Given a graph G, a function f:V(G)→ {1,2,…,k} is a k-ranking of G if f(u)=f(v) implies every u-v path contains a vertex w such that f(w)>f(u). A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. The arank number of a graph, denoted ψr(G), is the largest k such that G has a minimal k-ranking. We present new results involving minimal k-rankings of paths. In particular, we determine ψr(Pn), a problem posed by Laskar and Pillone in 2000 (Refer to PDF file for exact formulas).

Publication Date



Copyright 2006 Elsevier Science B.V., Amsterdam. All Rights Reserved. Research travel support provided by JetBlue Airways, Kay & Tony Carlisi, and Timothy Gilbert. Partially partially supported by a RIT COS Dean’s Summer Research Fellowship Grant.ISSN:0012-365X Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

School of Mathematical Sciences (COS)


RIT – Main Campus