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Figure 6.23: First order bending and twisting mode resonance data fit to Lorentzian curves
(Eq. 6.36) to determine A, Q, and ω0. Each column was collected at a different probe
location on the sample as indicated by the cartoon and microscope images at top.

and the effective spring stiffness, ke� = 0.06 ± 0.01 N/m, was calculated from Eq. 6.23.

From Eq. 6.18 and Eq. 6.19, the torsional stiffness was estimated to be κe� = 80 ±

20 pNm/rad.. Low certainty in the thickness (700± 50 nm) and width (1.5± 0.1 µm) led

to large uncertainty in this stiffness.

Final calculated values of force and torque applied to the oscillator when driven by

laser illumination are given in Table 6.3. For comparison, the ray-based predictions of force

and torque on the wing are also reported in Table 6.3. Ray predictions were calculated

from the known laser power on the wing (10 ± 1 mW) and efficiency values. Table 6.3

reports the component of total predicted force in the direction of bending displacement.
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Probe Location Measured Force Predicted Force Measured Torque Predicted Torque

center 1.4± 0.3 pN 3.2± 0.8 pN - -
right 2.5± 0.8 pN 3.2± 0.8 pN 1.2± 0.5 aNm 3± 1 aNm
left 0.31± 0.07 pN 3.2± 0.8 pN 0.9± 0.3 aNm 3± 1 aNm

Table 6.3: Comparison of optical force and torque calculated from measured oscillation
data with ray-based predictions.

6.2.5 Conclusion of Experiment

An experimental system consisting of a glass micro-mechanical oscillator and a laser illu-

minated optical wing was tested for aptness in measuring the force and torque of radiation

pressure on the optical wing. Final measurements of force and torque on the sample wing

agree within order of magnitude with the ray-tracer predictions. These results indicate

that this experimental design may be used for measurements of optical forces on refractive

objects in vacuum. There is, however, significant room for improvement.

Beginning with fabrication of the micro-mechanical structure, it was found that stresses

in the glass film can complicate the resonant modes of the oscillator making it difficult

to decipher between mode shapes. Approaches for controlling stress in the glass film are

discussed in detail in Sec. 5.3.2. Large uncertainty in the calculated force and torque

from experimental data was primarily due to imprecise knowledge of spring stiffness. The
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Figure 6.24: Displacement correction for bending mode to account for a displacement
measurement that was not collected at the point of maximum displacement.
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structure that was fabricated and tested was thinned during etching because the photore-

sist mask did not withstand the long etch cycle. This produced large uncertainty in the

width and thickness of the thin beams of the structure. A hard mask of metal, such as

aluminum, would greatly reduce the risk of over etching such that the designed dimensions

of the oscillator would be maintained and uncertainty reduced. An ideal technique would

be to measure the effective stiffness of each mode by applying a known force to the optical

wing.

The fringe locking feedback circuit needs improvement. Throughout data collection,

the DC value of the interference signal was not stable, which led to large variations in the

collected displacement data (see for example Fig. 6.23(b.), where the amplitude of one

frequency sweep is clearly larger than the second pass through frequencies). Circuit noise

prompted additional movement of the piezo actuator, which modulated the interference

signal with time. Additional noise reduction components in the circuit would improve

this issue. The piezo actuator was also overly responsive to the feedback signal. This

meant that the feedback was constantly overshooting and correcting. The aggregated dis-

placement signal was, as a result, smaller than would be had the DC value been constant.

This is because the small intensity change caused by the oscillator displacement is fur-

ther reduced when the relative phase of the two interferometer arms are near 0 or mλ/4.

Overshooting the control of the piezo actuator meant that the baseline phase difference

was rarely near the optimal position of (m/2± 1/8)λ. Low pass filtering the voltage out-

put of the feedback circuit prior to reaching the piezo actuator improved the problem of

overshooting the set point.

Given these many sources of uncertainty in the collected oscillation data, the order

of magnitude agreement between measured and predicted force and torque on the optical

wing is promising. It is clear that laser-driven forces induced oscillation of the glass
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mechanical oscillator and from these results, we currently have no cause to reject the ray-

based predictions of optical forces on the refractive optical wing. Fabrication and fringe

locking are the two weakest steps in this experiment. We anticipate that the outlined

improvements will enable higher force measurement precision, and this experimental design

may be used for future optical force measurements on refractive objects.
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