Using a paired comparison paradigm, various gamut mapping algorithms were evaluated using simple rendered images and artificial gamut boundaries. The test images consisted of simple rendered spheres floating in front of a gray background. Using CIELAB as our device-independent color space, cut-off values for lightness and chroma, based on the statistics of the images, were chosen to reduce the gamuts for the test images. The gamut mapping algorithms consisted of combinations of clipping and mapping the original gamut in linear piecewise segments. Complete color space compression in RGB and CIELAB was also tested. Each of the colored originals (R,G,B,C,M,Y, and Skin) were mapped separately in lightness and chroma. In addition, each algorithm was implemented with saturation (C*/L*) allowed to vary or retain the same values as in the original image. Pairs of test images with reduced color gamuts were presented to twenty subjects along with the original image. For each pair the subjects chose the test image that better reproduced the original. Rank orders and interval scales of algorithm performance with confidence limits were then derived. Clipping all out-of-gamut colors was the best method for mapping chroma. For lightness mapping at low lightness levels and high lightness levels particular gamut mapping algorithms consistently produced images chosen as most like the original. The choice of device-independent color space may also influence which gamut mapping algorithms are best.

Publication Date



©1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. The authors thank R. Balasubramanian of Xerox Corp. for his valuable suggestions and helpful discussions, and the subjects for volunteering their time and patience.ISSN:1057-7149 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)


RIT – Main Campus