Authors

Manasse Mbonye

Abstract

Also archived at: arXiv:astro-ph/0208244 v1 13 Aug 2002 We suggest an alternative framework for interpreting the current state of the visible universe. Our approach is based on a dynamical "Cosmological Constant'' and the starting point is that a decaying vacuum produces matter. As we point out, such a dynamical Lambda is not incompatible with the general requirements of general relativity. By assuming inflation and big bang nucleosynthesis we can solve for the present fractional densities of matter Omega_{m,0} and vacuum Omega_{Lambda, 0} in terms of only one parameter which we call the vacuum domination crossing redshift, z_c. We put constraints on z_c to obtain a universe that is presently vacuum dominated and with characteristic densities consistent with observations. The model points to the possible existence of newly formed dark matter in the inter-cluster voids. We argue that some of this matter could be accreting onto clusters through the latter's long range gravitational potentials. If so, then cluster dark matter halos may not manifest clear cut-offs in their radial density profiles. Furthermore, if a substantial amount of this newly produced matter has already drained onto the clusters, then the CMB power spectrum may favor lower dark matter density values than is currently observed bound in the clusters. A final feature of our approach relates to the combined effect of the matter production by a decaying vacuum and the different rates at which matter and the vacuum will dilute with the scale factor. Such combination may create conditions for a universe in which the vacuum and matter densities dilute and evolve towards comparable amplitudes. In this sense the model offers a natural and conceptually simple explanation to the Coincidence Problem.

Publication Date

2-20-2003

Comments

This work was made possible by funds from the University of Michigan. ISSN: 0217-751X

Document Type

Article

Department, Program, or Center

School of Physics and Astronomy (COS)

Campus

RIT – Main Campus

Share

COinS