In this paper, a class of microelectromechanical systems described by nonlinear differential equations with random delays is examined. Robust fuzzy controllers are designed to control the energy conversion processes with the ultimate objective to guarantee optimal achievable performance. The fuzzy rule base used consists of a collection of r fuzzy IF-THEN rules defined as a function of the conditional variable. The method of the theory of cones and Lyapunov functionals is used to design a class of local fuzzy control laws. A verifiably sufficient condition for stochastic stability of fuzzy stochastic microelectromechanical systems is given. As an example, we have considered the design of a fuzzy control law for an electrostatic micromotor.

Publication Date



Energy conversion and management journal article. Please see www.elsevier.com for more information.Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

Microelectronic Engineering (KGCOE)


RIT – Main Campus