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the usual fully connected LSTM (FC-LSTM) by using convolution for both input-to-

hidden and hidden-to-hidden connections. The formulation of the Conv-LSTM unit can be 

summarized with (6) through (10). While the equations are similar in nature to (1) through 

(5), the input x is fed in as images, while the set of weights for every connection is replaced 

by convolutional filters. This allows the Conv-LSTM unit to keep track of less weights and 

perform convolutional operations that yield better spatial feature maps. The Conv-LSTM 

is more advantageous when working with images than the FC-LSTM due to its ability to 

propagate spatial characteristics temporally through each Conv-LSTM state. 

        𝐼 = 𝜎(𝑊𝑋𝐼 ∗ 𝑋𝑡 + 𝑊𝐻𝐼 ∗ 𝐻𝑡−1 + 𝑊𝐶𝐼 ∘ 𝐶𝑡−1 + 𝑏𝐼)  (6) 

       𝐹𝑡 = 𝜎(𝑊𝑋𝐹 ∗ 𝑋𝑡 + 𝑊𝐻𝐹 ∗ 𝐻𝑡−1 + 𝑊𝐶𝐹 ∘ 𝐶𝑡−1 + 𝑏𝐹)  (7) 

       𝐶𝑡 = 𝐹 ∙ 𝐶 + 𝑖𝑡 ∘ (𝑊𝑋𝐶 ∗ 𝑥𝑡 + 𝑊𝐻𝐶 ∗ ℎ𝑡−1 + 𝑏𝐶)  (8) 

       𝑂𝑡 = 𝜎(𝑊𝑋𝑂 ∗ 𝑋𝑡 + 𝑊𝐻𝑂 ∗ 𝐻𝑡−1 + 𝑊𝐶𝑂 ∙ 𝐶𝑡−1 + 𝑏𝑜)            (9)   

       𝐻𝑡 = 𝑂 ∘ tanh(𝐶𝑡)                 (10) 

Convolutional and element-wise multiplication operations are denoted by “∗” and 

“∘” respectively. Similar to the LSTM unit, the input, forget, cell, output, and hidden state 

of each timestep are denoted by I, F, C, O, and H respectively, the activation by σ, and the 

weighted connections between states by a set of weights, W. However, each state is now a 

matrix representing the image, while the set of weights W is a convolutional filter. Just as 

the convolutional filters of the input-to-hidden connections determine the resolution of 

feature maps created from the input, the convolutional filter size of the hidden-to-hidden 

connections determine the aggregate information the Conv-LSTM unit receives from the 

previous time-step. The transition of states between time-steps for a Conv-LSTM unit can 

then be interpreted as movement between frames. Larger transitional kernels therefore 
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capture faster motions while smaller transitional kernels capture slower motions [17]. A 

visualization of the process can be seen below in Figure 6. The size of the convolutional 

filters in the input-to-hidden and hidden-to-hidden connections may differ depending on 

both the size and speed of the observed objects. The models used in [17] and [18] are able 

to successfully reconstruct a recognizable prediction of an input video sequence from the 

bouncing MNIST dataset [19]. Patraucean et al. however, does not make use of peephole 

connections, showing that the effectiveness of such connections in an LSTM architecture 

is debatable [18]. It should be noted that a FC-LSTM can be thought of as a special case of 

a Conv-LSTM, where the filter size is equal to the input image and only a single 

convolutional operation is performed, and that each Conv-LSTM unit shares the same 

parameter through all time-steps. 

 

Figure 6: Inner Structure of a Conv-LSTM Unit 

 

The models in [17] and [18] are able to successfully reconstruct a recognizable 

prediction of an input video sequence from the bouncing MNIST dataset [19]. The model 

in [18], however, does not make use of peephole connections, showing that the 



   

13 

effectiveness of such connections in an LSTM architecture is still unresolved. It should be 

noted that a FC-LSTM can be thought of as a special case of a Conv-LSTM, where the 

filter size is equal to the input image and only a single convolutional operation is 

performed. 

 

2.4. Future Video Prediction 

Long Short-Term Memory networks are capable of learning long-term 

dependencies. As such, they are able to extrapolate temporally sequential data given certain 

inputs. Srivastava et al. [19] takes advantage of this property to train a composite encoder-

decoder model able to reconstruct the past and predict the future video sequences. More 

specifically, the encoder maps an input video representation to a fixed length 

representation, while the decoder extrapolates the learned encoding into the past and future 

video sequences. When using only a normal encoder-decoder model, the target values of 

the model determine what the model can be used for. When the target output is of the input, 

the model is able to create a reconstruction of the input video sequence. When the target 

output is of subsequent frames, however, the model learns to predict the subsequent video 

sequence.  

The model is further improved by combining both the reconstruction and prediction 

models into a composite model, using both the current and future video sequences as target 

outputs and potentially conditioning each time-step with the output of the previous time-

step (Figure 7). Reconstruction models have the tendency to learn trivial representations 

that merely memorize the input. Future predictors tend to absorb more information from 
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the most recent frames, as they are generally the most immediately relevant, i.e, {vt-1, . . . 

,vt-k} are more important than v0 when predicting vt  While this is effective for specific 

predictions, the loss of information from older time-steps will lead to less accurate 

predictions for more general video sequences during testing. The reconstruction of both the 

past and future video sequences forces the learned encoding to contain more meaningful 

data, thus improving the overall performance of the system. 

 

Figure 7: The composite structure for unrolled LSTM unit. Blue lines represent potential 

conditioning 

 

Srivastava et al. evaluates his proposed model on the Bouncing MNIST dataset, 

comprised of 64x64 grayscale images (Figure 8), and a set of 32x32 natural image patches 

(Figure 9) from the UCF-101 dataset [28]. It is able to successfully reconstruct and predict 

a sequence of images accurately on the Bouncing MNIST images, with the best 

performance being shown by a two-layer composite model with a conditional future 

predictor. The model did not perform well on the natural images, with neither the 
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reconstruction nor the prediction maintaining spatial resolution. The input reconstruction 

does show a blurred approximation of both structure and motion though time, but the future 

prediction loses cohesion in both by the fourth time-step. While the reconstructions get 

sharper when more LSTM units are added to each layer, the predictions remain the same, 

showing the model’s inability to extrapolate the future from the encoding. The results by 

Srivastava et al. show that while the model is effective on simple synthetic images, it is 

unable to learn and temporally propagate spatial features on more complex images, 

regardless of size. 

 

 

Figure 8: Reconstruction and future prediction obtained from the Composite Model on a 

dataset of Bouncing MNIST images [19] 
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Figure 9: Reconstruction and future prediction obtained from the Composite Model on a 

dataset of natural image patches. [19] 

 

Shi et al. propose the use of Convolutional LSTMs with the encoder-decoder 

structure for future video prediction that is able to better retain spatio-temporal information. 

Its decoder is unique in that it performs a 1x1 convolutional operation across the output of 

each layer to obtain an output, as opposed to looking solely at the last layer. The proposed 

architecture was shown to outperform the LSTM models used by [19] when predicting 

future video sequences for a synthetic Bouncing MNIST Dataset. It was also successfully 

applied to a precipitation forecasting problem that used satellite imagery of clouds to 

predict weather patterns (Fig. 10), showing its applicability in predicting non-synthetic 

data. 
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Figure 10: Two prediction examples. All of the predictions and ground truths are sampled 

with an interval of 3. From top to bottom: input frames; ground truth frames; prediction by 

the ConvLSTM forecasting network. [17] 

 

2.5. Anomaly Detection in Videos 

 When labels are provided as a ground truth for anomalous actions, anomaly 

detection is a problem that can be evaluated by building predictive models and considering 

a binary classification problem. However, such labels are often uncommon, or unwieldy, 

and the data available for training a model are limited to containing little to no anomalous 

events. The available training data often result in the formulation of semi-supervised 

models that can be adapted to operate in an unsupervised mode by using a sample of the 

unlabeled data set as training data. Scoring techniques can be used to evaluate the output 

of the models on testing data and used to label the data using domain-specific thresholds 

[16].  

Such techniques have been used to great effect in [5], [19], [1], [18], and [4], where 

models are trained with little to no supervision and used to classify anomalous sequences 

in a given video. Handcrafted features comprised of a mixture of dynamic textures and 

spatial anomaly maps are used by Cong et al. in [5] to learn the “normalcy” of a video 

sequence, with which an anomaly score is computed. Adam et al. does something similar 
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in [19] by creating a probability distribution of low-level observations. Given a new 

observation, it can calculate the likelihood of occurrence to determine whether or not it is 

anomalous. The issue with hand-crafted features is that they may be too specialized, which 

makes them unable to adapt to or learn unexpected events effectively. Neural networks 

deal with this issue by allowing the network to learn what features are important. Zhao et 

al. utilizes an unsupervised dynamic sparse coding algorithm in [1] to train dictionaries 

with which anomalies are detected through the reconstruction error. Lu et al. improves 

upon this in [18] by introducing an approach that directly learns sparse combinations 

instead of a dictionary, thereby significantly speeding up testing. While sparse coding has 

been shown to be effective, dictionaries may still contain unused or noisy elements within 

the dictionary, reducing their effectiveness. Hasan et al. employs a convolutional neural 

network in [4] to learn the temporal regularity of given video sequences. A regularity score 

is computed from the reconstruction error and used to detect anomalous segments. While 

effective, convolutional neural networks were not developed with temporal features in 

mind, and are related to Conv-LSTMs as dense networks are related to LSTMs.  
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Chapter 3 Anomaly Detection through Future Prediction 

This chapter describes the approach used to perform anomaly detection through 

future prediction using convolutional long short-term memory units. The proposed 

approach is inspired by the idea that an encoder-decoder model will be able to learn and 

reconstruct “regular” video sequences from the training data. This will force anomalous 

data to be more difficult to reconstruct with each subsequent time-step due to error 

propagation. The design of the proposed architectures used to predict future video 

sequences are discussed in Section 3.1, and the evaluation algorithms used to identify 

anomalous video segments is discussed in Section 3.2. 

3.1. Proposed Architectures 

Convolutional LSTM (Conv-LSTM) units have recently been proposed and used 

by [17] and [18] (Section 2.3.2). It takes advantage of the spatial information retained by 

training convolutional weights to better propagate spatial features temporally in the LSTM. 

These units have been utilized to create two distinct network architectures, a Composite 

Conv-LSTM Encoder Decoder, described in Section 3.1.1, and a Composite Conv-LSTM 

Autoencoder, described in Section 3.1.2. The results can be found in Section 4. 

3.1.1 Proposed Composite Convolutional LSTM Encoder-Decoder 

The architecture is inspired by the models discussed in Section 2.4. The network 

by Shi et al. utilizes only a future encoding-decoder model to predict future video 

sequences, while the model by Srivastava et al. utilizes a composite conditioned structure, 

but is comprised of FC-LSTM units. The proposed architecture utilizes multiple stacked 

Conv-LSTM layers in an end-to-end trainable network. The design is split into two main 
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parts, the encoder, and the decoder. A high level view of the proposed model using three 

Conv-LSTM layers can be seen in Figure 11. 

 

Figure 11: High-level view of the Conditioned Composite Conv-LSTM Encoder-Decoder. 

The right side is the encoder, while the left is the decoder. The decoder is split into a present 

and future decoder, where the future decoder is potentially conditioned with the output of 

the current time-step feeding into the input of the next. 

3.1.1.1 Encoder  

The encoder accepts a sequence of reshaped frames in chronological order as input. 

Images contain redundant information. By reshaping the input into a stack of non-


