Abstract

Common use of smartphones is a compelling reason for performing activity recognition with on-board sensors as it is more practical than other approaches, such as wearable sensors and augmented environments. Many solutions have been proposed by academia, but practical use is limited to experimental settings. Ad hoc solutions exist with different degrees in recognition accuracy and efficiency. To ease the development of activity recognition for the mobile application eco-system, Google released an activity recognition service on their Android platform. In this paper, we present a systematic evaluation of this activity recognition service and share the lesson learnt. Through our experiments, we identified scenarios in which the recognition accuracy was barely acceptable. We analyze the cause of the inaccuracy and propose four practical and light-weight solutions to significantly improve the recognition accuracy and efficiency. Our evaluation confirmed the improvement. As a contribution, we released the proposed solutions as open-source projects for developers who want to incorporate activity recognition into their applications.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Publication Date

9-2016

Comments

This is the post-print of an article published by Elsevier. Copyright 2016 Elsevier B.V. The final, published version is located here: https://doi.org/10.1016/j.pmcj.2016.09.003

Document Type

Article

Department, Program, or Center

Computer Science (GCCIS)

Campus

RIT – Main Campus

Available for download on Thursday, February 07, 2019

Share

COinS