We compare waveforms and orbital dynamics from the first long-term, fully non-linear, numerical simulations of a generic black-hole binary configuration with post-Newtonian predictions. The binary has mass ratio q 0.8 with arbitrarily oriented spins of magnitude S1/m2 1 0.6 and S2/m2 2 0.4 and orbits 9 times prior to merger. The numerical simulation starts with an initial separation of r 11M, with orbital parameters determined by initial 2.5PN and 3.5PN post-Newtonian evolutions of a quasi-circular binary with an initial separation of r = 50M. The resulting binaries have very little eccentricity according to the 2.5PN and 3.5PN systems, but show significant eccentricities of e 0.01 − 0.02 and e 0.002 − 0.005 in the respective numerical simulations, thus demonstrating that 3.5PN significantly reduces the eccentricity of the binary compared to 2.5PN. We perform three numerical evolutions from r 11M with maximum resolutions of h = M/48,M/53.3,M/59.3, to verify numerical convergence. We observe a reasonably good agreement between the PN and numerical waveforms, with an overlap of nearly 99% for the first six cycles of the (ℓ = 2,m = ±2) modes, 91% for the (ℓ = 2,m = ±1) modes, and nearly 91% for the (ℓ = 3,m = ±3) modes. The phase differences between numerical and post-Newtonian approximations appear to be independent of the (ℓ,m) modes considered and relatively small for the first 3-4 orbits. An advantage of the 3.5 PN model over the 2.5 PN one seems to be observed, which indicates that still higher PN order (perhaps even 4.0PN) may yield significantly better waveforms. In addition, we identify features in the waveforms likely related to precession and precession-induced eccentricity.

Publication Date



Archived in arXiv:0808.0713 v3 Jan 1, 2009.Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

School of Physics and Astronomy (COS)


RIT – Main Campus