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Figure 2.3: Illustration of two chirps, x1(t) and x2(t). Over time, (a) normalized frequency of

the chirp, x1(t), increases from 0.05 to 0.30 while (b) normalized frequency of the chirp, x2(t),
decreases from 0.30 to 0.05. The results of power spectrum, X1(f) and X2(f), as depicted in (c)

and (d). The results of spectrograms, STFTx1(t, f) and STFTx2(t, f), using width N
4 of Hamming

window as shown in (e) and (f).
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Figure 2.4: The results of using different widths of a window and each sub-rectangle is called a

logon. (a) Using short window provides better time resolution; however, frequency resolution is

not well localized and (b) vice versa. (c) Example of a logon which is related to Heisenberg’s

uncertainty principle depicted from (b).

can be chosen by users such as Hamming, Hanning, Bartlett, etc., [51]. The spectrogram

defines as the squared magnitude of the STFT:

SPECx(t, f) = |STFTx(t, f)|2 . (2.3)

The STFT has drawback of resolution in time and frequency domains according to the

window length. In the example of Figures 2.4(a), (b), if the window length is narrow, it pro-

duces high resolution in the time domain, but blurred resolution in the frequency domain

and vice versa, respectively, [7], [14]. In Gabor’s paper [18], resulting different resolutions

derive from the time-frequency plane which is divided into an array of rectangles using

a filter bank. A logon depicted in Figure 2.4(c) represents each sub-rectangle and has di-

mensions of decay time and tuning width according to Eq.(2.4) of Heisenberg’s uncertainty

principle:

∆t∆f ≥ 1

4π
, (2.4)

where ∆t and ∆f represent the effective duration and bandwidth of the logon, respectively.

In the transform domain, in general, ∆t indicates how well the time duration can be iso-

lated from each other while ∆f indicates how well the spectral contents can be isolated

from each other. In fact, these parameters of the Heisenbergs box are fixed so that they

cannot be made smaller in the same time. Even though STFT can be applied to a stationary

signal, it cannot be suitable for non-stationary signals due to the trade-off between time and

frequency resolutions.

Wigner-Ville Distribution

Wigner-Ville Distribution (WVD) originated by Ville in 1948 [64] provides high energy

concentration and resolution in the TF domain for a mono-component signal having one
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frequency component. Its equation is defined as:

Wz(t, f) =

∫

z(t+
τ

2
)z∗(t− τ

2
)e−j2πfτdτ, (2.5)

where z(t) is analytic associated with the signal, x(t), obtained by Hilbert transform,

H[s(t)], given below [6], [7], [10]:

z(t) = x(t) + jH[x(t)]. (2.6)

Unlike the resolution of STFT, a limitation of the WVD resolution is cross-terms of a

multicomponent signal that may lead to potential misinterpretation. For instance, given two

chirps, displayed in Figure 2.5, increasing normalized frequencies of s1(t), and s2(t) from

0.05 to 0.25 and from 0.15 to 0.45, respectively, and analytic associated with the signals

z(t) = z1(t) + z2(t), then

Wz(t, f) = Wz1(t, f) +Wz2(t, f) + 2Re[Wz1,z2(t, f)], (2.7)

where Wz1(t, f),Wz2(t, f) are auto-terms, and Wz1,z2(t, f) is cross-terms having oscilla-

tion and located between the auto-terms in TF domain [7], [9].

Many authors have employed several methods, such as smoothed Pseudo Wigner-Ville

Distribution (SPWVD) [23], Choi-William Distribution (CWD) [12], modified-Beta Dis-

tribution (MBD) [46], and etc., to suppress the cross-terms while retaining the auto-terms

of multicomponent signals. They apply various kernel functions with double convolution

of time and frequency domain into the Eq.(2.5) as follows:

ρ(t, f) = K(t, f)∗∗Wz(t, f), (2.8)

where K(t, f) is a kernel function, ρ(t, f) is a quadratic time-frequency distribution (QTFD)

and (∗∗) is double convolution in time and frequency domains [7], [9]. Notice that WVD

applies K(t, f) equal to 1 as same as Eq.(2.5). In fact, some non-stationary signals, EEG,

cannot be applied to some QTFDs, WVD, SPWVD and CWD, because of the appearance

of the cross-terms and low resolutions.

Matching Pursuit

In order to suppress the cross-terms, retain the auto-terms, and improve TF resolutions,

Matching Pursuit-TFD (MP-TFD) developed by Mallat and Zhang [47] is suitable for non-

stationary signals. MP algorithm conveys an optimal atom generated by Gabor function

from a redundant dictionary to match the subsinal. Then, the atom in the time domain is

transformed into TF domain by Eq.(2.5). Once all atoms match to the whole signal, each

WVD of each atom is combined together as a MP-TFD. MP implementation is compre-

hensively explained later in Chapter 3.

In this thesis, HYPS EEG is applied to different TFDs as shown in Figure 2.6 in order
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Figure 2.5: Comparison the resolutions between STFT and WVD of two chirps. (a) Resolution of

STFT using width, N
4 , of Hamming window provides the auto-terms as blurred image, but it does

not appear cross-term. (b) WVD’s resolution displays auto-terms as ridge image, but having extra

cross-terms.

to compare TF resolutions. As seen in Figure 2.6, MP is suitable for EEG signal analysis

while the other TFDs provide the lack of information about transient of the signal. In this

case, it leads to difficult interpretations.

2.2 Part B: Matrix Decomposition

There are various techniques for dimensionality reduction including Singular Value De-

composition (SVD), Principle Component Analysis (PCA), and Non-Negative Matrix Fac-

torization (NMF). Their common objective aims to determine a low-rank factorization of

a large data set into low dimensional factors; however, their results of factorizations are

different based on the employed constraints. For instance, using SVD or PCA with no

non-negative constraints to decompose an image provides their factors having both arbi-

trary positive and negative components. In this case, it leads to difficult interpretation

when those methods are entailed by summing up some basis factors and subtracting others,

called holistic representation. On the other hand, NMF with non-negative constraints pro-

vides decomposed matrices having non-negative elements. The results of the factors lead

a natural interpretation because each factor is analyzed by adding them together as a linear

combination. NMF has been successfully employed in time-frequency feature extraction

applications because features of the decomposed matrices of NMF represent a TF matrix

with better temporal and spectral localization [19], [32], [60], [4], [3].

In general, NMF originated by Paatero and Tapper [52] decomposes non-negative data

into two non-negative factors such as coefficient matrix (H) and basis matrix (W). As

shown in Eq.(2.9), after NMF is applied to the resulting time-frequency matrix, MP with

non-negative elements, it is possible to approximate it in terms of spectral and temporal

matrices, W and H, respectively. The following equation of NMF can be written as a linear
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Figure 2.6: Comparison TF resolutions of the EEG using several techniques of TFDs. The signal

is plotted on the top of each subfigure. (a) STFT with long Hamming window length N
4 . (b)

STFT with short Hamming window length N
10 . (c) WVD provides multiple cross-terms and perplex

interpretation. (d) MP exhibits no cross-terms, and information about transients of the signal, such

as spikes.
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combination of each latent (k) of the decomposed matrices:

MPF×N ≈WF×K ·HK×N ≈
K
∑

k=1

wkh
T
k , (2.9)

where non-negativity of W and H is the decomposition constraint, F denotes the number

of elements in the frequency domain, N denotes the length of signal in time domain, and

K << min(F,N) is the NMF decomposition factor, and [·]T denotes transposition of the

vector hk. Figure 2.7 illustrates NMF in Eq.(2.9).

The decomposed matrices can be obtained by minimizing a cost function of NMF. A

simple cost function defines as Euclidean Distance (ED) or Frobenius norm and measures

how similarities between original data (MP) and the factors (W, H) are close, and it can

be solved by using gradient descent for minimization problem. Chapter 3 explains several

objective functions such as ED, β−divergence, and Kullback-Leibler divergence (KLD),

and problem solvers including block principal pivoting (BPP), majorization-minimization

(MM), and projected gradient (PG).

Figure 2.7: General theme of NMF shows decomposition of MP into spectral patterns (basis) and

temporal activations (coefficient), W and H, respectively.

2.3 Part C: Feature Extraction

Feature extraction aims to define a set of features with significant information as pre-

processing stage of machine learning or classification. For example, characteristics of facial
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images contain noses, eyes, ears, colors, etc. When they are extracted using NMF, one of

the decomposed matrices indicates locations of some characteristics and use of this infor-

mation is kept into feature vectors for machine learning. The meaningful features exhibit

to easily interpret and classify this set of data.

In this thesis, after obtaining the decomposed matrices in Eq.(2.7), (wk, hk) were em-

ployed to feature extraction and calculate mean frequency of wk, geometries, which include

area, height, and width, of the decomposed factors, and spike locations of hk. More details

of feature extraction are provided in Chapter 3 including how to calculate these features.

2.4 Part D: Classification and Performance

A significant task of classification is to separate data into two subsets: training and testing

sets. The training set contains various attributes or features and labeled classes. The testing

set only consists of attributes. The objective of a classifier is to generate a model from

learned or trained set (called supervised learning), and predict labels from the testing set

by learned statistical model of the training set (called unsupervised learning). When the

data is partitioned into training and testing sets based on a model selection, as explained in

the next subsection as preprocessing of the machine learning, it is called semi-supervised

learning [5]. In this thesis, we use semi-supervised learning for training and testing our

data between two classes: spike and non-spike where they are labeled classes 1 and 0,

respectively.

2.4.1 Classifiers

A simple classifier is a linear separator that easily distinguishes between two classes with

maximal margin if features of data are well separated. However, many applications are

mixed as ill-separated, and their features require transformation (or kernel function) that

maps feature vectors from lower dimensional spaces to higher dimensional spaces in order

to be well-separated as depicted in Figure 2.9. This issue can be solved by SVM, originated

by Vapnik [62]. To begin with two classes, SVM basically performs to project input feature

vectors from lower dimensional spaces Figure 2.9 (a) into higher dimensional spaces Figure

2.9 (b) using a kernel function, and find decision boundary which has the largest margin

distance between the classes (see the dash lines).

2.4.2 Assessment Methods

In order to fairly assess the results of performance without overfitting data, as generaliza-

tion, from partitioned sets, assessment methods such as K-Fold and leave-one-out cross

validations are widely used for many applications. The following techniques of the two

cross validations are shortly explained below:

• K-Fold: As illustrated in Figure 2.8(a), given dataset of size P samples, for the

first round, this technique begins to partition randomly and uniformly P
K

subsets of
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the data including
(K−1)P

K
groups of training set, and the rest of testing set. Once a

classifier learns features of the training sets associated with defined labels, the labels

of testing set will be predicted by its learned characteristics or statistics and resulting

performance, as explained in the next subsection, will be calculated. For the second

round and etc., the technique operates different groups of training set and testing set.

All result of the performance will be averaged over K rounds.

• Leave-One-Out: This method is very similar to K-fold, but it leaves one sample to

be tested and the rest is trained as shown in Figure 2.8(b).

A limitation of the latter method is it requires more expensive computation than the for-

mer does if data is very large. This thesis focuses on K-fold technique to evaluate number

of spikes and non-spikes of all patients.

Figure 2.8: Assessment methods including (a) K-Fold and (b) leave-one-out cross validations. Expk,

where k = 1, ...,K, denotes kth experiment.

2.4.3 Performance Measures

Typically, performance can be calculated based on evaluation of models including a confu-

sion matrix, and receiver operator characteristic (ROC) curves. Components in confusion

matrix contain true and false classified examples (spikes and non-spikes) as shown in Table



18

Figure 2.9: Example of two classes (◦ and •). (a) Feature vectors of the classes are not well sep-

arated in low dimensional space. (b) Using transformation φ maps the feature vectors into higher

dimensional space in order to be well-separated with linear hyperplane [67].

2.1, and they are described in terms of true positive (TP ), true negative (TN ), false positive

(FP ) and false negative (FN ). Interpretation of those measurements are explained below:

• TP indicates that the proposed methods detect spikes correctly corresponding to the

true spikes which are marked by an epileptologist.

• FP indicates that the methods detect spikes correctly, but they are incorrect and the

epileptologist has not confirmed true spikes yet.

• TN indicates that both non-spikes detected by the methods and unmarked spikes are

correct.

• FN indicates that the methods does not detect spikes, but they are true spikes.

Relationships between “sensitivity” and “1-specificity” is called receiver operating charac-

teristic (ROC) curve and area under curve (AUC) which provides significant interpretation

of accuracy. ROC curve is used to quantify how well the tests or diagnostic systems dis-

tinguish the testing sets or patients being diagnosed with unknown states such as normal

or HYPS, into one of the groups. Chapters 3 and 4 are provided with the details of perfor-

mance calculation and evaluation.

Table 2.1: A confusion matrix applied for spike detection algorithms

Predicted spikes

(detected)

Correct Incorrect

True spikes

(marked)

Correct TP FN

Incorrect FP TN
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Chapter 3

Methods

Figure 3.1: General scheme of the proposed methods.

This Chapter provides information on the proposed algorithms to improve spike detec-

tion in EEG in the presence of HYPS is based on Matching Pursuit time-frequency domain

(MP-TFD) and non-negative matrix factorizations (NMFs) as shown in Figure 3.1.
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3.1 Part A: Data Acquisition

Dataset and Preprocessing

Five EEG recordings from infants (4-9 months old) diagnosed with ISS and obtained from

the Infantile Spasms Registry and Genetic Studies via a protocol approved by the University

of Rochesters Research Subject Review Board were used to evaluate the proposed spike

detection algorithm in the presence of HYPS. Each subject of awake EEG is length of time

duration in five minutes. EEGs were recorded based on the international standard 10-20

system with sampling rates of 256 {2}, 500 {1}, and 512 {2} samples per second where

{.}s indicates the number of individuals involved. The recording EEGs were imported

to Persyst EEG software (Persyst, San Diego, CA) for artifact reduction and then were

imported into MATLAB and bandpass filtered (0.5-30 Hz) for further analysis.

Construct Time-Frequency Domain

Time-frequency domain (TFD) analysis provides a two-dimensional energy representation

of a signal in terms of its temporal and spectral content. The selection of an appropriate

TFD method determines the resolution in both time and frequency necessary to successfully

represent signal features such as the spike morphologies of interest in this instance. As

seen in Figure 2.6, for example, STFT is unable to preserve the transient energy associated

with these spikes due to the method’s inherent time and frequency resolution trade-off.

Therefore, in this thesis, a suitable tool for EEG analysis is a MP-TFD method, which is

a high resolution TFD method that lends itself to the analysis of the non-stationary and

chaotic EEG associated with HYPS.

The implementation of MP mainly consists of two stages. In stage one, it is used to

decompose an input signal, x(t), over an overcomplete dictionary of atoms according to

Eq.(3.1):

x(t) =
I−1
∑

i=0

〈

Ri
x, gγi

〉

gγi(t) +RI
x, (3.1)

where 〈Ri
x, gγi〉 is the inner product of expansion coefficient on gγi(t), R

I
x is a residue

signal after I iterations, and gγi is a TF Gabor atom obtained using Eq.(3.2):

gγi =
1√
si
g

(

t− pi
si

)

ej(2(πfit+φi)), (3.2)

where the notation γi represents the TF decomposition parameters (si, pi, fi, φi) denoted as

scale factor, translation, frequency modulation and phase, respectively, at each iteration i,
and g is the Gabor function:

g = 2(1/4)e−πt2 . (3.3)

In Eq.(3.1), signal x(t) is matching is attempted with all the possible atoms from a

redundant dictionary, D = {gγ1 , gγ2 , ..., gγr}. At each iteration, the best correlated Gabor
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Table 3.1: Proposed methods for this thesis.

Methods

NMFs

Feature extractions

Classification

Cost function Solver
Parameters Thresholdings

SVM

Model order
Number

of iteration
Tolerance ThAw Thw Thh

I
Euclidean

Distance

Block principle

pivoting (BPP)

Initial

K = 5
I = 200 tol = 10−6 MF(wk) -

6-10 Hz 0.015
-

10 Hz 0.01

II

Kullback-Leibler

Divergence

(β = 1)

Majorization -

minimization

(MM)

Initial

K = 30
I = 3500 tol = 10−6 MF(wk), A(wk) 12 8-19 Hz 0.3 -

III
Kullback-Leibler

Divergence

Projected

Gradient (PG)

Average

optimal K
(Keff) = 10

I = 3500 tol = 10−15 MF(wk), A(wk),

A(hk), B(hk), C(hk)
- - - x

function is selected from the Gabor dictionary. If large enough numbers of iterations are

used, then the residue term can be ignored as most of the coherent energy of the signal has

been modeled by the Gabor atoms.

The second stage of constructing the result of the MP-TFD consists of summing the

TFD of each decomposed Gabor atom as shown in Eq.(3.4):

MP =
I−1
∑

i=0

∣

∣

〈

Ri
x, gγi

〉∣

∣

2
Wgγi(t, f), (3.4)

where Wgγi(t, f) is the WVD [7], [14] of each Gabor atom gγi(t), and MP is the matrix

resulting from MP-TFD of x(t).

3.2 Part B: Proposed Methods

While the previous part was concentrated on identifying an appropriate TFD exhibiting

high resolution in both time and frequency domains of EEG signals, this section focuses

on quantifying feature extraction of decomposed TF matrices using various NMFs (i.e.,

NMF1,NMF2, and NMF3) of proposed methods as shown in Table 3.1. In addition, fea-

ture extraction, classification, and performance are later provided. In Eq.(2.9), it measures

quantification of similarities between original data (MP or V) and approximation (W, H).

The decomposed matrices can be obtained by minimizing a given cost function:

min
W,H

D(V|WH) subject to W ≥ 0,H ≥ 0, (3.5)

where D(V|WH) is a separable objective function:

D(V|WH) =
F
∑

f=1

N
∑

n=1

d([v]fn|[wh]fn), (3.6)

where d(x|y) denotes a scalar objective function of approximation y ∈ R+ given original

data x ∈ R+.



22

Various cost functions of NMF such as Euclidean Distance (ED) or Least squares error

(LSE), Kullback-Leibler divergence (KLD), and Itakura-Saito (IS) can be formulated in

term β-divergence (β-NMF), which parameterizes one variable (β):

dβ(x|y) =























xβ

β(β−1)
+ yβ

β
− xyβ−1

β−1
, β ∈ {0, 1} (generalized),

1
2
(x− y)2, β = 2 (ED),

x log x
y
− x+ y, β = 1 (KLD),

x
y
− log x

y
− 1, β = 0 (IS).

(3.7)

Choice of β parameter depends on applications. For example, β = 1 is often applied

to sound source separation [65], β = 0 is employed to artifact rejection of single channel

EEG [15] and music analysis [17], and β = 2 is used for facial images [36].

The NMF algorithm begins randomly initial non-negative values of W and H, and then

performs to find iteratively optimal factors obtained by minimizing a given cost function

using gradient descent with respect to W and H. For example, a simple minimization is

multiplicative update, proposed by Lee and Seung [39], based on ED and KLD as follows:

For ED, W←W · VHT

W(HHT ) + ǫ
, H← H · WTV

(WTW)H + ǫ
. (3.8a)

For KLD, W←W · (
V

WH
)HT

1 ·H , H← H · WT ( V
WH

)

W · 1 . (3.8b)

Above Eq.(3.8), (A · B) and (A
B

) are denoted element-wise of multiplication and division,

respectively. 1 denote a matrix of ones, and adding ǫ (a small constant, 10−9) avoids divi-

sion by zero.

3.2.1 Method I

The proposed algorithm depicted in Figure 3.2 aims first to identify and quantify the vari-

ations of spikes of HYPS in TF representation, second, to extract features associated with

spikes from decomposed vectors using NMF based on the paper [37], and last, to evaluate

performance of the proposed method.

NMF1 : Euclidean Distance Solved by Block Principle Pivoting

As seen in Eq.(3.8a), the algorithm is simply to implement and iteratively update W while

fixing H, and then update H while fixing W. However, it does not guarantee convergence

to local minimum (non convex optimization or NP-hard problem) [22]. Kim et al. [37]

divided Euclidean Distance cost function into two exclusive subproblems which are convex

in W or H, but cannot be convex for both. This technique called alternating nonnegative

least squares (ANLS) is summarized in Algorithm 1.
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• If fixed H and updated W,

min
W≥0

D(V|WH) = min
W≥0

∥

∥HTWT − VT
∥

∥

2

F
. (3.9)

• If fixed W and updated H,

min
H≥0

D(V|WH) = min
H≥0

‖WH− V‖2F . (3.10)

The subproblems are solved for W and H by block principle pivoting (BPP).

Algorithm 1 Alternating Nonnegative Least Squares (ANLS) based on BPP [37]

1: Inputs: Matrix VF×N , tolerance 0 < tol << 1, maximum iteration I , number of factor K
2: Initialize WF×K

3: repeat

4: Minimize the subproblem in Eq.(3.9) to obtain H with fixed W

5: Minimize the subproblem in Eq.(3.10) to obtain W with fixed H

6: until A stopping (convergence) criterion is satisfied or number of iteration meets I .

7: Outputs: W, H

Feature Extraction

• Mean Frequency

After the TF spectral and temporal vectors, (wk, hk), are calculated in the Eqs.(3.9)-

(3.10), the TF spectral vectors that are associated with the spectral structure of the

epileptic spikes in HYPS are identified. To find the mean frequency (MF) of the

spectral vectors, the following calculation, found in Eq.(3.11), is performed:

MF(wk) =

∑F
f=1 fwk(f)

∑F
f=1 wk(f)

fs, (3.11)

Figure 3.2: Block diagram of Method I.
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where MF(wk) is the mean frequency value of wk, k ∈ [1, 2,..., K], F is the number of

frequency samples in vector wk, and fs is the sampling frequency of the EEG record-

ing. The MF values provide a measure of the frequency content of the decomposed

spectral vectors. Since HYPS spikes are generally associated with high frequency

energy, the spectral vector with the highest MF value greater than a given threshold,

Thw, is selected as the spectral vector (w∗
k) corresponding to the spikes as shown in

Figure 3.2.

• Spike Localization

If any w∗
k are not found for a given recording, it indicates that there is not a spectral

vector with a MF value greater than the threshold (Thw) and that there are not spikes

in the given recording x(t). However, if a w∗
k for a given EEG segment is found,

then the index, k, of w∗
k is used to identify the location of the corresponding spikes.

As shown in the Eqs.(3.9)-(3.10), each decomposed spectral vector, wk, is associated

with a temporal vector, hk, that indicates the temporal locations where the spectral

energy of wk exists in the MP-TFD matrix of the EEG recording of x(t). Once

the spectral vector w∗
k that is associated with the spikes in EEG is identified, the

corresponding temporal vector h∗
k represents to locate the spikes in x(t).

Classification and Performance Evaluation

The peak locations of h∗
k that are greater than threshold Thh are identified, and annotated

on the EEG recording as possible location of spikes in order to compare true spikes marked

by the epileptologists. To evaluate the performance, percentages of correct spikes (true

positive: TP ), non-spikes (false positive: FP ), and missed spikes (false negative: FN )

can be calculated:

Correct spikes (%TP ) =
TP

TP + FN
, (3.12)

Incorrect spikes (%FP ) =
FP

TP + FP
, (3.13)

Missed spikes (%FN ) =
FN

TP + FP
. (3.14)

Chapter 4 explains how to calculate the performance.

3.2.2 Method II

While Method I selected arbitrary K, Method II aims to determine an effective number

of factor (or Keff) for TF matrix decomposition using NMF based on automatic relevance

determination (ARD) [59].
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NMF2 : β− Divergence Solved by Majorization-Minimization

Determining K is very important for learning data to avoid overfitting and underfitting.

For example, if K is too large, the data learning is overfitting. If K is too small, the data

leaning is underfitting. Vincent et al. [59] apply Baysian NMF model to find Keff in order

to obtain better decomposition. They also explain concepts how to determine Keff.

First of all, Vincent et al. [59] describe a probabilistic model for ARD, which relates

to the index kth of row vector of W and column vector of H that ties together through

a common scale parameter or relevance weight (λk). The parameter λk controls those

vectors. If λk is small or lower bound (τ ), those vectors are driven to zero or decoupled,

leading to a more sparse model. The authors apply W and H to exponential and half-normal

priors, denoted E andHN for l1−ARD and l2−ARD, respectively as showed in Table 3.2.

λk can be obtained from inverse-Gamma priors:

p(λk|a, b) =
ba

Γ(a)
λ
−(a+1)
k exp(− b

λk

), (3.15)

where a and b denote shape and scale hyperparameters and are fixed for all k. To set these

parameters for this thesis, given a constant a is to obtain b using method of moments [58]

as shown in Table 3.2.

Second, the following cost function is derived from Eq.(3.15) and Table 3.2:

C(W,H,λ) = −log p(W,H,λ|V)

=
1

φ
Dβ(V|WH) + c

K
∑

k=1

1

λk

(f(wk) + f(hk) + b)+

c logλk + const,

(3.16)

where f(wk) and f(hk) are model functions such as half-normal and exponential models:

for l1−ARD, f(u) = ||u||1, and for l2−ARD, f(u) = 1
2
||u||22, where u = {wk, hk}. φ is

dispersion parameter, and c is defined in Table 3.2, and λ = (λ1, λ2, ..., λK). This thesis

Table 3.2: Two probabilistic models based on automatic determination relevance for β−NMF [59].

µV denotes mean of matrix V.

Models

Exponential (l1−ARD) Half normal (l2−ARD)

Temporal vector p(hkn|λk) = E(hkn|λk) p(hkn|λk) = HN (hkn|λk)

Spectral vector p(wfk|λk) = E(wfk|λk) p(wfk|λk) = HN (wfk|λk)

where, given u = {w, h}, u ≥ 0, E(u|λ) = 1
λexp(−u

λ) u ≥ 0,HN (u|λ) =
√

2
πλ

u < 0, E(u|λ) = 0 u < 0,HN (u|λ) = 0

Parameter b for Eq.(3.15) b =

√

( (a−1)(a−2)µV

K ) b = π(a−1)µV

2K

Parameter c for Eqs.(3.16), (3.17) c = F +N + a+ 1 c = (F+N)
2 + a+ 1
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Algorithm 2 l1-Automatic Relevant Determination for β-NMF [59]

1: Inputs: Matrix VF×N , tolerance 0 < tol << 1, maximum iteration I , number of factor K
2: Initialize: WF×K , HK×N

3: Calculate: c = F +N + a+ 1 and γ(β) in Eq.(3.18)

4: Calculate: b =

√

(a−1)(a−2)µv

K
5: while (τ < tol)

6: H = H( WT [(WH)(β−2)V]

WT (WH)(β−1)+φ/repmat(λ,1,N)
)γ(β)

7: W = W( [(WH)(β−2)V]HT

(WH)(β−1)HT+φ/repmat(λ,F,1)
)γ(β)

8: λk =
∑F

f=1 wfk+
∑N

n=1 hkn+b

c for all k

9: τ = maxk=1,...K |(λk − λ̂k)/λ̂k|
10: end while

11: Calculate: Keff in Eq.(3.19)

12: Outputs: W, H, λ, and Keff (model order)

sets φ = 1 according to the work done by Vincent et al. [59] and applies l1−ARD model.

As seen in the above equation, observe that the first term represents data fitting, the

second and third terms are regularization having a common parameter, λk. If λk is large, the

second term is suppressed while the other term is increased. This inverse proportion aims

to prune irrelevant components out of the model, causing it to become sparse. Eq.(3.16)

can be reduced parameter λ by optimizing that cost function with respect to λ and keeping

λ to control the couples of columns W and rows H:

C(W,H) =
1

φ
Dβ(V|WH)+

c

K
∑

k=1

log(f(wk) + f(hk) + b) + const,

(3.17)

where const = Kc(1− logc).
Finally, the cost function in Eq.(3.17) is solved by majorization-minimization (MM)

problem which guarantees convergence at every iteration [26]. Overall, algorithm for

l1−ARD is summarized in Algorithm 2.

In the loop ‘while’ in that Algorithm, iteratively updating the matrices W and H em-

ploys multiplicative update based on MM. Parameter γ(β) is given:

γ(β) =











1
2−β

, β < 1

1 , 1 ≤ β ≤ 2
1

β−1
, β > 2.

(3.18)

λk is derived by partial derivative of Eq.(3.16), and tolerance (tol) is designed for termi-

nation if (λk−λ̂k

λ̂k
), where λk and λ̂k are current and previous updates, falls over a given
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threshold, τ . After convergence, Keff can be calculated:

Keff = |{k ∈ {1, ..., K} :
λk − b

c
b
c

> τ}|. (3.19)

Feature Extraction

After obtaining the decomposed matrices, MF(wk) in the Eq.(3.11) is calculated, decom-

posed vectors having all values of zero across the vectors are removed due to irrelevance,

and the remains are reordered from maximum to minimum MFs. In Method I, features

of spikes were investigated by only MFs. This method considers features with area under

the curve of spectral vector A(wk). To calculate A(wk) using Matlab’s command, trapz,

the vector has to be normalized in order to keep the feature because of the magnitude-

invariance among the entire data. Figure 3.3 (a) demonstrates this method while Figures

3.3 (b)-(d) are explained later in Method III.

Classification and Performance

Once the spectral vector having MF(wk)> Thw and A(wk)> ThAw is found, finding spike

locations in the corresponding temporal vector is identified and annotated on the EEG to

compare the true spike marked by the eplieptologists if peaks of energy values of that vector

are greater than Thh.

While Method I was considered only one of temporal and spectral vector (w∗
k, h

∗
k),

Method II employs one or two coupled vectors. The feature extraction algorithm is brief:

1. Find spectral vectors having MF(wk), A(wk) in the conditions of given thresholds

(Thw, ThAw).

MF(wk) > Thw,A(wk) > ThAw, (3.20)

where k = {A,B, ...}. For example, if (wA, wB) are found within the conditions,

(hA, hB) are possible to indicate spikes.

2. Find common time indexes of temporal vectors:

Idxcom = IdxA ∩ IdxB, (3.21)

where IdxA, IdxB, Idxcom are time indexes of temporal vectors A,B and common

time index with operation of intersection (∩), respectively.

3. Add temporal vectors with corresponding to the common time index, and find peak

locations where they are greater than Thh to locate spikes:

hcom(Idxcom) = hA + hB > Thh. (3.22)

Performance evaluation is similar to Method II.
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Figure 3.3: The illustration of feature extraction for Methods II and III shows how to calculate and

tabulate the features. (a) Features of spectral vector (wk) contains area (Aw) and mean frequency

(MFw) values. To calculate area of wk, the vector has to be normalized in order to keep the feature

because of magnitude-invariance among the entire data. (b) The vector with two distributions has

multiple features denoted as Ad, Bd, Cd, where d is a number of distribution (in this example, d =
2). The thick-dashed vertical line relied on the first distribution and associated with spike marked by

the epiletologist is labeled as class “1”. Otherwise, class “0” indicates non-spike. (c) Table contains

features of spectral and temporal vectors, including class labels.
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3.2.3 Method III

After finding the appropriate number of factor (Keff) from Method II, the average Keff is

employed to NMF based on the paper [40]. This method mainly focuses on classification

between spikes and non-spikes using classifier, support vector machine (SVM), and K-fold

cross validations in order to evaluate performance.

NMF3 : Kullback-Leibler Divergence Solved by Projected Gradient

The algorithm in Method II was slow convergence and exhibited bad reconstruction er-

ror. The result will be explained in Chapter 4. However, NMF algorithm using projected

gradient (PG) proposed by Lin [40] robusts to stationary point, and also shows better re-

construction between V and WH. The algorithm is summarized as follows:

• If fixed H and updated W,

Wi+1 = max{(0,Wi − αi▽ f(Wi))}, (3.23)

where i is index of iteration: {i = 1, 2, ..., I}, f(W) denotes differentiable function with

respect to W, f = V −WH, every iteration, and α is a step size. At the first iteration,

initial step size value of the paper [40] is 1. Then, updated α per iteration can be checked

in Eq.(3.24):

f(Wi+1)− f(Wi) ≤ σ▽ [f(Wi)]T (Wi+1 −Wi), (3.24)

where σ is a constant (σ = 0.01). In Eq.(3.23), if updated W with corresponding to α satis-

fies with Eq.(3.24), then α is repeatedly decreased by muliplying θ = 0.1 until Eq.(3.24) is

unsatisfied. Otherwise, if updated W does not satisfy with Eq.(3.24), then α is repeatedly

increased by dividing θ until Eq.(3.24) is satisfied, see Algorithm 3.

When α is found, the updated W is closed to a stationary point with condition of termi-

nation (or stopping criterion):

|| ▽P f(Wi)|| ≤ ǫ|| ▽ f(W1)||, (3.25)

where ǫ is a small constant or tol. ▽P is defined:

▽Pf(W) =

{

▽f(W) , wfk > 0,

min[0,▽f(W)] , wfk = 0,
(3.26)

where f = [1, 2,..., F ], k = [1, 2,..., K], and wfk ∈W.

• If fixed W and updated H: variable W is replaced to H in Eqs.(3.23)-(3.26).

Above description of the algorithm is summarized in Algorithm 3.



30

Algorithm 3 Projected Gradient algorithm for NMF [40]

1: Inputs: Matrix VF×N , tolerance 0 < tol << 1, maximum iteration I , number of factor K
2: Initialize: WF×K , HK×N , given 0 < σ < 1, 0 < θ < 1: This thesis defines (σ, θ) = (0.01, 0.1)

and σ1 = 1 according to [40].

3: repeat i = 1 , ..., I
4: Update αi ← αi−1

5: if αi satisfies Eq.(3.24),

6: then (increase repeatedly the value) αi ← αi

θ until it does not satisfy Eq.(3.24)

7: else (decrease repeatedly the value) αi ← αiθ until it satisfies Eq.(3.24)

8: end if

9: update W in Eq.(3.23)

10: update H in Eq.(3.23) by changing W to H

11: until A stopping criterion is satisfied in Eq.(3.25) for W and H or number of iteration meets I
12: Outputs: W, H

Feature Extraction

Figures 3.3(a), (b) demonstrate how to calculate mean frequency value, area of each vector

wk, and measure width, height, and area of each distribution of vector hk. One spectral

vector can have several numbers of distribution in temporal vector of kth factor. Example

of Figure 3.3(b) shows two distributions where one of them indicates true spike marked

by the epileptologists while the other indicates non-spike. All features are calculated for

feeding to the table (see Figure 3.3(c)).

Classification and Performance

As seen in the table in Figure 3.3(c), several features associated with classes (spikes and

non-spikes) are conveyed to the learner, SVM.

Support Vecter Machine

In general, SVMs integrate two main concepts. The first concept determines maximization

of an optimum hyperplane, which measures distance from it to the closest data point on

each side. The other concept applies a kernel function, which operates the dot product of

two training vectors, to map the feature vectors from lower to higher dimensional spaces.

SVM constructs optimal hyperplane for linearly separable and non-separable patterns.

In separable patterns case, given training samples (xi, yi), where i =1, 2, ..., N samples of

data, xi is input vectors of ith sample corresponding to labels yi: binary outputs {-1, 1},
following equation of a decision boundary in the form of a hyperplane is:

h(xi, w, b) = wTxi + b, (3.27)

where w is an adjustable weight vector, b is a bias, and h(·) is hyperplane function.
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relationships between “sensitivity” and “1-specificity” or called receiver operating charac-

teristic (ROC) curve and calculating its area under curve (AUC), which provides significant

interpretation of accuracy. ROC curve is used to quantify how well the tests or diagnostic

systems distinguish the testing sets or patients being diagnosed with unknown states such

as normal or HYPS, into one of the groups. Figure 3.5 shows characteristics of ROC curve.

Figure 3.4: Illustration of classification models as a preprocessing step of classifier. Each of spikes

and non-spikes having multiple features are split into two subsets for training (80%) and testing

(20%) using K-Fold model.

Figure 3.5: ROC curve represents different levels of performance indicated by direction of the arrow

(from the worst to better performance).
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(d) Reconstruction: WH using NMF based on PG

 

 

180 182 184 186 188 190
0

5

10

15

20

25

30

0.5

1

1.5

2

2.5

x 10
−5

Figure 4.3: Differences between original MP and approximation of decomposed factors. (a) Normalized MP is decomposed and each element

values are very small as shown in color bar. (b) The results of using β−NMF based on l1−ARD provides ill-reconstruction error of W, H

when initial K = 30 and the resulting Keff = 1. For further analysis of Method II, all MPs are multiplied by 1000, and (c) the results show

better reconstruction error when using initial K = 30 and resulting Keff = 10. The parameters were set {a, tol, I} = {0.5, 10−6, 3500}. (d)

using NMF based on projected gradient (PG), decomposition of normalized MP shows improved reconstruction error for Method III. The

parameters were set {Keff, tol, I} = {10, 10−15, 3500}
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4.3 Method III

In Method I, K was randomly chosen, and Method II provided Keff but its reconstruction

error was very poor. For further analysis with all patients, Method III uses average K = 10

from NMF based on l1−ARD to NMF based on projected gradient proposed by Lin [40].

Figure 4.3(d) shows improved reconstruction error. Parameters were set: tol = 10−15,

number of iteration I = 3500.

After decomposing MP, mean frequency (MF(wk)), area of wk and hk (A(wk), A(hk)),
width of hk (Bh), and height of hk (Ch) were calculated and tabulated in Figure 3.3(c).

Two classes (class 1 = spike, and 0 = non-spike) along with those features were manually

specified in that table. Then, these attributes of the data were fed to K-fold cross validations

in order to evaluate performance using SVM and compare the results of two features sets:

• Feature set 1: F1 contains features {MF(wk),A(wk),A(hk),Bh,Ch}.
• Feature set 2: F2 contains features {MF(wk),A(wk),Ch}.

This method examines 10 folds (see Figure 3.4) based on SVM classifier to evaluate the

performance of F1 and F2 by plotting receiver operating characteristic (ROC-curve) with

different σ = {0.5, 1, 5, 10}. The results are shown in Table 4.3.

From results on Table 4.3, bold numbers show the highest values of accuracy (Acc),

precision (Prec), sensitivity (Sens), specificity (Spec) and AUC per feature set. The highest

avearge AUC of each F1 and F2 are 98.15± 0.3%, 98.09± 0.31%, respectively, at σ = 10.

To compare the results in Figures 4.9(a), (b) with the same σ, feature set F2 provides AUCs

better than F1 when the best and worst performances of each feature set were picked.

4.4 Results Summary

Overall, in Method I, the number of factor K was randomly picked to employ NMF and

the Euclidean distance cost function was solved by block principal pivoting. The decom-

position vectors, W and H, were analyzed to identify and quantify characteristics of spikes

as HYPS if their mean frequency and peak values are greater than the given thresholds

(Thw, Thh). The performance was evaluated by calculating percentages of correct spikes,

non-spikes, and missed spikes as denoted true positive, false positive, false negative, and by

comparing between the algorithm and commercial program (Persyst). The results of TP
and FN showed that the algorithm achieved to locate spikes better than the other. However,

FP will be reduced for future work.

In Method II, average effective K (or Keff) can be found by using probabilistic Bayesian

model for β-NMF based on automatic relevance determination (ARD) in order to avoid

over-fitting, and under-fitting of learning data. A concept of this method is that a relevant

weight (λk) ties kth column vector of W and row vector of H. If λk is smaller than a

threshold (τ ), (wk, hk) are decoupled as making the decomposition sparse. The results of



45

Table 4.3: Results of performance based on K-Fold with different σ and comparison between F1,

F2. Acc, Prec, Sens, Spec, AUC are denoted accuracy, precision, sensitivity, specificity and the area

under the curve of ROC, respectively.

Feature sets σ Acc Prec Sens Spec AUC

F1

0.5 75.31± 2.01 96.04± 0.27 52.79± 4.11 97.83± 0.17 93.42± 1.76

1 89.59± 1.48 97.77± 0.28 83.81± 3.15 95.37± 0.33 96.13± 0.44

5 93.03± 5.13 94.28± 1.09 91.77± 11.72 94.30± 1.51 97.90± 0.23

10 94.30± 1.72 93.93± 0.83 94.76± 4.44 93.83± 1.05 98.15± 0.30

F2

0.5 87.45± 2.87 94.43± 0.25 79.59± 6.08 95.30± 0.41 95.00± 1.11

1 93.52± 2.21 94.17± 0.23 92.79± 4.78 94.26± 0.44 96.29± 0.51

5 95.30± 0.65 93.93± 0.58 96.87± 1.16 93.73± 0.64 97.95± 0.23

10 94.09± 1.86 93.83± 0.85 94.42± 4.74 93.75± 1.09 98.09± 0.31

Keff using different values of hyperparameter (a) based on l1−ARD showed that Keff in-

creased when a increased. To compare the results of performance, the feature extraction al-

gorithm of Method II had significantly reduced the number of non-spikes while Method I

provided the numbers of correct spikes and missed spikes better than Method II. In fact,

the algorithm of l1−ARD has drawback of extensive computation and provide results of

ill-reconstruction error.

Finally, in Method III, an average Keff of 10 was applied in NMF and Kullback-Leibler

Divergence cost function was solved by projected gradient. This method mainly focused

on classification using SVM based on K-Fold cross validation, and was assessed by plot-

ting ROC-curve. The results of performance using K-fold method displayed AUCs in-

creased when σ increased. At σ = 10, feature set F2, which contains {MF(w),A(w),C(h)}
showed more significant results than feature set F1, which contains {MF(w),A(w),A(h),
b(h),C(h)} by visualizing at AUCs of the ROC curves.
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Figure 4.9: Results of ROC curves using K-Fold cross validation with parameter σ = 10 per feature

set, F1 and F2. From the worst to the best performance, AUCs of F1 (a) and F2 (b) are (90.38%-

98.51%), and (93.14%-98.56%), respectively.
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Chapter 5

Conclusions

There are limited available tools for analyzing discharges in the case of ISS. In this thesis,

a novel TF feature extraction algorithm based on MP-TFD and NMF for identification of

spikes in the presence of HYPS was proposed. The developed method in this thesis applies

signal analysis, dimension reduction, and feature extraction in order to identify and quantify

the EEG waveforms between spikes and non-spikes in the presence of HYPS.

To analyze the waveforms, MP-TFD represented epileptic discharges high resolution

in TF domain was able to capture transient characteristics in short time frame. To extract

from MP, three algorithms were investigated and the results of the performance based on

two classification techniques, thresholdings and support vector machine (SVM), were dis-

cussed.

The first algorithm using NMF based on Euclidean Distance cost function with an ar-

bitrary model order and thresholdings for classification aimed to determine relationships

between characteristics of the waveforms from the decomposed vectors. The second al-

gorithm, which used β−NMF based on Kullback-Leibler Divergence (KLD: β = 1) cost

function solved by majorization-minimization (MM) and thresholdings for classification,

aimed to determine an optimal model selection (Keff) using Baysian approach and provided

an algorithm of feature extraction to reduce. The third algorithm, which used NMF based

on Kullback-Libler Divergence cost function with an average Keff of 10 solved by projected

gradient, focused on classification using SVM.

These methods were performed on a dataset collected from five ISS individuals. The

first and second methods resulted in a significantly higher success rate than the exist-

ing temporal spike detection method, such as the clinical software (Persyst). The re-

sults showed average true positive (TP) and false negative (FN) percentages of 86% and

14%, respectively, for the first method, and 80% and 20%, respectively, for the second

method while Persyst showed the results of TP and FN percentages of 4% and 96%, respec-

tively. Using SVM with 10-Fold cross validations, the third method exhibited a remarkably

improved area under curve (AUC) of the receiver operating characteristic (ROC), up to

98.56%.

This type of automatic spike detection for EEG can assist epileptologists by identifying

epileptiform discharges of interest from long-term EEG recordings; however, there are

limited tools available for discharge detection in the case of ISS, which is characterized

by HYPS on EEG. Hence, the developed algorithm provides a novel tool to identify and

quantify the presence of spikes in the presence of HYPS. The quantitative assessment of
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spike detection, as well as other features of HYPS is expected to allow a more accurate,

automatic assessment of the relevance of EEG to clinical outcome, which is significantly

important in therapy management of ISS.
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