality. They also investigated different objective metrics for print quality evaluation. Since this process was not straightforward, the
authors developed a framework that includes digitizing the print, image registration, and applying image quality metrics. Then they investigated suitable image quality metrics and found that structural similarity metrics were the most effective for print quality evaluation. As with previous work, they also used the data collected from subjective testing for validation.

In another study, author Asikainen, 2010) predicted human opinion on the quality of printed papers through the use of an automatic, objective software system. The project was carried out as four different phases to attain the goal: image quality assessment through reference image development, reference image relative subjective print quality evaluation, development of quality analysis software through programming for quality attributes, and the construction of “visual quality index” as a single grade for print quality. Software was developed with MATLAB (The MathWorks Inc, 2015) that predicted image quality index using four quality attributes: colorfulness, contrast, sharpness and noise. This work demonstrated that data collected from subjective test about visual appearance of printed papers was required for the automatic objective system.

The above studies show that several image quality assessment algorithms based on mathematical metrics can be used to measure the overall quality of images such that the result are consistent with subjective human opinion. All of these works stated different image quality metrics can be used for measuring image quality. These works are of great value for forming the foundation of this study.
2.3. Machine Learning

Machine learning is the process of programming computers to optimize performance based on available data or past experience for prediction or to gain knowledge. First a model is defined with parameters that are optimized using training data or past experience by executing a computer program. This is referred to as a learning process (Alpaydin, 2014).

The data-driven learning process combines fundamental concepts of computer science with statistics, probability and optimization. Some examples of machine learning applications are: classification, regression, ranking, and dimensionality reduction or manifold learning (Mohri et al., 2012).

2.3.1. Classification

In machine learning, classification is defined as the task of categorizing a new observation in the presence or absence of training observations. Classification is also considered as a process where raw data are converted to a new set of categorized and meaningful information. Classification methods can be divided into two groups: supervised and unsupervised (Kavzoglu, 2009). In unsupervised classification, no known training data is given and classification occurs on input data by clustering techniques. It also does not require foreknowledge of the classes. The most commonly used unsupervised classifications are the K-means, ISODATA and minimum distance (Lhermitte et al., 2011).

In supervised classification methods, the training data is known (Dai et al., 2015). Some examples of supervised classifiers are maximum likelihood classifiers, neural networks, support vector machines (SVM), decision trees, K-Nearest Neighbor (KNN), and random forest. The
support vector machine is one of the most robust and accurate methods among the supervised classifiers (Carrizosa and Romero Morales, 2013) and is discussed next.

2.3.2. Support Vector Machine

The SVM is a supervised non-parametric statistical learning technique which makes no assumption about the underlying data distribution. SVMs have gained popularity over the past decade as their performance is satisfactory over a diverse range of fields (Nachev and Stoyanov, 2012). One of the features of SVM is that it can perform accurately with only small number of training sets (Pal and Foody, 2012; Wu et al., 2008). The SVM’s can map variables efficiently onto an extremely high-dimensional feature space. SVMs are precisely selective classifiers working on structural risk minimization principle coined by Vapnik (Bahlmann et al., 2002). They have the ability to execute adaptable decision boundaries in higher dimensional feature spaces. The main reasons for the popularity of SVMs in classifying real-world problems are: the guaranteed success of the training result, quicker training performance, and little theoretical knowledge is required (Bahlmann et al., 2002).

In one study, Nachev and Stoyanov (2012) used SVM to predict product quality based on its characteristics. They predicted the quality of red and white wines based on their physiochemical components. In addition, they also compared performance with three types of kernels; radial basis function, polynomial, and sigmoid. These kernel functions help to transform the data to a higher dimensional space where different classes can be separated easily. Among the three, only the polynomial kernel gave satisfactory results since it could transform low dimensional input space into a much higher one. They went on to conclude that the ability of a data mining model
such as SVM to predict may be impacted by the use of an appropriate kernel and proper selection of variables.

In another study, Chi, Feng and Bruzzone (2008) introduced an alternative SVM method to solve classification of hyperspectral remote sensing data with a small-size training sample set. The efficiency of the technique was proved empirically by the authors. In another study, (Bahlmann et al., 2002) used SVM with a new kernel for novel classification of on-line handwriting recognition.

In another study, Klement et al., (2014) used SVM to predict tumor control probability (TCP) for a group of 399 patients. The performance of SVM was compared with a multivariate logistic model in the study using 10-fold cross-validation. The SVM classifier outperformed the logistic model and successfully predicted TCP.

From the above studies, it was found that the use of SVM is extensive and it is implemented as a state-of-art supervised classifier for different dataset types. Moreover, research has shown that SVM performs well even for small training set. Considering these advantages, SVM classifier is thus chosen in this study.

2.4. Graph-cut theory based image segmentation

Image segmentation can be defined as a process that deals with dividing any digital image into multiple segments that may correspond to objects, parts of objects, or individual surfaces. Typically, object features such as boundaries, curves, lines, etc. are located using image segmentation. Methods such as the Integro-differential, Hough transform, and active contour models are well-known and they have been implemented successfully for boundary detection.
problems (Johar and Kaushik, 2015). For image segmentation and other such energy minimization problems, graph cuts have emerged as preferred methods.

Eriksson, Barr and Kalle (2006) used novel graph cut techniques to perform segmentation of image partitions. The technique was implemented on underwater images of coral reefs as well as an ordinary holiday pictures successfully. In the coral images, they detected and segmented out bleached coral and for the holiday pictures they detected two object categories, sky and sand.

In another study, Uzkent, Hoffman and Cherry (2014) used graph cut technique in Magnetic Resonance Imaging (MRI) scans and segmented the entire heart or its important parts for different species. To study electrical wave propagation, they developed a tool that could construct an accurate grid through quick and accurate extraction of heart volume from MRI scans.

The above studies show that the graph-cut technique is one of the preferred emerging methods for image segmentation and it performs well, as seen in their results. So the graph-cut technique was chosen as the segmentation method in the preprocessing step of this study.
3. Subjective tests

3.1. Overview

This chapter discusses the assessment of product quality using subjective methods. As stated earlier, subjective method is one of the most reliable way of assessing the perceived quality (Wang and Bovik, 2006). This section is important as it provides critical information for the next chapter which includes software development of print quality of objects. This chapter starts with a description of the objects used in the experiment, test participants and lab environment. Next, the procedure of data analysis is explained in detail and results are discussed before conclusion of the chapter.

Figure 1. Object image
3.2. Problem and Data Description

The objects provided for the project were commercial consumer products with a circular shape. These objects were made up of transparent material with different colored patterns printed on them. The total number of the objects was 358 and they were of 10 different types. The image of one of the objects is shown in Figure 1. These 10 types of objects have different level of distortion on the following feature: Outer circle edge

- Uniformity of contrast in the outer rings
- The orange pattern density
- Missing ink in some parts of colored region,
- Sharpness of dark spikes
- The overlapping of orange pattern on top of the dark spikes.

<table>
<thead>
<tr>
<th>Acceptable</th>
<th>Description</th>
<th>Unacceptable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Good</td>
<td>W</td>
<td>striation level 3 and halo</td>
</tr>
<tr>
<td>P</td>
<td>halo-excess post dwells</td>
<td>M</td>
<td>halo severe and mixed striation and smear</td>
</tr>
<tr>
<td>K</td>
<td>striation level 1</td>
<td>T</td>
<td>missing ink</td>
</tr>
<tr>
<td>J</td>
<td>striation level 2</td>
<td>H</td>
<td>excess outside Iris Pattern Boundary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U</td>
<td>excess inside Iris Pattern Boundary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>multiple severe</td>
</tr>
</tbody>
</table>

Table 1. Sub-categories of acceptable and unacceptable objects

The description of each type of data is shown in Table 1. For example, objects of type L have uniformity of contrast in outer rings with perfect circular outer edge, dense orange pattern, sharp spikes and orange pattern overlapped on the dark spikes. So, these objects are considered to be the highest quality. Other objects have some amount of distortion in the features as previously described. Based on the distortion amount, the groups are further categorized into acceptable and
unacceptable groups. The goal is to evaluate the notable visual differences of the objects using subjective evaluation methods.

3.2.1. Samples

For this study, total 64 objects were selected as the test lenses from within each lenses type by observing the ratio of difference. Lenses that look different within the same type were selected, as they give good representation of good and bad lenses. For this study, total 64 objects were selected as the test lenses from within each lenses type by observing the ratio of difference. Lenses that look different within the same type were selected, as they give good representation of good and bad lenses. Table 2 below shows the number of the total objects and selected test objects for each object types.

<table>
<thead>
<tr>
<th>Object type</th>
<th>Total #</th>
<th># Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>94</td>
<td>10</td>
</tr>
<tr>
<td>P</td>
<td>144</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>J</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>W</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>M</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>T</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>U</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Sum | **358** | **64** |
The detail of the objects were observed to study the visual difference among all types. It was found that type L objects had less distortion and thus were considered as good quality among all. Thus, after test object selection, four type L objects with the best features were selected from the remaining objects. During the experiment, each of the test objects was paired with one of these four type L objects. To provide the observers visual references during the experiment, two pairs of objects were always visible. Those two pairs, referred to as the “anchor pairs,” included one made up of two Type L objects (the “good pair”) and one made up of one type L and one type M object (the “bad pair”). The bad pair and good pair were assigned numbers 35 and 80, respectively and they are shown in Figure 2 below. The pairs were later used as anchor pairs in the experiment. For training purposes, four objects with severe visible distortion were selected from the unacceptable group as shown in Table 1.

![Good anchor pair (type L-L)](image1)

![Bad anchor pair (type M-L)](image2)

Figure 2. Example of good and bad anchor pairs
3.2.2. Test participants

A total of thirty observers from the Rochester Institute of Technology (RIT) participated in the experiment. Twenty-one were students taking a Psychology course. From the remaining nine participants, six were students and researchers from the Center for Imaging Science and three were from the Color Science department. The observers who were Imaging Science majors were considered to be more experienced with assessing image quality, so they were considered as trained observers. Other observers didn’t have any experience judging image quality, thus were considered naïve observers. So, in average most of the test subject’s knowledge of image quality research was limited. Ages of the observers varied from 21 to 45 years, with an average of 25.6 years and a standard deviation of 7.7 years. There were 13 male and 17 female observers, as shown in Table 3 below.

Table 3. Description of Participants

<table>
<thead>
<tr>
<th>Students Major</th>
<th>No of Students</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Total</td>
</tr>
<tr>
<td>Imaging Science</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Psychology</td>
<td>13</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Color Science</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>17</td>
<td>30</td>
</tr>
</tbody>
</table>

3.2.3. Test environment

The subjective tests were arranged in the premises of the Munsell Color Science Laboratory at RIT, where the Perception Laboratory was reserved for one month exclusively for the subjective test. The experimental set up is shown in Figure 3.
A light-colored board with wooden holders was tilted to place the objects as shown in the image. The four objects with severe visible distortion that were selected from the unacceptable group were placed on the left end of the lower wooden bar, whereas type L type objects were placed on the right end. The two anchor pairs (types L-L and types L-M) were placed on the top, with the good pair on right and the bad pair on the left. Labels were placed on the board below the anchor pairs. Each test object was paired with one of the four L objects and placed in between the two anchor pairs. The observers were seated in front of the board and the height of chair was adjusted so that the level of the observer’s eyes was level with the test pair’s position which provided them a comfortable test experience. On the right side of the observer’s chair a small table was placed for laptop setup for the test administrator.
The measured correlated color temperature for the light source (fluorescent lamps) used to illuminate the experiment room was 5133K, a light source comparable to daylight on an overcast day.

3.3. Procedure

The subjective test consisted of two parts. Before the test started, some background information about the test subject was collected, including age, gender, visual acuity, possible color vision deficiencies, and previous experience in image-quality assessment. In addition, the structure and the progression of the tests were explained to the participant. At the beginning of the experiment, written instructions were given to the test subject. The paper contained the instructions required for the experiment, and stated the quality category under evaluation. Furthermore, before the experiment started, to clarify to the observers the category of the objects, the anchor pairs with their respective score were also shown.

Each of the observers were trained with four training objects and then were asked to rate the test pairs relative to the two anchor pairs in terms of their visible differences, which included differences in color, pattern, lightness (density) as well as overall visual difference. The observers ranked these object pairs in the range 0-100. The observers were then asked to provide the acceptable level (score) of the objects below which they would return the objects for replacement. The observers were also asked what difference in particular did they notice or find most objectionable of the objects. All the collected data from the observers were recorded. The observers completed the test in 30 minutes on average, with the minimum time of 20 minutes and the maximum time of 35 minutes.
Visual and color vision deficiency tests were conducted for all the observers and all were allowed to wear lenses or contacts during the test. Five out of thirty observers did not have 20/20 vision or had a color vision deficiency or both. Their rating data were not included in the final analysis. Among the remaining 25 observers, there were 13 female and 12 male observers. There were six observers with Imaging Science as their major and all of them were female. The remaining 19 observers (which includes 7 female and 12 male) had Psychology and Color Science majors.

3.3.1. Z-score

Z transform is a linear transform that makes mean and variance equal for all observers making it possible to compare their opinion about printed pattern of the objects (Mohammadi et al., 2014). z-score is a statistical measurement of a score’s relationship to the mean of a group of scores. Zero z-score means the score is the same as the mean. z-score signifies the position of a score in a group relative to its group’s mean i.e. how many standard deviations away is the score from the mean. Positive z-score indicates the score is above the mean (van Dijk et al., 1995). z-score makes the mean and variance equal for all observers which results in easy comparison of each observer’s opinion about the similarity and dissimilarities of the object (Mohammadi et al., 2014). The z-score is calculated as

\[
Z = \frac{X - \mu}{\sigma}
\]

(1)

where \(X\) = data;

\(\mu\) = mean of the data;

\(\sigma\) = standard deviation of the data.
The score ranked by each individual observer for each object was converted into a standardized z-score. First, mean value and standard deviation of the scores of each individual was calculated. Using equation (1), the z-score for each score of particular observer was calculated. After calculating z-score for each individual observer’s score, these z-scores were averaged to calculate the z-score of each test stimulus. In a similar way, the z-score for acceptable level (score) of objects for each individual observer was calculated. The average z-scores of female observers’ scores, male observers’ scores, scores of observer with imaging science major and scores of observer with other majors for each objects were calculated. The average z-score of each object for these four different groups of observers was used to compare the judgment on object quality based on gender and experience of image quality analysis.

3.3.2. Standard Error of the Mean calculation

To estimate the variability between samples, Standard Error of Mean (SEM) was calculated. SEM is the standard deviation of a sampling distribution of mean. The mathematical expression for SEM is:

$$SEM = \frac{\sigma}{\sqrt{N}}$$ (2)

Where, SEM= standard error of the mean

σ = the standard deviation of the z-scores of each test stimulus
N = the sample size

The standard deviation of the z-scores for each object of all observers was calculated. SEM for each object is calculated using equation 2.

3.4. Results and Discussion

The z-score for each individual observer’s score was calculated. Then, we calculated the mean of the z-score of each 64 test objects. The sample size, N was 25. As we increase our sample size, the standard error of the mean will become smaller. With bigger sample sizes, the sample mean becomes a more accurate estimate of the parametric mean, so the standard error of the mean becomes smaller (McDonald, 2014). The z-score value higher than zero indicates the higher quality rating and below zero indicates lower quality rating for each object. The Figure 4 to 13 below shows the z-score and SEM difference in the object of different type. These figures show that objects of types H, K, L, P, T and U have higher scores than objects of types J, M S and W. There are some exceptions in types T and J objects, a few type T objects were scored low while one type J data object was scored high. Some of the object has smaller SEM line (blue color) while some have longer SEM line, as shown in the figures. This is due to scores rated by all 25 observers are not consistent and thus have higher standard deviation for the object resulting in longer SEM and vice versa.
Figure 4. Mean z-scores for three type H objects (Error bars represent +/-1SEM)

Figure 5. Mean z-score for four type J objects (Error bars represent +/-1SEM)
Figure 6. Mean z-score for five type K objects (Error bars represent +/-1SEM)

Figure 7. Mean z-score for ten type L objects (Error bars represent +/-1SEM)
Figure 8. Mean z-score for ten type M objects (Error bars represent +/-1SEM)

Figure 9. Mean z-score for four type P objects (Error bars represent +/-1SEM)
Figure 10. Mean z-score for two type S objects (Error bars represent +/-1SEM)

Figure 11. Mean z-score for eight type T objects (Error bars represent +/-1SEM)
Figure 12. Mean z-score for five U objects (Error bars represent +/-1SEM)

Figure 13. Mean z-score for eleven W objects (Error bars represent +/-1SEM)
3.5. Z-scores data plot of all observers for each object type

After all objects were rated, we asked observers what features were most important in their judgements of quality. Based on their observation as shown in Table 4 below, the most noticeable and objectionable differences between object pairs were contrast of the gray color in the outer ring, orange pattern density, spike pattern and the alignment of orange pattern with the spikes.

Table 4. Noticeable features of objects

<table>
<thead>
<tr>
<th>Features</th>
<th>Number of observers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast of gray</td>
<td>29</td>
</tr>
<tr>
<td>Orange pattern</td>
<td>12</td>
</tr>
<tr>
<td>Spikes of the gray pattern</td>
<td>6</td>
</tr>
<tr>
<td>Alignment of orange pattern with gray pattern</td>
<td>6</td>
</tr>
</tbody>
</table>

In Figure 14, the average z-score of each of the 64 objects, ranked by 25 observers with standard error of mean and the mean acceptance level is plotted. Types J, K, L, P fall in the category of higher quality objects and types H, M, S, T, U, W fall in the category of lower quality objects. The figure shows that objects of types H, K, L, P, T and U have less visual difference (larger positive z-scores and high quality) than objects of types J, M S and W. There are some exceptions in types T and J objects, a few type T objects show big visual difference (higher negative z-scores and low quality) while one type J object shows less visual difference. The type T objects have higher density of orange pattern and darker outer ring but a few with higher visual difference have lighter outer ring and less density of orange pattern. Likewise, in the figure below, the three type J objects with low z-score have lighter outer ring and less density of orange pattern but the one with higher z-score has darker outer ring with higher orange pattern density.
When ranking of the objects were completed at the end of the experiment, the observers were asked to identify their acceptance level. The mean z-score of acceptance level for all observers is 0.12. This indicates that for all observers the objects with z-score below this acceptance level are unacceptable and above this level are acceptable.

![Figure 14. Plot of average z-score vs. number of object with SEM](image)

3.6. **Z-scores data plot of female observers for each object type**

In Figure 15, the average z-score of each of the 64 objects, ranked by 13 female observers with standard error of mean is plotted. The result is similar to the plot of all observers as seen before but the SEM value is higher, due to the lower number of observers. The mean z-score of acceptance level for all female observers is 0.37. The mean z-score of female observers for
objects of types K, L and W have large variation as compared to the z-scores of these objects for all observers, shown in Figure 14.

Figure 15. Plot of average z-score vs. number of object with SEM for female observers

3.7. Z-scores data plot of male observers for each object type

In Figure 16, the average z-score of each of the 64 objects, ranked by 12 male observers with standard error of mean is plotted. Only a few difference in the objects z-scores are observed between male and female observers. The mean z-score of male observers for objects of types K, L and W have less variation as compared to the z-scores of these objects for female observers. The mean z-score of acceptance level for all male observers is 0.01. The mean z-score of acceptance level for all male observers is 0.01.
3.8. **Z-scores data plot of observers with Imaging Science major and other majors for each object type**

In Figure 17, the average z-score of each 64 objects with standard error of mean, ranked by 6 observers with Imaging Science major is plotted. In Figure 18, the average z-score of each 64 objects with standard error of mean, ranked by 19 observers with majors other than Imaging Science is plotted. In Figure 19, the average z-score of each 64 objects with standard error of mean, ranked by 7 female observers with majors other than Imaging Science is plotted. The SEM has higher value in the plots of imaging science and female observer with other majors other than Imaging Science, due to the low sample size. All the observers with Imaging Science
as major were female, so in the plot for imaging science major the z-score value for objects of same type has large variation, similar to that of female observers in Figure 15. The observers with majors other than Imaging Science included all the male observers and seven female observers. So, in the plot for other majors the z-score values for objects of same type are close together, similar to that of male observers. In the plot for female observers with other majors, the mean z-scores values for types S, K and J objects have large variances compared to z-scores of observers with Imaging Science major.

The mean z-score of acceptance level for all observers from Imaging Science major, all observers with other majors, and female observers with other majors are 0.64, 0.06 and 0.13 respectively.

The Table 5 below shows the acceptance threshold for observers from different groups. The result shows the mean acceptance threshold for female observers, observers with Imaging Science as their major and female observers with other majors was higher than for the male observers or for observers with other majors but there was no statistical significance. Also the mean acceptance threshold for observers with Imaging Science as their major (all of them were female) was higher than for the female observers with other majors but again there was no statistical significance.

Table 5. Comparison of acceptance threshold for observers from different groups

<table>
<thead>
<tr>
<th>Observers</th>
<th>Acceptance threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>All observers</td>
<td>0.12</td>
</tr>
<tr>
<td>Female</td>
<td>0.37</td>
</tr>
<tr>
<td>Male</td>
<td>0.01</td>
</tr>
<tr>
<td>Imaging Science</td>
<td>0.64</td>
</tr>
<tr>
<td>Other majors</td>
<td>0.06</td>
</tr>
<tr>
<td>Female with other majors</td>
<td>0.13</td>
</tr>
</tbody>
</table>
The observers with imaging science major are considered skilled observers as they can identify visual cue or difference better than observers with others major considered as naive observers.

Figure 17. Plot of average z-score vs. number of object with SEM for observers labeled ‘expert’.
Figure 18. Plot of average z-score vs. number of object with SEM for observers labeled naïve.

Figure 19. Plot of average z-score vs. number of object with SEM for female observers labeled naïve.
3.9. Conclusion

In this paper, a statistical method was used for the subjective evaluation of the visual difference and quality of the printed objects. The experiment was performed with 30 observers, but only the data from 25 observers (with 20/20 vision and no color vision deficiency) was used for analysis. Based on the participants’ observations, the most noticeable and objectionable differences between object pairs were contrast of the gray color in the outer ring and orange pattern density.

From the result, we can conclude that object of types H, K, P, T and U have less visual difference than the object of types J, M, S and W. However, for a few of the type T objects, a big visual difference was observed and less visual difference was observed for a one of the type J objects. These type T objects with big difference have lighter outer ring and less density of orange pattern and the type J object with less difference has darker outer ring and higher density of orange pattern. This also indicates that the most noticeable difference between object pairs was contrast of the gray color in the outer ring and orange pattern density.
4. Objective test

4.1. Outline of Procedure

In this chapter, an objective method is used to evaluate the visual difference and quality in printed objects. The goal of the objective evaluation method is to predict the quality of an object accurately and automatically as compared to results of subjective evaluation methods. It should also be able to mimic the quality of an average human observer (Mohammadi et al., 2014). Figure 20 below shows the flowchart of the six main steps utilized in this objective method, namely flat-fielding, image cropping, segmentation, spike removal, unwrapping, and image classification.

![Flowchart of Image processing](image.png)

Figure 20. Flowchart of Image processing
4.2. Image Pre-processing

To reduce the influence of the background and non-uniform illumination and to facilitate further processing, pre-processing images of objects is required (McDonald, 2014). The image in Figure 21 contains the background and the circular ring. The subjective test results indicate that the most noticeable difference between test image pairs for the observers was contrast of the gray color in the outer ring of different images. So the region of interest in this study is the gray outer ring.

The intensity of a test image is not uniformly distributed because of illumination variation. Hence the first two preprocessing steps are flat-fielding and cropping.

![Gray outer ring](image)

Figure 21. Test image

4.2.1. Flat-fielding

To access the actual differences in the different print patterns, we need to first remove variations in those images that were caused by unintentional external factors. Some of these factors include changes in image acquisition times, changes of the camera viewpoint, change of sensor etc. So to detect the difference between the images, pre-processing must include steps to account for
differences in illumination, sensor sensitivity, and other optical system components (Brown, 1992). This preprocessing step is known as flat-fielding.

A flat-field refers to a uniformly illuminated empty image field. By capturing an empty image field and using it as a reference, captured frames can be corrected for extraneous variations caused by such things as dust, sensor variation, and vignetting. (Tukey, 1993).

![Test image](image1.png) ![Flat-field image for test image](image2.png) ![Test image after flat-fielding](image3.png)

Figure 22. First Example of flat-fielding

Thus the raw image is divided by the flat-field frame to correct for the variation in the images. Figure 22(a) is a raw (uncorrected) test image. Figure 22(b) shows the flat-field image captured
just after the raw image. Figure 22(c) shows the corrected (‘flat-fielded’) image, which was the result of dividing the raw image pixel-by-pixel by the flat-field image.

4.2.2. Cropping

The background of resulting flat-field images as shown in Figure 22(c) is a white background with a dark circular ring. By performing RGB to binary transformation of the flat-field image, background and foreground segmentation can be done, such that background pixels have a value of 1 and the foreground (the circular ring) has a value of 0. Cropping includes RGB-to-gray transformation and thresholding to find the bounding box that circumscribes the circular ring. The region of interest is extracted from the flat-fielded image by cropping it to the smallest rectangle containing only the circular ring image. The following steps were carried out to achieve the goal.

1) Search Space reduction: To increase the time efficiency for Region of Interest (ROI) extraction or cropping process, the image space is reduced as much as possible. This is referred to as search space (Kazakov, 2011). In our case, the circular ring was almost at the center of the images for most of the data sets except for few in which the ring was either shifted vertically up or down in the image. Therefore, the height of the image was unchanged and the width of image was reduced by removing 100 columns each from the first and last columns. The resulting image is shown in Figure 23(a).

2) Binary Image Processing: The space reduced image was then converted to a binary image as shown in Figure 23(b). The binary image was produced using an MATLAB function (im2bw) with threshold of 0.5 (The MathWorks Inc, 2015). All pixel values above that threshold were converted to maximum (one) and below the threshold were converted to minimum (zero).
3) **Morphological Closing**: Mathematical morphology (Wilkinson and Westenberg, 2001) provides an approach to process, analyze and extract useful information from images by preserving the shape and eliminating details that are not relevant to the current task. The basic morphological operations are erosion and dilation. Erosion shrinks the object in the original image by removing the object boundary based on the structural element used (Haralick et al., 1987). Structural elements are small elements or binary images that probe the image (Delmas, 2015). Generally a structuring element is selected as a matrix with similar shape and size to the object of interest seen in the input image. Dilation expands the size of an object in an image using structural elements (Haralick et al., 1987). Figure 24(a) and 24(b) below illustrate the dilation and erosion process. Based on these operations, closing and opening are defined (Ko et al., 1995). In binary images, morphological closing performs dilation followed by an erosion, using the same structuring element for both operations. Closing can either remove image details or leave them unchanged without altering their shape (Meijster and Wilkinson, 2002).
Here is a brief overview of morphological closing. For sets A and B in Z^2, the dilation operation of A by structuring element B, denoted as $A \oplus B$, is defined as

$$A \oplus B = \{z | [(\hat{B})_z \cap A] \subseteq A\}$$

where \hat{B} is the reflection of B about its origin. The dilation of A by B is the set of all displacements, such that \hat{B} and A overlap by at least one element.

![Diagram of dilation and erosion](image)

(a) Dilation (b) Erosion

Figure 24. Illustration of morphological operations(Peterlin, 1996).

The erosion of A by structuring element B, is defined as

$$A \ominus B = \{z | [(\hat{B})_z \cap A] \subseteq A\}$$

The erosion of A by B is the set of all points z, such that B, translated by z, is contained in A.

The closing of A by B is denoted as $A \bullet B$, is defined as

$$A \bullet B = (A \oplus B) \ominus B$$

The closing of A by B is the dilation of A by B followed by erosion of the result by B.

The binary image as shown in Figure 25(a) was subjected to a morphological Matlab `close` operation to separate the foreground other than circular ring. Then the maximum and minimum
location of black pixels was calculated to compute the square boundary of the circular ring. This square boundary coordinates was then used to crop the original RGB image. At the completion of this step, the circular ring image was cropped as shown in Figure 25(b) below.

(a) Morphological closing
(b) Resulting cropped image

Figure 25. Cropping example for flat-field image of P-type.

4.2.3. Segmentation using Graph-cut Theory

In this step, the gray layer (i.e. outer ring and the gray spikes) was segmented from the object image. A graph-cut method (Boykov and Jolly, 2001) was implemented for image segmentation in this study. A brief discussion on graph-cut theory is presented below.

In graph-cut theory, the image is treated as graph, $G = (V, E)$, where V is the set of all nodes and E is the set of all arcs connecting adjacent nodes. A cut $C = (S, T)$ is a partition of V of the graph $G = (V, E)$ into two subsets S and T. Usually the nodes are pixels, p, on the image P, and the arcs are the four or eight connections between neighboring pixels, $q \in N$. Assigning a unique label, L_p, to each node, i.e. $L_p \in \{0, 1\}$, where 0 and 1 correspond to background and the object, is the
labelling problem. Minimizing the Gibbs energy, $E(L)$, in Equation 3.1 below gives the solution
$L = \{L_1, L_2 ... L_p, ... L_{|P|}\}$ (Nagahashi et al., 2007).

\[
E(L) = \lambda \sum_{p \in P} R_p L_p + \sum_{(p,q) \in N} B_{\{p,q\}}
\]

(3.1)

Figure 26. A graph of 3*3 image (Li et al., 2011).

In the Equation 3.1, N denotes a set of pairs of adjacent pixels. R_p is the region properties term while $B_{\{p,q\}}$ is the boundary properties term. The relative importance of R_p vs $B_{\{p,q\}}$ is specified by the coefficient term λ which is greater than or equal to zero. The individual penalties when pixel p is assigned to the background and the object are $R_p(“bkg”) \) and $R_p(“bj”)$, respectively as assumed by the region term $R_p(L_p)$. While the penalty for discontinuity between pixel p and q is accounted for by the boundary term $B_{\{p,q\}}$. As shown in Figure 26, each pixel is represented as a graph node along with the two nodes: source S(object) and sink T(background) (Li et al., 2011). For more on graph-cut theory see Reference (Felzenszwalb and Huttenlocher, 2004).
In segmentation based on graph-cuts, for the purpose of reducing running time a K-means algorithm (Duda et al., 2012) is used to divide the image into many small regions with similar pixels having same color (Li et al., 2011). These small regions are the nodes of graph-cuts. Figures 27 and 28 show the result of segmentation using graph-cut theory for the original cropped images shown in Figure 22 and 25 respectively. Figures 29 and 30 show the gray layer of the image extracted using segmentation.

Figure 27. Segmentation of test image
Figure 28. Segmentation of anchor image
Figure 29. Segmented test image
Figure 30. Segmented anchor image
4.2.4. Spikes Removal and Boundary Detection of Outer Ring

In the subjective test, observers indicated that the most noticeable difference between test image pairs was contrast of the gray color in the outer ring of different images. So the outer ring can be considered as the region of interest in our study and the gray spikes may be discarded.

In this step, the resulting image after the segmentation will be masked to remove spikes which are directed towards the center of the image. To accomplish this, first the RGB image was converted to gray level image. Then the maximum distance of the dark pixels (the lowest trough location of the spikes) from the center of the image inside the outer ring image boundary was determined. Then a circular mask was created with radius equal to this maximum distance and is shown in Figure 31(b). After mask was created, it was applied to the original image and the results can be seen in the Figure 31(c). The spikes from the original image are removed in the final masked image.

![Segmented image](image1.png) ![Circular mask](image2.png)

a. Segmented image
b. Circular mask
4.2.5. Unwrapping

After the outer ring was successfully extracted from the masked image, the next step was to perform comparisons between different ring images. For this purpose, the extracted outer ring had to be transformed so that it had a fixed dimension. Therefore, an unwrapping process was implemented to produce unwrapped outer ring images with same fixed dimension.

4.2.5.1. Daugman’s Rubber Sheet Model

The homogeneous rubber sheet model invented by Daugman maps each point \((x,y)\) located in the circular outer ring to a pair of polar coordinates \((r,\theta)\). For the polar coordinates, the radius \(r\) lies inside the range \([0,1]\), and the angle \(\theta\) lies inside the range \([0,2\pi]\) (Daugman, 2009). This method was used to unwrap the circular outer ring and transform it into a rectangular object. This process is illustrated as shown in Figure 32 below.
This method first normalizes the current image before unwrapping. The remapping of the outer circular ring region from Cartesian coordinates \((x, y)\) to normalized non-concentric polar representation is modeled as:

\[
I(x(r, \theta), y(r, \theta)) \rightarrow I(r, \theta)
\]

where

\[
x(r, \theta) = (1 - r)x_p(\theta) + rx_l(\theta)
\]
\[
y(r, \theta) = (1 - r)y_p(\theta) + ry_l(\theta)
\]

I(x, y) is the outer circular region image, \((x, y)\) are the original Cartesian coordinates, \((r, \theta)\) are the corresponding normalized polar coordinates, \((x_p, y_p)\) and \((x_l, y_l)\) are the coordinates of the inner and outer circular ring boundaries along the \(\theta\) direction (Masek, 2003).

4.2.5.2. Unwrapping Results

The results of unwrapping the image using Daugman’s Rubber Sheet Model are shown in Figure 33. The outer ring was now unwrapped and converted to a thin rectangular image.
4.2.5.3. Unwrapping Issue with Some Images

The results of unwrapping can also be seen in Figure 34. In this example, the final unwrapped image was not perfect. There are some missing parts from the original outer ring as seen in Figure 34(c) and (d). This was due to the outside ring not being perfectly circular. Although the actual original object was circular, its obtained image was elliptical in some cases due to image acquisition issues, mainly changes in viewing angle. To compensate for this issue, an affine transform was used as described in the next section.

Figure 33. Unwrapped outer circular part

Figure 34. Unwrapping problem illustration
4.2.5.4. Affine Transform (Ellipse to Circle Transformation)

While capturing images of the printed objects, different types of geometric distortion are introduced by perspective irregularities of the camera position with respect to the scene that results in apparent change in the size of scene geometry. This type of perspective distortions can be corrected by applying an affine transform (Fisher et al., 2003).

An affine transformation is a 2-D geometric transformation which includes rotation, translation, scaling, skewing and preserves parallel lines (Khalil and Bayoumi, 2002). It is represented in matrix form as shown below (Hartley and Zisserman, 2003).

\[
\begin{pmatrix}
 x' \\
 y' \\
 1
\end{pmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & t_x \\
 a_{21} & a_{22} & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{pmatrix}
 x \\
 y \\
 1
\end{pmatrix}
\]

or in block from as

\[
x' = \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} x
\]

Where A is a 2*2 non-singular matrix that represents rotation, scaling and skewing transformations, t is a translation vector, 0 in a null vector, x and y are pixel locations of an input image.

The affine transformation was used to first convert elliptical images to circles and then perform the unwrapping. The results can be seen in Figure 35. The original test image in Figure 35(a) is unwrapped to a rectangle in Figure 35(b). There was improvement in this unwrapping process, which can clearly be seen by comparing Figures 34(d) and 35(b). The missing of some outer ring portions was minimized in the final result.
4.3. Classification

4.3.1. Training Data (Feature) Selection

The subjective test results indicated that the contrast of the outer object ring is a distinguishing feature for determining the quality of the printed pattern. So, data was extracted from features of the outer object ring. Standard deviation and Root Mean Square (RMS) metrics of color (RGB) of the images were chosen as feature vectors to characterize the visual content of the object. These feature vectors also represent the abstraction of the image. So standard deviation and RMS value of the pixel in each columns of the unwrapped outer circular ring as shown in Figure 35(b) were calculated. The common length of columns of all unwrapped outer ring images was 1872. The data was then averaged for each three column block. The final data vector has a dimension
of 624*6 where 6 represents standard deviation and RMS values for each RGB band. So for each object, its data is vectorized and stored as a 3744-dimensional feature vector.

Since the classification process requires a number of classes to be examined, the classes were abstracted from the results of the subjective test. The objects with a Z-score less than 0 are categorized in class 1, Z-score less than 0.5 and greater than 0 are categorized in class 2 and Z-score greater than 0.5 are categorized in class 3 as shown in Table 6 below.

<table>
<thead>
<tr>
<th>Z-score < 0</th>
<th>Class 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-score < 0.5 and Z-score > 0</td>
<td>Class 2</td>
</tr>
<tr>
<td>Z-score > 0.5</td>
<td>Class 3</td>
</tr>
</tbody>
</table>

4.3.2. Data Augmentation

One recurring issue found in classification problems is lack of sufficient or balanced training sets and hence difficulty in training for accurate and robust classifiers (Pezeshk et al., 2015). One popular way to solve this problem is by increasing the size of training data with the addition of artificially generated samples (Pezeshk et al., 2015). This method is called data augmentation.

One well-known data augmentation method consists of conversion of the available samples into new samples using label-preserving transformations (Fawzi et al., 2016). This transformation method synthetically generates more training samples by conversion of the existing training samples using special kinds of transformations and retaining of the class labels (Cui et al., 2015). These label-preserving transformations also increases the pattern variations to improve the classification performance (Cui et al., 2015).
In this study, to balance the training set and increase the classification accuracy, the data size is increased by reproducing data from a single object by unwrapping the data object from different angles (0, 30, 60, 90, 180, 270 degree) as shown in Figure 36. So for each object, data was augmented five more times.

Figure 36. Unwrapping the object at different angles for augmentation
4.3.3. Support Vector Machines

In this study, support vector machine (SVM) is used for classification. SVM is a supervised non-parametric statistical learning technique where there is no assumption made on the underlying data distribution (Otukei and Blaschke, 2010). SVM can be used for classification or regression (Eerola et al., 2014) and was first developed by Vapnik in 1979. An SVM algorithm searches an optimal hyperplane to separate a given dataset into a number of predefined classes based on the input training samples (Mountrakis et al., 2011). SVM is originally a binary classifier (Ban and Jacob, 2013). A simple example of the binary classifier in a two-dimensional input space is shown in Figure 37. The hyperplane of maximum margin is determined by the subset of points lying near the margin also known as support vectors. For multiclass SVM methods, it is computationally intensive as several binary classifiers have to be constructed and an optimization problem needs to be solved (Ban and Jacob, 2013) .

![Figure 37. Linear Support Vector machine example (Mountrakis et al., 2011)](image-url)
In this study, SVM classifier based on popular radial basis function (RBF) kernel was used for classification. While using the RBF kernel, two parameters called the penalty value \(C \) and kernel parameter \(\gamma \) need to be optimized to improve classification accuracy. The best parameters \(C \) and \(\gamma \) were selected through a cross-validation procedure and will be described in next section.

The advantage of SVM over other methods is even with small number of training data, it can perform very well resulting in classification with good accuracy. (Pal and Foody, 2012).

SVM based classification is popular for its robustness to balance between accuracy obtained using limited data and generalization capacity for hidden data (Mountrakis et al., 2011). More details on SVM classification can also be found here (Vapnik, 1995).

4.3.3.1. Cross-validation

Since the key part of classification is finding the parameters with good generalization performance, first the SVM classifier was trained to estimate the best parameters (An et al., 2007). Cross-validation is a well-known way to estimate the generalized performance of a model (An et al., 2007). Among different types of cross-validation, k-fold cross-validation is a popular method for building models for classification (Kamruzzaman and Begg, 2006). In k-fold cross validation, the data is divided into k subsamples of equal size. From the k subsamples, k-1 subsamples are used as training data and the remaining one, called test data, is used to estimate the performance of the classification model. The training is performed k times and each of the k subsamples are used only once as test data. The accuracy of the k experiments is averaged to
estimate the performance of the classification model. Figure 38 shows that k experiment, each fold of the k-fold data are used only once as test data for accuracy estimation.

Figure 38. K-fold Cross-validation: Each k experiment use k-1 folds for training and the remaining one for testing (Raghava, 2007)

The typical values for k are 5 and 10. In our study, we used 5-fold cross-validation as it is more robust and popular (Nachev and Stoyanov, 2012). During 5-fold cross-validation, the original dataset was divided into five equal subsets (20% each). The 4th subset was used as the training set and remaining ones were used as test sets. This process was then repeated five times for accuracy estimation.

4.3.4. Classification Results

Since an SVM classifier requires both training data and test data for classification, 70% of the original data were randomly selected as training data and remaining 30% were selected as test data in this study. The 70% of that data called training set was used for training the SVM classifier and the remaining 30% was designated as the test set and used exclusively for evaluating the performance of the SVM classifier.

During the training phase of SVM classification, 5 fold cross-validation was performed on train data and initial classification accuracy was computed. Finally using the test set, the final
classification accuracy was computed to evaluate the performance of the SVM classifier. To compute the robustness of the classifier, the classification accuracy was calculated for 100 iterations. The random selection of training and test data was continued for all 100 iterations.

The results of classification for original RGB data, standard deviation (SD) and Root Mean Square (RMS) of original RGB data is given in Table 7 below. For the case of the original RGB data, the average classification accuracy for train set was found to be 88.3%. The classifier with parameter values $C = 2$ and $\gamma = 0.0078$ estimated higher cross validation accuracy, so were selected as the best parameters value and thus were used for SVM classification. The average classification accuracy for test set was found to be 83.2%. Since the classification accuracy for the original data was obtained over 80%, the overall performance of the SVM classification can be considered good.

The misclassified objects were found to mostly be of types T, L, K, H and U. The misclassification mostly occurred from objects labeled as Class 2 predicted to be Class 3 and vice versa. Further analysis show the z-score data of these objects spread across two classes forming a close cluster around the border line between those classes resulting in misclassification.

Table 7. Classification Accuracy Table for Original RGB, SD and RMS data

<table>
<thead>
<tr>
<th>Data</th>
<th>Average Classification Accuracy</th>
<th>C</th>
<th>gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training Data, 100 iteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Original (64)</td>
<td>88.3</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>SD for RGB</td>
<td>77.7</td>
<td>87.5</td>
<td>70</td>
</tr>
<tr>
<td>RMS for RGB</td>
<td>89</td>
<td>97.5</td>
<td>80</td>
</tr>
</tbody>
</table>
In case of RMS data, the classification accuracy for both training and test data was found to be similar to the original data as seen in the Table 7. While for SD data, the classification accuracy for both the training set and test set was found to be lower than 80%. This shows that RMS vector data was more representative of the original data than the SD vector data.

Figure 39. Classification accuracy plots for Original RGB data; training (left) and test (right)

The plots of classification accuracy of the original RGB data for all iterations is shown in the Figure 39. The average accuracy is also shown in the figure as a red line. Figure 39 (left) shows the classification accuracy using the training set and Figure 39 (right) shows the final classification accuracy using the test set. The spread or deviation of classification accuracy from the mean was more in the test set then the training set as shown in the graphs in Figure 39. This is also validated by the lower standard deviation (SD) value for the training set than the test set as shown in Table 7.

The classification accuracy plots for SD data and RMS data are shown in Figures 40 and 41, respectively.
Next, the results of classification for standard deviation and RMS for red, green and blue image data separately is discussed. The results are shown in Table 8. The classification accuracy for SD and RMS data for Red, Green and Blue separately were found to be close to the SD and RMS of original RGB data as shown in Table 7. This observation was valid for both classification accuracies i.e. training and test set.
The average classification test accuracy for red, green and blue RMS dataset was around 83% while that of SD feature was less than 80%. One notable observation was that the classification accuracy for blue SD dataset was lower in both training and test sets than red SD and green SD counterparts.

<table>
<thead>
<tr>
<th>Data</th>
<th>Average Classification Accuracy</th>
<th>C</th>
<th>gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training Data, 100 iteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Red SD</td>
<td>77.7</td>
<td>87.5</td>
<td>67.5</td>
</tr>
<tr>
<td>Green SD</td>
<td>77.8</td>
<td>85</td>
<td>65</td>
</tr>
<tr>
<td>Blue SD</td>
<td>74.35</td>
<td>85</td>
<td>62.5</td>
</tr>
<tr>
<td>Red RMS</td>
<td>89</td>
<td>95</td>
<td>82.5</td>
</tr>
<tr>
<td>Green RMS</td>
<td>89.25</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Blue RMS</td>
<td>88.9</td>
<td>97.5</td>
<td>82.5</td>
</tr>
<tr>
<td></td>
<td>Test Data, 100 Iteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>Red SD</td>
<td>73.9</td>
<td>91.67</td>
<td>54.16</td>
</tr>
<tr>
<td>Green SD</td>
<td>73.58</td>
<td>91.67</td>
<td>54.16</td>
</tr>
<tr>
<td>Blue SD</td>
<td>68</td>
<td>87.5</td>
<td>50</td>
</tr>
<tr>
<td>Red RMS</td>
<td>82.6</td>
<td>95.8</td>
<td>62.5</td>
</tr>
<tr>
<td>Green RMS</td>
<td>83.8</td>
<td>95.8</td>
<td>62.5</td>
</tr>
<tr>
<td>Blue RMS</td>
<td>83.58</td>
<td>95.83</td>
<td>70.83</td>
</tr>
</tbody>
</table>

The classification accuracy plots for Red SD, Green SD and Blue SD data are shown in Figures 42, 43 and 44, respectively. The classification accuracy plots for Red RMS, Green RMS and Blue RMS data are shown in Figures 45, 46 and 47, respectively.

Figure 42. Classification accuracy plots for Red SD data; training (left) and test (right)
Figure 43. Classification accuracy plots for Green SD data; training (left) and test (right)

Figure 44. Classification accuracy plots for Blue SD data; training (left) and test (right)

Figure 45. Classification accuracy plots for Red RMS data; training (left) and test (right)
4.3.4.1. Data Augmentation Results

The results of classification accuracy for augmented RMS data is shown in Table 9. For the classification accuracy test for the augmented data, RMS data was chosen since its accuracy was found to be higher than SD data as shown in Table 7.
As seen in the Table 9, the classification accuracy for augmented RMS data was also found to be 83.7% which is same to the one found earlier (Table 7) without augmented data. The classification accuracy plots for 100 iterations for training and test sets are shown in Figure 48.

<table>
<thead>
<tr>
<th>Data</th>
<th>Average</th>
<th>Max</th>
<th>Min</th>
<th>SD</th>
<th>Average</th>
<th>Max</th>
<th>Min</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS for RGB</td>
<td>89.29</td>
<td>96.6</td>
<td>82.9</td>
<td>2.76</td>
<td>83.7</td>
<td>100</td>
<td>65</td>
<td>7.77</td>
</tr>
</tbody>
</table>

Table 9. Classification Accuracy for RGB RMS data.

Figure 48. Classification accuracy plots for RMS RGB data; training (left) and test (right)

4.4. Discussion and Conclusion

In this chapter, the experimental results regarding the automatic identification of objects using an objective method was presented. The automatic method used a machine learning method (SVM
classification) to identify three classes of objects and the objects were preprocessed before employing classification.

The SVM classification overall had an average classification test accuracy of 83%, performing well using the original RGB data. The use of optimal parameters (C and lambda) and cross-validation were useful to achieve this level of performance. This performance of over 80% was similar to the accuracy obtained for the RMS feature data and higher than SD feature data. So in comparison between RMS and SD feature data, RMS data was found to be more effective for object identification in this study.

Another important observation found in this experiment was that there was not much difference in using RGB data as a whole versus using red, green and blue separately in terms of classification accuracy. This was true in the case of red and green while in one blue band, the classification accuracy was found to be lower. This might be due to the blue band being noisier than red and green bands. So, in conclusion, using only red or green bands of the object achieves an optimum performance similar to the entire RGB dataset.

In case of data augmentation, in which classification accuracy was expected to increase, SVM classifier did not perform as expected. There was only a small increase of accuracy of 1%. This may be due to the class imbalance problem when there are more examples of some classes than others. In this study, the data ratio of the three classes was 14:5:13. Generally classifiers perform poorly on imbalanced data sets (Calleja et al., 2011).
5. Conclusion and Future work

The goal of this research was to determine how accurately a machine learning method can predict human opinion about the quality of printed pattern in an object. Estimating the perceived quality of printed pattern is a complex task as quality is subjective and might differ from one person to another. To address this challenging issue, we proposed a novel technique that integrates subjective and objective assessment by developing a machine learning model which consistently takes inputs from well designed psychophysical experiment and evaluates the quality of all test objects with optimal accuracy.

First subjective method was used to evaluate the overall print quality and visual difference of objects as it provides accurate and reliable measurements of the quality of visual signals. The aim was to collect subjective reference data which represents visual characteristics of the test objects. A visual experiment was performed in a lab with constant light illumination. Following a brief training session, test objects were ranked by human observers in terms of overall visual quality. We chose z-scores as a statistical measure to analyze subjective data because it makes easier to compare subjective opinions of observers. The overall quality of test objects was compared based on their z-scores. Following findings were drawn from the experiment.

- There was a high correlation between subjective evaluation ratings of similar groups of test objects. This gave high confidence on the quality of subjective reference data.
- Contrast of the gray color in outer object ring was the most noticeable difference between object pairs as observed by the test participants. Similar work (Aiba et al. 2011) also found contrast to be one of the physical factors affecting image quality.
Female observers were more selective than male observers. This result suggests that female observers were more careful in selecting the test objects than males.

Although the visual experiment provided valuable reference data, it is very time consuming, and expensive. So, it is not scalable for an experiment with a large body of data.

Next a novel method was proposed to evaluate the overall image quality using an objective method developed using the subjective quality reference data. This novel method used a machine learning technique to automatically identify and measure quality of the objects without human observers, which was the ultimate goal of this study.

From the subjective evaluation, we found that the contrast of the outer object ring has distinguishing features for determining the quality of data object. Therefore, for extracting outer object ring, different preprocessing steps were implemented. This includes flat-fielding, cropping, segmentation, unwrapping and affine transform. Finally, SVM classifier was implemented with optimized parameters to identify three different quality levels of data objects.

Standard deviation and RMS metric of the processed outer object ring were selected as feature vectors to the classifier. The performance of this objective model was evaluated with nine different combinations of input data. Data augmentation using rotation method was also added to test the performance of classifier. Following findings were drawn from this objective experiment:

- The developed automated objective model was functional with an acceptable accuracy of eighty-three percent.
RMS feature was found to be more effective for detecting object than standard deviation feature.

There was not much difference in using RGB data of object as a whole versus using red, green and blue separately in terms of classification accuracy.

While in case of data augmentation, although classification accuracy was expected to increase, SVM classifier did not perform as expected and there was only a small increase of accuracy of 1% which may be due to the class imbalance problem of our data.

In conclusion, the print quality of an object as perceived by human observer can be predicted using machine learning algorithms. Although accuracy of SVM classifier is higher than the chance accuracy, still there is room for improvement. Some weaknesses of the algorithm are given below.

- For cases of missing ink and blobs of extra ink in some locations which occur during printing, the RMS does not characterize the objects data wholly resulting in misclassification.

- The current algorithm cannot handle if spikes and orange pattern of the objects are used as input data since the spikes and orange pattern has random density variation and RMS feature cannot represent those variations perfectly.

In case of spikes, number of spikes count can be used as a new feature. The number of spikes can be calculated by fitting a curve and counting the number of spikes that touch the curve. Several possibilities for improving this work in the future are discussed below:
Contrast of the objects was found to be an important feature in this work. Other features can also be explored to improve the prediction accuracy of the model in addition to this feature. 2D Fourier transform and RMS of the contrast can be used as new features for better performance.

There is also room for improvement using other advanced machine learning classifiers like random forest and deep learning techniques to improve the prediction accuracy and make the objective model more robust.

Larger data set may provide more accurate results. In this research, subjective data was collected for 25 observers only. So, future work could include performing the experiment with a larger number and more diverse group of observers.

This research was focused on the quality of the printed pattern in a specific object. To increase applicability, further research can be performed on other types of images and print patterns.

There can be improvement in prediction accuracy with a larger and balanced data set. Larger datasets are also helpful in case of deep learning techniques.
References

The MathWorks Inc, 2015. MATLAB.

doi:10.1002/bimj.4710230408

Uzkent, B., Hoffman, M.J., Cherry, E., 2014. 3-D MRI Cardiac Segmentation Using Graph Cuts,

numerical category scaling. Proc. SPIE. doi:10.1117/12.201231

Multimed. Process. 2, 1–156. doi:10.2200/S00010ED1V01Y200508IVM003

in: Niessen, W.J., Viergever, M.A. (Eds.), Medical Image Computing and Computer-
Assisted Intervention -- MICCAI 2001: 4th International Conference Utrecht, The
Netherlands, October 14--17, 2001 Proceedings. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 770–777. doi:10.1007/3-540-45468-3_92

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A.,
APPENDIX

Figure 49 – 58 shows the box plots for object of different types. The red points in the figure are outliers.

Figure 49. Box plot for mean z-score of H object

Figure 50. Box plot for mean z-score of J object

Figure 51. Box plot for mean z-score of K object

Figure 52. Box plot for mean z-score of L object
Figure 53. Box plot for mean z-score of M object

Figure 54. Box plot for mean z-score of P object

Figure 55. Box plot for mean z-score of S object

Figure 56. Box plot for mean z-score of T object

Figure 57. Box plot for mean z-score of U object

Figure 58. Box plot for mean z-score of W object
Figure 59. Plot of average z-score vs. number of object with SEM for observer using glass/contact lenses for visual correction

Figure 60. Plot of average z-score vs. number of object with SEM for observer not using glass/contact lenses