This paper focuses on comparing three basis-vector selection techniques as applied to target detection in hyperspectral imagery. The basis-vector selection methods tested were the singular value decomposition (SVD), pixel purity index (PPI), and a newly developed approach called the maximum distance (MaxD) method. Target spaces were created using an illumination invariant technique, while the background space was generated from AVIRIS hyperspectral imagery. All three selection techniques were applied (in various combinations) to target as well as background spaces so as to generate dimensionally-reduced subspaces. Both target and background subspaces were described by linear subspace models (i.e., structured models). Generated basis vectors were then implemented in a generalized likelihood ratio (GLR) detector. False alarm rates (FAR) were tabulated along with a new summary metric called the average false alarm rate (AFAR). Some additional summary metrics are also introduced. Impact of the number of basis vectors in the target and background subspaces on detector performance was also investigated. For the given AVIRIS data set, the MaxD method as applied to the background subspace outperformed the other two methods tested (SVD and PPI).

Publication Date



Copyright 2004 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)


RIT – Main Campus