We formulate and evaluate weighted least squares (WLS) and ordinary least squares (OLS) procedures for estimating the parametric mean-value function of a nonhomogeneous Poisson process. We focus the development on processes having an exponential rate function, where the exponent may include a polynomial component or some trigonometric components. Unanticipated problems with the WLS procedure are explained by an analysis of the associated residuals. The OLS procedure is based on a square root transformation of the "detrended" event (arrival) times - that is, the fitted mean-value function evaluated at the observed event times; and under appropriate conditions, the corresponding residuals are proved to converge weakly to a normal distribution with mean 0 and variance 0.25. The results of a Monte Carlo study indicate the advantages of the OLS procedure with respect to estimation accuracy and computational efficiency.

Publication Date



Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

Industrial and Systems Engineering (KGCOE)


RIT – Main Campus