Abstract

We present the results of HST narrow band imaging of eleven Compact Steep Spectrum (CSS) radio sources. Five of them (3C 48, 3C 147, 3C303.1, 3C 277.1 and 4C 12.50) were part of a dedicated ``pointed'' program of deep line imaging ([OIII]). For six additional sources (3C 49, 3C 93.1, 3C 138, 3C 268.3, 3C305.1 and 3C343.1) ``snapshot'' images ([OIII] or [OII]) were taken from the HST archive. In all but one of the targets (3C 49) line emission has been detected and only in one case (3C 138) is unresolved. In four out five of the sources with deep observations, the line emission extends well beyond the size of the radio source but along the radio axis. Structures of similar surface brightness would have not been seen in the snapshot images. These emission line structures extend to scales of 10 to 30 kpc and cover a projected angle, when seen from the nucleus, of 30 to 110 degrees, indicating that the nuclear illumination is anisotropic. Photon counting arguments also support this interpretation. In six objects the radio emission extends over more than 1 arcsec. In these cases the line emission has an elongated structure, linking the nucleus to the radio-lobes, possibly tracing the path of the invisible radio jets. Nevertheless the emission line morphologies do not show the bow shocks at the extremities of the radio lobes expected if they are sources whose expansion is frustrated by a dense external medium. Our data favour the alternative model in which CSSs are the young phase of the large size radio sources. When ``pointed'' pure continuum images are available, there appears to be no alignment between radio and continuum emission which contradicts previous suggestions based on broad-band HST imaging. (Refer to PDF file for exact formulas).

Publication Date

2000

Comments

Also archived in: arXiv:astro-ph/0006355 v1 26 Jun 2000 Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555 and by Space Telescope Science Institute grant GO-3594.01-91A.ISSN:1538-3881 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Article

Department, Program, or Center

School of Physics and Astronomy (COS)

Campus

RIT – Main Campus

Share

COinS