The incorporation of tunnel diodes with field effect transistors (FET) can improve the speed and power capability in electronic circuitry. This has been realized in III-V materials by demonstrating a low power refresh-free tunneling-SRAM and high performance compact A/D converter. A new thrust to integrate tunnel diodes with the mainstream CMOS technology led to the invention of Si/SiGe resonant interband tunnel diode (RITD) (S.L. Rommel et al., Appl. Phys. Lett., vol. 73, pp. 2191-93, 1998) with the highest reported peak-to-valley current ratio (PVCR) of 6.0 (K. Eberl, J. Crystal Growth, 227-228, pp. 770-76, 2001). The structure consists of a SiGe spacer i-layer sandwiched between two delta-doped planes grown by low-thermal molecular beam epitaxy (LT-MBE) (N. Jin et al., IEEE Trans. Elec. Dev., vol. 50, pp.1876-1884, 2003). By adjusting the spacer layer thickness, the peak current density (Jp) can be adjusted from 0.1 A/cm 2 up to 151 kA/cm2 (N. Jin et al., App. Phys. Lett., 83, pp. 3308-3310, 2003). Recently, monolithic integration of RITD with CMOS has been realized, demonstrating a low-voltage operation of a monostable-bistable logic element (MOBILE) (S.Sudirgo et al., Proc. 2003 Int. Semic. Dev. Res. Symp., pp. 22, 2003). In this study, RITD layers were grown through openings in a 300 nm thick chemical vapor deposition (CVD) SiO2 layer.

Publication Date



Copyright 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

Microelectronic Engineering (KGCOE)


RIT – Main Campus