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components, but all of the relevant packets are associated to black model. The feature distributions
for empirical model 0, in black, are shown in Figure 5.14. The only discriminating factor is the
protocol distribution: all packets in the conglomerate model are TCP, however the distributions of
source and destination port are both initialized with a combination of behaviors and learn stochastic
behaviors. Similarly, the graph position density has some shape, but is nearly uniform over for all
graph position values between 0.0 and 0.7; the distribution is not perfectly uniform but it is very
general, and many values have high density. Since the source port, destination port, and graph
position features are not discriminating, any TCP traffic fits this model with high probability: it has
become a “generic” model for TCP traffic.

Figure 5.13: Attack Social Graph with Conglomerate Attack Model

The qualitative results presented illustrate that an online supervised approach can solve a tradi-
tionally unsupervised problem, and produce intuitive models. These cases also validate the impor-
tance of the graphical prior probability, particularly when contrasted with a uniform prior probabil-
ity. Finally, the quantitative evaluation over a large set of targets of interest verifies the accuracy
of both the segmentation and model generation components of the ASMG processing by compar-
ing with a naı̈ve four-hop model and by comparing the likelihood of the included packets with the
segmented packets.
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Figure 5.14: Feature Distributions of Conglomerate Attack Model
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Chapter 6

Conclusions

Together, the re-characterization of a seemingly unsupervised problem as an online supervised prob-
lem, the novel introduction of a graphical prior probability, and the inclusion of the generic attack
model as a threshold for introducing new attack models accomplish the objective of simultaneously
segmenting and modeling large-scale cyber attack traffic. The principle novel contributions of the
Attack Segmentation and Model Generation are:

An Online Alternative to Unsupervised Learning The approach of classifying packets to the max-
imum a posteriori attack model, empirically updating the attack models with non-parametric
distributions tremendously improves efficiency, compared with unsupervised learning, for
processing new packets. The generic model is an additional novel element to control the
introduction of new attack models and to balance between the conflicting objectives of maxi-
mizing the likelihood of the packet and preferring a parsimonious solution.

Graphical Prior Probability The inclusion of the graphical prior probability in the Bayesian clas-
sification processing enables the ASMG processing to incorporate macroscopic graphical in-
formation. With this graphical information the processing can infer which packets are pro-
duced by the same attack behavior, instead of simply clustering packets with similar packet-
level features.

Consideration of Probabilistic Intersection and Segmenting Irrelevant Traffic Finally, the seg-
mentation processing is essential for reducing the scope of received traffic when probabilistic
intersection is present in the received data. This consideration in particular is not addresses
by previous host clustering works. This portion of the processing is useful, even aside from
the modeling, in reducing the amount of data provided to an analyst.

Test data, in this case network telescope traffic, was provided by the Cooperative Association
for Internet Data Analysis, and both the segmentation and modeling processing were demonstrated
to provide considerable improvement over strategies which segmented packets naı̈vely, or did not
model different attack behaviors. The ASMG processing always outperformed naı̈ve methods, and
in many cases provided near-optimal representations of the received attack behaviors. However, the
discussion of results did present some sub-optimal cases and Section 6.1 discusses future work to
enhance the processing in general, or to improve some of the sub-optimal cases specifically.
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6.1 Future Work

Opportunities for future work are divided into two subsection, based on the severity and intent of
the opportunity. Subsection 6.1.1 suggests strategies to address two of the critical issues addressed
in the result and software design chapters. Subsection 6.1.2 presents some potential enhancements
to improve the functionality of the ASMG processing.

6.1.1 Significant Improvements

Non-Greedy Refining of Models

As discussed at the end of the Results chapter with Figure 5.13 if multiple attack behaviors are
present when the empirical models are first being learned, the model produced will be a mixture of
both behaviors. In this worst cases, this model will continue to combine other behaviors and learn
very general distributions, similar to the generic model. The performance of the system could be
significantly improved by remedying this behavior with one of two possible solutions.

One option is to recognize that two distinct attack behaviors are present when the empirical
model is created. Immediately before introducing the new attack model there are a set of edges and
packets currently associated with the generic model, and after enough packets have been observed
a new empirical model will be created from this evidence. A possible solution is to add processing
to diagnose that two or more different attack behaviors are present in the packets assigned to the
generic model, and to divide these into different empirical models. This is a preventative approach.

Alternatively, a palliative approach would be to periodically refine the attack models so the
processing is not entirely greedy. Once the online greedy processing has grouped multiple attack
behaviors into a single model, the palliative processing would revise the modeling and break the
combined model into others. The preventative approach is more appropriate for the model introduc-
tion processing, but the palliative approach is more general and may also help in other hypothetical
cases. For example, if the attack behavior were to change slowly over time the palliative approach
could separate past and present behaviors into different models, whereas the preventative approach
would produce degraded performance, as in the “boiling frog” anecdote. With the preventative ap-
proach, If the attack model doesn’t contain distinct different behaviors at its creation it will never be
refined, and can slowly be degraded into a superposition of many different attack behaviors as long
as the change does not occur rapidly.

Real-Time Performance

As noted in the Software Prototyping chapter, currently the performance of the system is not real-
time: it is an online design, but not real-time. Python is not an ideal choice for real-time perfor-
mance, and an implementation in a lower-level language may offer significant improvement.

The software has been profiled, and the majority of the computation time is spent in the graph
distance calculations used by the graphical prior probability, graph-position feature, and segmen-
tation processing. The graph shortest path calculations were performed by the NetworkX library,
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which were not tailored to this processing. Significant processing time could be saved by buffering
the graph distance, and calculating the graph distance to new nodes incident on the attack social
graph by appending the distance of the new edge to the distance of the neighboring nodes. As a
trivial example, if a graph currently contains three nodes “A”, “B”, and “C”, arranged in a line: i.e.
“A” has an edge to “B”, “B” has an incoming edge from “A” and an outgoing edge to “C”. If a
new node, “D”, joins the network with an incoming edge from “C”, the distance from “A” to “D”
will be calculated by entirely reinitializing and calculating the shortest path calculation. Whereas, a
significant improvement would be to just append the distance from “C” to “D” to the distance from
“A” to “C”. Given the proportion of processing time spent calculating graph distances, any efforts
to algorithmically improve the efficiency of this calculation would be valuable.

Finally, the Bayesian classification process is inherently parallel. The likelihood and prior term
for each model must be calculated and multiplied, and there are no dependencies here between the
attack models. Potentially a separate thread could calculate the posterior term for each attack model
and a master thread could collect the values and take the maximum. The principle concern with
parallelizing this step would be with regard to the size of the parallel task: the likelihood calculation
in particular is likely not large enough to justify the parallelization overhead. Potentially this could
be mitigated by classifying multiple packets at once, which would increase the size of the parallel
task. However, this will also impact performance, since the attack models will not be updated until
all the packets have been classified; if the parallel task size is too large, the packets will be classified
against stale attack models. Additional investigation would be appropriate before determining a
parallelization strategy.

6.1.2 Enhancements

Expanded Feature Set

The feature set used does contain novel elements, in particular the treatment of the port for TCP and
UDP packets, but it is also not very large. Only having the packet header information does limit the
choice of features to some degree but there are significant features still available and unused.

Absolute Time Looking at the packet time may be a useful feature, intuitively if two packets are
very far packet in time it is less likely that they are produced by the same attack behavior.

Intensity over Time Looking at the packet timing relative to the start time of the attack or the inter-
arrival time of packets may also be a useful feature. Potentially this could separate behaviors
that act quickly without regard for detection from stealthy behaviors that spread the attack
in time to avoid detection. This feature may also be useful for diagnosing different regimes
within an attack, different steps in an attack behavior may exhibit different inter-arrival times.

TCP Flags Some denial of service behaviors intentionally depart from the typical TCP interaction
to exhaust the resources of a system. These attack behaviors can easily be identified by
including the TCP flags as a feature for TCP packets.
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Time-to-Live The time-to-live (TTL) value may also be a useful feature for discriminating different
attack behaviors, particularly if the hosts participating in the attack are in a similar location
and traverse a similar path through the Internet, or in the opposite case are dispersed like a
botnet. For example, Ohta et al. [14] suggests that the time-to-live value could be used for
diagnosing spoofed addresses of the same host. Of course, this value could also be “spoofed”,
by initializing it with a non-standard value, but even in that case a random appearance to the
TTL value may be a discriminating feature.

Weighting of Graphical Information

A final consideration, especially if the feature set is expanded, is the weight given to the graphical
information versus the packet-level information. Currently, the relationship between the packet-
level features, which is encapsulated by the likelihood term, and the graphical information present in
the prior is weighted equally: they are directly multiplied to produce the posterior. This is deliberate
to adhere to the normal Bayesian construction: imposing weightings adds an ad-hoc element that
debases the claim of a Bayesian construction.

However, if many packet-level features are included potentially this could distort the importance
of packet-level information relative to the graphical information. Even with the current feature
set, and the examples presented to exhibit the importance of the graphical prior probability in the
Results chapter, the balance between the graphical information and packet level information is not
considered explicitly. Additional effort could be expanded to verify if the packet-level information
has too much or too little influence relative to the graphical information.
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Appendix A

Probability Density Versus Probability

Together Equations 3.1 and 3.8 provide a methodology for estimating the probability density func-
tion for each feature, with discrete or continuous. In the context of estimating the posterior probabil-
ity the quantity of interest, however, is the probability of a particular feature value, p(x|M), not the
density fX|M (x). For a discrete feature, this discrepancy is not significant, though in the continuous
case it initially appears problematic. In general, certainly the probability density function value can
not be substituted for a probability value, aside from being incorrect, the density function values
may exceed one and are certainly non-zero for a continuous random variable.

However, the goal of the classification is determine in the most probable attack model; this is
a relative calculation, and this relative nature vindicates the method of calculating the probability
density. Equation A.2, can be validated by a simple proof, integrating the probability density func-
tion over an infinitesimally small region. Phrased colloquially, Equation A.2 states that the ratio of
probability densities is equivalent to, and can be used in place of, a ratio of probabilities.

lim
δ−>0

P (x1 ≤ X1 ≤ x1 + δ)

P (x2 ≤ X2 ≤ x2 + δ)
=
fX1(x1)

fX2(x2)
(A.1)

P (X1 = x1)

P (X2 = x2)
=
fX1(x1)

fX2(x2)
(A.2)

Phased more directly in the context of the attack model classification, letX be a random variable
representing a particular feature, and fX|Mi

, be distribution of X under a particular attack model
Mi. If one of the attack models is held as a reference,MR, the probability of the other attack models
Mi, can be written in terms of the density and a scalar coefficient.

P (X = x|Mi) =
fX|Mi

(x)

C
where C =

fX|MR
(x)

P (X = x|MR)
(A.3)

When determining the maximum a posteriori attack model,
(argmaxMP (X|M)P (M)), C is invariant over the variable to be maximized and can be ignored.
The conclusion is simply that the value of the probability density function can be used in place of
the likelihood probability when calculating the maximum a posteriori attack model, given that the
intent is to compare the attack models relative to one another. This point is not purely pedantic;
if the ratio of probabilities densities between two distribution was not equivalent to the ratio of
probabilities, the framework implemented would certainly preclude the use of continuous features.
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Appendix B

List of Software Modules

attack model.py - A class representing an attack model; has the ability to store all samples asso-
ciated with this model. Has two child classes, an empirical attack model and a generic attack
model. Distributions on features are actually handled by a FeatureSet object.

attack player.py - The “middle-man” class that simulates incoming traffic by reading from a data
source: either MySQL database captures, log files, or Wireshark traffic captures.

classifier.py- Implements a Bayesian classifier for assigning traffic to the maximum a posteriori
attack model.

cli.py- A command line interface; controls the processing flow in command line mode.

crawler.py- Used for autonomous data collection over many targets of interest, randomly selects a
target, runs processing, then moves to the next.

edge.py- A class representing an edge in the attack social graph, it is aware of what packets occur
over this edge, and features of the traffic on this edge. An edge is also aware of the current
attack model.

empirical feature.py- A subclass of feature, represents a feature distribution created empirical by
observing traffic.

feature.py- A class representing a distribution over a particular feature. This is a histogram for
a discrete feature, and a kernel density estimator for a continuous feature; both are non-
parametric distributions, which estimate the probability of a new sample based on previous
samples.

feature factory.py- Singleton class for creating the feature distributions of an attack model. If a
new feature is added, this class must be updated so it is included in the attack models. This
is just a convenience class to assist when creating attack models. The singleton constraint is
applied as a decorator (http://wiki.python.org/moin/PythonDecorators).

feature functions.py- The module converts packet information into features, for the more complex
features at least. For example, the port randomness feature or graph position feature use a
feature function to convert the packet data into this more advanced feature.
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feature set.py- A class representing a set of features; an AttackModel class is a FeatureSet
at its core, and this set includes all the Feature objects defined.

generic feature.py- A subclass of feature, representing a feature distribution under the generic
model; a superclass for many subclasses, on for each feature, and defines the “jack-of-all-
trades” distributions defined for the feature.

gui.py – The main class for the graphical user interface, and the head of the observer responsibility
chain. This class organizes and places other user interface components.

gui edge frame.py- The graphical user interface frame that shows the edge likelihood information.

gui feature frame.py- The graphical user interface frame that shows the feature distributions, ac-
cessed by switching the top-most tab.

gui graph frame.py- The graphical user interface frame that shows the attack social graph.

gui packet frame.py- The graphical user interface frame showing the incoming packet informa-
tion; at the bottom of the user interface.

gui parameters.py- Singleton class specifying graphical user interface appearance parameters.

highly active detector- Class to detect “highly active” attack social graph elements, like in a dis-
tributed denial of service attack or fast scan. The processing needs a way to simplify these
cases or it becomes overloaded.

likelihood strategy.py- Strategy for calculating the feature likelihoods for a new sample under a
particular FeatureSet distribution. This class is used by the Classifier.

main.py – The main modules used to kick-off the processing.

model introduction strategy- Strategy for adding new models to the Attack Segmentation and
Model Generation processing. There are subclasses implemented different approaches, prin-
cipally iterative implementations to improve processing speed.

observer.py – An abstract class representing the “Observer” in the “Observer” design pattern.

orm classes.py- Classes defined for interacting with the MySQL ORM; these classes must exactly
mirror the tables in the MySQL database.

plot strategy.py- Classes for plotting the feature distribution, and controlling the formatting of the
plots on the feature display.

prior probability strategy.py- Class for calculating the prior probability based on the graph struc-
ture; there are a few subclass variations on this, principally iterative implementations to im-
prove processing speed. This class is used by the Classifier.
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processing controller.py- Head of the strategy responsibility chain; coordinates all of the process-
ing strategies and interacts with the AttackPlayer.

processing strategy.py- Module which actually performs the proposed processing; two subclasses
are implemented: one for the Segmentation and Model Generation method and another naı̈ve
method used for comparison.

responsibility chain.py- Abstract class that defines the public contract for classes under the re-
sponsibility chain pattern.

sample.py- Class representing a sample from a particular feature distribution.

sample set.py- A collection of samples; the feature vector analog of a packet.

segmentation strategy.py- Strategy for removing irrelevant components from the attack social
graph. In principle, the module removes components attributed to attack models not present
at the target of interest.

singleton.py- Abstract class representing the Singleton design pattern; applied as a decorator.

strategy factory.py- A convenience class for creating new processing strategies; it lumps together
all the individual strategies that make up a processing strategy.

subject.py- An abstract class representing the “Subject” in the “Observer” pattern.


