Abstract

Since it is impossible to generate and propagate an impulse, often a system is excited by a narrow time-domain pulse. The output is recorded and then a numerical deconvolution is often done to extract the impulse response of the object. Classically, the fast Fourier transform (FFT) technique has been applied with much success to the above deconvolution problem. However, when the signal-to-noise ratio becomes small, sometimes one encounters instability with the FFT approach. In this paper, the method of conjugate gradient is applied to the deconvolution problem. The problem is solved entirely in the time domain. The method converges for any initial guess in a finite number of steps. Also, for the application of the conjugate gradient method, the time samples need not be uniform, like FFT. Since, in this case, one is solving the operator equation directly, by passing the autocorrelation matrix computation, storage required is 5N as opposed to N^2. Computed impulse response utilizing this technique has been presented for measured incident and scattered fields (Refer to PDF file for exact formulas).

Publication Date

1985

Comments

Original source of PDF file: http://www.cis.syr.edu/~tksarkar/pdf/1985_Dec_2.pdf ISSN:0018-9456 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Article

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)

Campus

RIT – Main Campus

Share

COinS