Abstract

Hopf bifurcation theory for an oscillator subject to a weak feedback but a large delay is investigated for a specific laser system. The problem is motivated by semiconductor laser instabilities which are initiated by undesirable optical feedbacks. Most of these instabilities are starting from a single Hopf bifurcation. Because of the large delay, a delayed amplitude appears in the slow time bifurcation equation which generates new bifurcations to periodic and quasi-periodic states. We determine analytical expressions for all branches of periodic solutions and show the emergence of secondary bifurcation points from double Hopf bifurcation points. We study numerically different cases of bistability between steady, periodic, and quasi-periodic regimes. Finally, the validity of the Hopf bifurcation approximation is investigated numerically by comparing the bifurcation diagrams of the original laser equations and the slow time amplitude equation.

Publication Date

2000

Comments

Copyright 2000 Society for Industrial and Applied Mathematics. ISSN:0036-1399 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Article

Department, Program, or Center

School of Mathematical Sciences (COS)

Campus

RIT – Main Campus

Share

COinS