A search technique was used to identify sets of colored glass filters that could be placed in the optical path of the Sinarback 54 camera system resulting in improved color accuracy compared with a production unit and the ability to perform spectral estimation. A green and blue filter, each a pair of filters, were identified and constructed from Schott glass. RGB images were collected through these two filters resulting in six image planes. Using the Gretag Macbeth ColorChecker DC and a custom target of blue artist pigments, a transformation was derived that converted digitally flat-fielded and photometrically-linearized camera signals to estimated spectral reflectance factor. The combination of using these two filter “sandwiches” and appropriate mathematics resulted in more than a twofold improvement in color and spectral accuracy compared with the production camera. The average colorimetric and spectral performance is shown in the following bar graphs for the calibration targets and independent-verification targets, the Esser TE221 test chart, a custom target of artist pigments made using the Gamblin Conservation Colors, and the traditional GretagMacbeth ColorChecker Color Rendition chart. These results indicate that it is possible to achieve excellent color accuracy and acceptable spectral accuracy using a color-filter array sensor.

Publication Date



Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Technical Report

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)


RIT – Main Campus