This report is a continuation of a project involving the development of printer models that are able to simulate the behavior of printers regardless of the halftone pattern used in the process. The previous report described a model for a laser electrophoto-graphic printer that was able to simulate tone reproduction independently of the halftone pattern. 1 The current report is an expansion of this model to enable a simulation of noise characteristics of the laser EP process. The random noise behavior of the EP printing process, often called “ printer instability”, is added to the virtual printer model prior to the application of a character-istic tone transfer function. The result is a printer model that is independent of the halftone pattern used in the printing process, but a model that is able to simulate ( a) mean level tone reproduction, ( b) RMS deviation in tone, and ( c) higher order moments of tone reproduction. The model is semiempirical and was calibrated with experimental data from printed bar patterns. The cali-brated model then was challenged with a clustered dot halftone, a Floyd- Steinberg error diffusion process, and a semi- dispersed dot halftone formed from a linear pixel shuffling algorithm. The mean value, the RMS deviation, and higher moments of tone reproduction of modeled images were compared to real printed images by comparing histogram distributions of toner mass coverage on the printed paper.

Publication Date



This article may be accessed on the publisher's website (additional fees may apply) at: http://www.imaging.org/store/epub.cfm?abstrid=32176 ISSN:1062-3701 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)


RIT – Main Campus